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 Abstract: Numerical Optimization algorithms presents the most effective methods in continuous optimization. It 

responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are 

best suited to practical problems. In this article, we propose some alternative iterative algorithms, with different order of 

convergence for minimization of non-linear functions. Then comparative study among the proposed algorithms and 

Newton’s algorithm is established by means of examples. 
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I. INTRODUCTION 

An optimization problem consists of maximizing or minimizing a real function by systematically choosing input values 

from within an allowed set and computing the value of the function. The generalization of optimization theory and 

techniques to other formulations comprises a large area of applied mathematics. More generally, optimization includes 

finding "best available" values of some objective function given a defined domain, including a variety of different types 

of objective functions and different types of domains. Many optimization problems with or without constraints arise in 

various fields such as science, engineering, economics, management sciences, etc., where numerical information is 

processed. In recent times, many problems in business situations and engineering designs have been modeled as an 

optimization problem for taking optimal decisions. In fact, numerical optimization techniques have made deep in to 

almost all branches of engineering and mathematics. Several methods [8, 10, 16, 20, 21] are available for solving 

unconstrained minimization problems.  These methods can be  classified  in  to  two  categories  as  non gradient  and  

gradient methods. The non gradient methods require only the objective function values but not the derivatives of the 

function in finding minimum. The gradient methods require, in addition to the function values, the first and in some 

cases the second derivatives of the objective function. Since more information about the function being minimized is 

used through the use of derivatives, gradient methods are generally more efficient than non gradient methods. All the 

unconstrained minimization methods are iterative in nature and hence they start from an initial trial solution and 

proceed towards the minimum point in a sequential manner. To solve unconstrained nonlinear minimization problems 

arising in the diversified field of engineering and technology, we have several methods to get solutions. For instance, 

multi- step nonlinear conjugate gradient methods [3], a scaled nonlinear conjugate gradient algorithm[1], a method 

called,  ABS-MPVT algorithm [12] are used for solving unconstrained optimization problems. Newton’s method [13] 
is used for various classes of optimization problems, such as unconstrained minimization problems, equality 

constrained minimization problems. A proximal bundle method with inexact data [17] is used for minimizing 

unconstrained non smooth convex function.  Implicit and adaptive inverse preconditioned gradient method [2] is used 

for solving nonlinear minimization problems. A new algorithm [6] is used for solving unconstrained  optimization 

problem with the form of sum of squares minimization. A derivative based algorithm [9] is used for a particular class of 

mixed variable optimization problems. A globally derivative – free decent method [14] is used for nonlinear 

complementarity’s  problems.  
  

Vinay Kanwar et al. [18]  introduced new algorithms called, external touch technique and  orthogonal intersection 

technique for solving the non linear equations. A.M.Ostrowski’s[5] introduced fourth order convergence iteration 
scheme for solving non linear equations. Sharma and Guha[7]  introduced a family of modified Ostrowski’s methods 
with accelerated sixth order convergence. Chun and Ham [11] proposed some sixth order variants of Ostrowski’s root 
finding methods. Kou. et al [15]  introduced some variants of Ostrowski’s method with seventh order convergence. 
Grau et.al[4] proposed an improvement to Ostrowski’s root finding method. Miquel Grau-Sanchez[19]  proposed 
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improvements of the efficiency of some three step iterative like Newton’s methods. Recently, Jisheng  Kou and  
Xiuhua Wang [ 20] introduced some improvements  of  Ostrowski’s  method with order of convergence eight. In this 

article, we introduce alternative algorithms for minimization of non linear functions and comparative study is 

established among the new seven algorithms with Newton’s algorithm by means of examples. 

 

                                                                     II. NEW ALGORITHMS 

 In this section, we introduce seven new numerical algorithms for minimizing   non-linear  real valued  and twice 

differentiable real functions. Consider the nonlinear optimization problem:  Minimize }:,),({ RRfRxxf      

where f  is  a non-linear  twice differentiable function. 

Consider the function xxG )(  − ))()(( xgxg   where )()( xfxg  . Here f(x) is the function to be minimized. 

)(xG is defined around the critical point x
*  

of  f(x) if  0)()(  
xfxg   

 and is given by 

)()()()( xgxgxgxG  . If we assume that 0)(  
xg ,  we have  )(  xG = 0   iff 0)( 

xg  . 

Consider the equation 0)( xg  whose one or more roots  are to be found.  )(xgy   represents the graph of the 

function  )(xg  and  assume that  an  initial estimate 0x  is known for the desired root of the equation. Now we 

consider iterative techniques to minimize nonlinear functions g(x) where RRDg :  for an open interval D 

is a scalar function. 

 

2.1. New  method – (1)      

We introduce new method – (1) for minimization of nonlinear functions which is based on Ostrowski’s method with 
fourth order convergence [5]  is given by 
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Since )()( xfxg  ,   the equation (2.1) becomes  

 

Algorithm – (1) 
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2.2 New method – (2) 

We introduce new method – (2) for minimization of nonlinear functions which is a variant of Ostrowski’s method [4] 
with sixth order convergence is given by 
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Since )()( xfxg  ,   the equations (2.3) becomes  
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 Algorithm – (2) 
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2.3. New method – (3) 

   The new method (2) improves the local order of convergence of Ostrowski’s method with an additional evaluation of 
the function. Also we introduce new method-(3) for minimization of nonlinear functions which is based on Sharma and 

Guha [7] family 
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where a   R  and  yn,  zn are the same in (2.3).  For computational purpose we take a = 0, and the equation (2.5) 

becomes 
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Since )()( xfxg  ,   the equation (2.6) becomes  

 Algorithm –(3) 
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2.4 New method – (4) 

     We introduce new method-(4) for minimization of nonlinear functions which is based on the equations (2.3), a 

family of modified Ostrowski’s methods with seventh-order convergence is presented by Kou et. al in[15].  
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Since )()( xfxg  ,   the equation (2.8) becomes  

 Algorithm – (4) 
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2.5. New method – (5) 

     We introduce new methods [20] which is based on the new variants of Ostrowski’ method with eighth order 
convergence for solving non-linear equations. The iteration scheme consisting of two steps. The first step is based on 

Ostrowski’s iterate to get zn from xn, namely 

)(),(

)(2)(

)(
),(

)(

)(

2

2

nnnnnn

nn

n

nn

n

n

nn

yxyxHyz

ygxg

yg
yxH

xg

xg
xy





                                                                               (2.10) 

The second step is to calculate  1nx  from the new point  nz  by two families of methods given by  
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where R, .  If we take 0 , we obtain the family given by (2.8). The best value of    is presented by the 

following theorem. 

Theorem:  Assume that the function  RRDg :  for an open interval D has a simple root Dx  . Furthermore 

assume that g(x) is sufficiently smooth in the neighborhood of the root x
*
 and zn  is given by the equation  (2.10), the 

method defined by  (2.11) and (2.12) are of order eight  when    = 4. 

Proof:  The proof of this theorem follows as in convergence theorem1 of the article [20] and hence the convergence 

analysis of the algorithms (2.11) and (2.12).  

 

We can state two families of new method with eighth order of convergence obtained here.  By substituting   = 4, the 

one family of methods becomes 
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   where R  and the second family is given by 
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where R . To find the minimization of non linear functions we employ the new methods given by (2.13) and (2.14) 

with 3 , we have 
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Since )()( xfxg  ,   the equation (2.15) becomes 

 

Algorithm - (5) 
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Similarly the equation (2.16) becomes 
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Since )()( xfxg  ,   the equation (2.17) becomes 

 

 Algorithm - (6) 
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2.6. New method – (7) 

We introduce new method-(6) based on Miquel Grau – Sanchez [19] new iterative method which is 
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where  yn and zn  are in (III). Here we take  0,9    in (2.19) 
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Since )()( xfxg  ,  the equation (2.20) becomes 

Algorithm – (7) 
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III. NUMERICAL ILLUSTRATIONS 

Example 3.1: Consider the function 52)( 3  xxxf . The minimized value of the function is 0.816497. The 

following table depicts the number of iterations needed to converge to the minimized value for all the new algorithms 

with three initial values x0 = 1, x0 = 2, and x0 = 3. 

        Table – I: shows a comparison between the New iterative methods and Newton’s method   

Sl. No Methods For initial value x0 

=1.000000 

For initial value x0 

=2.000000 

For initial value x0 

=3.000000 

1 Newton’s  Algorithm 3 5 5 

2.  Algorithm – (1) 2 3 3 

3  Algorithm – (2) 2 2 2 

4 Algorithm – (3) 2 2 2 

5  Algorithm – (4) 1 2 2 
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6  Algorithm – (5) 1 2 2 

7  Algorithm – (6) 1 D D 

8  Algorithm – (7)I 2 2 2 

Example 3.2: Consider the function 10)( 4  xxxf . The minimized value of the function is 0.629961. The 

following table depicts the number of iterations needed to converge to the minimized value for all the new algorithms 

with three initial values x0 = 1, x0 = 2 and x0 = 3. 

        Table – II: shows a comparison between the New iterative methods and Newton’s method   

Sl. No Methods For initial value x0 

=1.000000 

For initial value x0 

=2.000000 

For initial value x0 

=3.000000 

1 Newton’s  Algorithm 4 6 7 

2  Algorithm – (1)  2 3 4 

3  Algorithm – (2) 2 3 3 

4 Algorithm – (3) 2 3 3 

5  Algorithm – (4) 2 3 3 

6 Algorithm – (5) 2                2                3 

7 Algorithm – (6) D D D 

8  Algorithm – (7) 2 3 3 

 

IV. CONCLUSION 

In this paper, we introduced seven alternative numerical algorithms for minimization of nonlinear unconstrained 

optimization problems and compared with Newton’s method.  It is clear from the above numerical results that the rate 

of convergence of algorithm (1) to algorithm(7) are in general faster than Newton’s algorithm. In particular algorithm(5) 
and algorithm (4) converge much better  than the remaining algorithms.  In real life problems, the variables can not be 

chosen arbitrarily rather they have to satisfy certain specified conditions called constraints. Such problems are known 

as constrained optimization problems. In near future, we have a plan to extend the proposed new algorithms to 

constrained optimization problems. 
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