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ABSTRACT: Deconvolution is an ill-posed inverse problem, it can be solvedby imposing some form of regularization 

(prior knowledge) on the unknown blur and original image.This formulation allows frame-based regularization. In 

several imaging inverse problems, ADMM is an efficient optimization tool that achieves state-of-the-art speed, by 

splitting the underlying problem into simpler, efficiently solvable sub-problems. In dconvolution the observation 

operator is circulant under periodic boundary conditions, one of these sub-problems requires a matrix inversion, which 

can be efficiently computable(via the FFT). we show that the resulting algorithms inherit the convergence guarantees of 

ADMM. These methods are experimentally illustrated using frame-based regularization; the results show the advantage 

of our approach over the use of the ―edgetaper‖ function (in terms of improvement in SNR). 
 

KEYWORDS: Image deconvolution, alternating direction method of multipliers (ADMM), boundary conditions, 

periodic deconvolution, inpainting, frames. 
 

I.INTRODUCTION 

 

Deconvolution is an inverse problem where the observed image is modeled as resulting from the convolution with a 

blurring filter, possibly followed by noise, and the goal is to estimate both the underlying image and the blurring filter. 

In deconvolution, the pixels located near the boundary of the observed image depend on pixels (of the unknown image) 

located outside of its domain. The typical way to formalize this issue is to adopt a so-called boundary condition (BC). 
 

 The periodic BC refers to the image repeats in all directions.Its matrix representation can be implemented via 

the FFT. 

 

 The zero BC assumes a black boundary,so that pixels outside the barders of the image have zero value, thus 

the matrix representing the convolution is block-Toeplitz, with Toeplitz blocks. 

 

 Inreflexiveand anti-reflexive BCs, the pixels outside the image domain are a morror image of those near the 

boundary, using even or odd symmetry, respectively. 

 

 For the sake of simplicity and computational convenience, most fast deconvolution algorithms assume periodic BC, 

which has the advantage of allowingconvolutions to be efficiently carried out using the FFT. However, as illustrated in 

Fig. 1, these BC are notaccurate and are quite unnatural models of most imaging systems. Deconvolution algorithms 

that ignore this mismatch and wrongly assume periodic BCleadtothewellknownboundaryartifacts. Abetter 

assumptionaboutthe image boundaries is simply they are unobserved/unknown,which models well a canonical imaging 

system where an image sensor captures the cental part of the image projected by the lens.The assumptions(unnatural) of 

periodic boundary conditions as illustrated in Fig 1. 
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Fig. 1.Illustration of the (unnatural) assumptions underlying the periodic, reflexive, and zero boundary conditions. 

 

In quadratic regularization, image deconvolution with periodic BC corresponds to a linear system,wherethe 

corresponding matrix can be efficiently inverted in the DFTdomain using the FFT. 
 

The technique to deconvolution under frame-based analysisnon-smooth regularization; that work proposes an 

algorithmbased on variable splitting and quadratic penalization, using the method  to solve the linear system at each 

iteration.That method is related to, but it is not ADMM, thus has noguarantees of converge to a minimizer of the 

original objective function. Although  mentions the possibility of using the method within ADMM, that option was not 

explored.The image deconvolution under frame based analysis non-smooth regularization using ADMM inherit all the 

desirable properties of previous ADMM-based deconvolution methods: all the update equations (includingthe matrix 

inversion) can be computed efficiently without using inner iterations; convergence is formally guaranteed. 
 

II.ADMM 

 

The application of ADMM to our particular problem involves solving a linear system with the size of the unknown 

image or with the size of its representation. Although this seems like an unsurmountable obstacle, we show that it is not 

the case. In many problems, such as (circular) deconvolution, reproduction of missing samples, or reconstruction from 

partial Fourier observations, this system can be solved very quickly in closed form (with O(n) or O(n log n) cost). For 

problems of the form (1), we show how exploiting the fact that W is a tight Parseval frame, this system can still be 

solved efficiently (typically with O(n log n) cost. 
 

We report results on a set of benchmark problems, including image deconvolution, recovery of missing pixels, and 

reconstruction from partial Fourier transform, using both frame-based regularization. In all the experiments, the 

resulting algorithm is consistently and considerably faster than the previous state of the art methods FISTA, TwIST, 

and SpaRSA. 
 

Consider a generalization of an unconstrained optimization problem 
 

 𝑔
𝑗
((𝐻𝑗𝑧)),

𝐽
𝑗=1

𝑧∈ℝ𝑑

𝑚𝑖𝑛
------------------------                                                                                         (1) 

Where 𝐻𝑗 ∈ ℝ𝑝𝑗×𝑑
 are arbitary matrices, and 𝑔

𝑗
: ℝ𝑝𝑗 → ℝ are convex functions.The instance of ADMM proposed in 

to so1lve(1) is presented in Algorithm 1, where𝜻 ∈ ℝ𝑝𝑗×𝑑
𝜻(𝑗) ∈ ℝ𝑝𝑗denotes the j-th block of ζ in the following partition 

𝜻 =  
𝜻(𝟏)

⋮
𝜻(𝑱)

  , 

and a similar notation is used for 𝒖𝑘and 𝒅𝑘. 

Lines 4 and 6 of this algorithm are the main steps and those that can pose computational challenges. These steps, 

however, wereshown to have fast closed-form solutions in several cases of interest. In particular, the matrix inversion 

in line 4 cansometimes (e.g., in periodic deconvolution problems) be computedcheaply, by exploiting the matrix 

inversion lemma, the FFT and otherfast transforms (see [1, 13]), while line 6 corresponds to a so-calledMoreau 

proximity operator (MPO), defined as 

prox
𝑓
 𝑦 = 𝑎𝑟𝑔

1

2X

𝑚𝑖𝑛

∥ 𝑦 − Ax ∥
2
2+ 𝑓 𝑥 ;---------                                                                                             (2) 

for several choices of f, prox
𝑓
has a simple closed form. 

 

 

 

http://www.ijareeie.com/


 
    ISSN (Print)  : 2320 – 3765 

    ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 10, October 2014 
 

                     10.15662/ijareeie.2014.0310035 

Copyright to IJAREEIE                                                               www.ijareeie.com                                                                       12707    

Algorithm 1: 

1 Initialization: set k=0, choose 𝜇
1
…𝜇

𝐽
> 0, 𝐮0, 𝐝0. 

2 repeat 

3𝜻 ← 𝒖𝑘 + 𝒅𝑘   

4𝜻 ←   𝜇𝑗
𝑱
𝒋=𝟏  𝑯 𝒋  

∗
𝑯 𝒋  

−𝟏
 𝜇𝑗

𝑱
𝒋=𝟏  𝑯 𝒋  

∗
𝜻 𝒋  

5for j=1 to J do 

6     𝐮𝑘+1

(𝑗)
← prox

𝑔𝑗 / 𝜇𝑗
(𝑯 𝒋 𝐳𝑘+1 − 𝐝𝑘

(𝑗)
) 

7          𝐝𝑘+1
(𝑗)

= 𝐝𝑘
(𝑗)

− (𝑯 𝒋 𝐳𝑘+1 − u𝑘+1

 𝑗 
) 

8      end 

9      𝑘 ← 𝑘 + 1 

10 until ending criterion is satisfied 

 

Under the condition that (1) has a solution, Algorithm 1 inherits the convergence guarantees of ADMM given in [11]. 

For our formulation, sufficient conditions for Algorithm 1 to converge to a solution of 1 are: 𝜇
1
… 𝜇

𝐽
>0; all functions 

𝑔
𝑗
are proper, closed, and convex; the matrix 𝐺 =   𝐇(1) 

∗
… 𝐇(𝐽) 

∗
 
∗
∈ ℝ𝑝×𝑑has full column rank (where()∗denotes 

matrix/vector conjugate transpose,and𝑝 =  𝑝𝑗𝒋 ). 

 

III.PROPOSED APPROACH 

 

A. Image deconvolution with periodic BC: 

This section reviews the ADMM-based approach to image deconvolution with periodic BC, using the frame-based 

formulations, the standard regularizers for this class of imaging inverse problems.  
 

We begin by considering the usual observation model used in image deconvolution with periodic BC: y = Ax+ w, 

where 𝐱 ∈ ℝ𝑛and 𝐱 ∈ ℝ𝑛are vectors containing all pixels (lexicographically ordered) of the original and the observed 

images, respectively, w denotes white Gaussian noise, and 𝐀 ∈ ℝ𝑛×𝑛 is the matrix representing the (periodic) 

convolution with some filter. In the frame-based analysis approach, the estimated image,x ∈ ℝ𝑛,is obtained as 

x  =  arg
1

2𝑋∈𝑅𝑛

𝑚𝑖𝑛

∥ 𝑦 − Ax ∥
2

2

+ 𝜆𝜙 𝐏𝐱 -------------                                                                                                           (3) 

 

Where P ∈ ℝ𝑞×𝑛 (𝑞 ≥ 𝑛) is the analysis operator of some frame (e.g., a redundant wavelet frame or a curvelet frame), 

𝜙is a regularizer encouraging the vector of frame analysis coefficients to be sparse, and 𝜆 > 0is the regularization 

parameter. A typical choice for 𝜙, herein adopted, is  

𝜙(z) =∥ 𝐳 ∥
1
=  |𝑧𝑖|

𝑖

 

Problem (5) can be written in the form (3), with J = 2 and 

𝑔
1
: 𝑅𝑛 → 𝑅,𝑔

1
 v =

1

2
∥ 𝑦 − v ∥

2
2,-----------------                                                                                                 (4) 

𝑔
2
: 𝑅𝑞 → 𝑅,𝑔

2
 v =∥ 𝑧 ∥2

2-------------------------                                                                                                 (5) 

𝐇(1) ∈ ℝ𝑛×𝑛, 𝐇 1 = 𝐀,      ---------------------------                                                                                            (6) 
 

𝐇(2) ∈ ℝ𝑞×𝑛,𝐇 2 = 𝐏,---------------------------                                                                                                    (7) 
 

The operators of 𝑔
1
and 𝑔

2
, simple expressions of key components of Algorithm 1 (line 6),  

 

prox
𝑔1×𝜇1

 𝐯 =
𝑌+𝜇1V

1+𝜇1

 ,         ------------------------                                                                                              (8) 

prox
𝑔2×𝜇2

 𝐳 = soft(𝐳,
𝜆

𝜇2

),    -----------------------                                                                                              (9) 
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where ―soft‖ denotes the well-known soft-threshold function 

soft 𝐯, 𝛾 = sign(𝐯)⨀max  𝐯 − 𝜏, 0 ----------                                                                                                      (10) 
 

where the sign, max, and absolute value functions are componentwise, and ⨀denotes the component-wise product. 

Line 4 of Algorithm 1 (the other key component) has the form  

𝒛𝑘+1 =  𝐀∗𝐀 +
𝜇𝟐

𝜇1

𝐈 
−1

(𝐀∗𝛇(1) +
𝜇2

𝜇1

𝐏∗𝛇(2)I -----                                                                                                  (11) 

 

Assuming that P corresponds to a Parseval1 frame (i.e., 𝐏∗𝐏 = 𝐈,although possibly P𝐏∗ ≠ 𝐈, the matrix inverse in (11) 

is simplycomputed in the DFT domain 
 

 𝐀∗𝐀 +
𝜇𝟐

𝜇1

𝐈 
−1

= 𝐔∗( ᴧ 2 +
𝜇2

𝜇1

I)
−1

𝐔-----------                                                                                                       (12) 

 

in which U and 𝐔∗are the unitary matrices representing the DFT and its inverse, and Λ is the diagonal matrix of the 

DFT coefficients of the convolution kernel (i.e., A = 𝐔∗ΛU). 
 

 The inversion in (12) has O(n log n) cost, since matrix ( ᴧ 2 +
𝜇2

𝜇1

I) is diagonal and the products by U and 𝐔∗can be 

computed using the FFT. The leading cost of each application of (11) (line 4 of Algorithm 1) is thus either the O(n log 

n) cost associated with (12) or the cost of the products by 𝐏∗. For most tight frames used in image restoration, this 

product has fast O(n log n) algorithms.  
 

   We conclude that, under periodic BC and for a large class of frames, each iteration of Algorithm 1 for solving (3) has 

O(n log n) cost. Finally, this instance of ADMM has convergence guarantees, since: (1) 𝑔
2
 is coercive, so is the 

objective function in (3), thus its set of minimizers is not empty, (2) 𝑔
1
 and 𝑔

2
 are proper, closed, convex functions; (3) 

matrix 𝐇(2) = 𝐈obviously has full column rank, which implies that G = [𝐀∗𝐈∗]also has full column rank. 

 

B. Image deconvolution with unknown boundaries: 
To handle images with unknown boundaries, we model the boundary pixels as unobserved, which is achieved 

 

y = MAx + n,          -------------------                                                                                                                          (13) 

 

whereM ∈ {0,1}𝑚×𝑛 (with 𝑚 < 𝑛) is a masking matrix, i.e., a matrix whose rows are a subset of the rows of an identity 

matrix. The role of M is to observe only the subset of the image domain in which the elements of Axdo not depend on 

the boundary pixels; consequently, the BC assumed for the convolution represented by A is irrelevant, and we may 

adopt periodic BCs, for computational convenience.  

 

Assuming that  A models the convolution with a blurring filter with a limited support of size(1 + 2𝑙) × (1 + 2𝑙), and 

that x and Axrepresent square images of dimensions √n ×√n, then matrix M ∈𝑅𝑚×𝑛 with m=( 𝑛 − 2𝑙)
𝑚×𝑛

,  represents 

the removal of a band of width l of the outermost pixels of the full convolved image Ax. Problem  be seen as hybrid of 

deconvolution and inpainting, where the missing pixels constitute the unknown boundary. If M = I, model reduces to a 

standard periodic deconvolution problem. Conversely, if  A=I, problem becomes a pure inpainting problem. Moreover, 

the formulation problem can be used to model problems where not only the boundary, but also other pixels, are 

missing, as in standard image inpainting.  
 

Under model (13), the frame-based analysis formulation(1) changes to 
 

x  =  arg 
1

2𝑋∈𝑅𝑛

𝑚𝑖𝑛

∥ 𝑦 − 𝐌𝐀x ∥
2
2+∥ 𝐏𝐱 ∥1---------                                                                                                         (14) 

 

At this point, one could be tempted to map (14) into (1) using (4), (5, and (7), and simply change (6) into 
 
 

𝐇(1) ∈ ℝ𝑚×𝑛, 𝐇 1 = 𝐌𝐀,  --------------------------                                                                                                     (15) 
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The problem with this choice is that the matrix to be inverted in line 4 of Algorithm 1 would become 
 

(𝐀∗𝐌∗𝐌𝐀 + (
𝜇2

𝜇1
)𝐈)   ---------------------------------                                                                                                          (16) 

 

 which, unlike (13), is not easily invertible due to the presence of M. To side step this difficulty, we propose to 

decouple the action of the(DFT diagonal) operator A from the spatial operator M, by keeping (7), (8), and (9), and 

replacing (4) by 
 

𝑔
1
∈ ℝ𝑛 → ℝ,   𝑔

1
 v =

1

2
∥ 𝑦 − 𝐌𝐯 ∥

2
2. ----------                                                                                                 (17) 

 

With this choice, line 4 of Algorithm 1 is still given by (13) (with its efficient FFT-based implementation (14)), while 

mask peratorM only affects the Moreau proximity operator of the new𝑔
1
, 

 

prox𝑔1

𝜇1

 𝐯 = arg
1

2𝐮

𝑚𝑖𝑛

∥ 𝐌𝐮 − 𝐲 ∥
2
2+∥ 𝐮 − 𝐯 ∥2

2--------------                                                                                    (18) 

 

= (𝐌∗𝐌 + 𝜇
1
𝐈)

−1
(𝐌∗𝐲 + 𝜇

1
𝐯)---------                                                                                                                      (19) 

 
 

Notice that, due to the special structure of M, matrix 𝐌∗𝐌is diagonal, thus the inversion in (18) has O(n) cost, the same 

being true about the product 𝐌∗𝐲, which corresponds to extending the observed image y to the size of x, by creating a 

boundary of zeros around it. Of course, both (𝐌∗𝐌 + 𝜇
1
𝐈)

−1
and 𝐌∗𝐲can be precomputed and then used throughout the 

algorithm, as long as𝜇
1
is kept constant. Similarly to what was shown for the periodic BC case, the proposed ADMM 

approach for deblurring with unknown boundaries has a leading cost of O(n log n) per iteration. Considering the 

similarities of our approach with the one of Section 3.1, it is sufficient to confirm that the new 𝑔
1
in (16) is proper, 

closed, and convex (which is obviously the case), to guarantee the convergence of the proposed ADMM algorithm. 

 

IV.EXPERIMENTS 

 

In the experiments herein reported, we use the benchmark Lena image(of size 256 × 256), with 2 different blurs (out-

of-focus and  uniform), all of size 19 × 19(i.e., 2𝑙 + 1 × (2𝑙 + 1), with 𝑙 = 9), at two different BSNRs (blurred 

signal to noise ratio): 40dB, 50dB, and 60dB. The reason why we concentrate on large blurs is that the effect of the 

boundary conditions is very evident in this case.On each degraded image, the algorithm proposed in Section3.2 was 

run, as well as the periodic version (Section 3.1), withand without pre-processing the observed image with the 

―edgetapper‖ MATLAB function. The algorithms are stopped when∥ 𝒛𝑘 − 𝒛𝑘−1 ∥
2
/∥ 𝒛𝑘 ∥

2
< 10−3 and λ was adjusted 

to yield thehighest SNR of the reconstructed image. 
 

Table 1 shows, for each blur and BSNR, the ISNR (improvement in SNR) values obtained with the two algorithms 

mentioned in the previous paragraph. The huge impact of wrongly assumingperiodic BC is clear in these results, as 

well as in the example shownin Fig. 2. 
 

Deconvolution method  

blur,    BSNR           periodic     edgetaper    proposed 

Uniform,60dB             -2.52            3.06           10.63 

Out-of-focus,60dB      -1.52            5.04           14.21 

Uniform, 50dB            -2.53            3.06           9.02 

Out-of-focus, 50dB     -1.50            5.02           10.99 

Uniform, 40dB            -2.54            3.05           6.83 

Out-of-focus, 40dB     -1.50            4.88           7.95 

    Average                  -1.59            4.01           9.93 

 

Table 1. ISNR values achieved by the 2 tested approaches (see text). 
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observed (238 × 238)  FA-BC (ISNR = -1.59dB)    FA-ET (ISNR = 4.01dB)   FA-UB (ISNR = 9.93dB) 

 

Fig. 2. Results obtained on the Lena image, degraded by a uniform19×19 blur at 60dB BSNR, by the two algorithms 

considered(seetext). Notice that the algorithms thatassume periodic BC(in additionto huge artifacts) produce 238×238 images. 

 

 
 

Figure 3: Output Images based on ADMM 
 

Deconvolution method  

blur,    BSNR       periodic     edgetaper proposed 

Uniform,60dB             -2.52            3.06           9.95 

Out-of-focus,60dB      -1.52            5.04           15.23 

Uniform, 50dB            -2.53            3.06           9.89 

Out-of-focus, 50dB     -1.50            5.02           11.09 

Uniform, 40dB            -2.54            3.05           5.62 

Out-of-focus, 40dB     -1.50            4.88           1.17 

    Average                  -1.59            4.01           9.3 

 

Table.2 ISNR values obtained from frame based analysis 

 

The simulation studies involve the output of the proposed method based on the ADMM is shown in the fig3. It includes 

the original image and the degraded image after performing the ADMM algorithm it will produce the estimated image. 

The cost function will indicate the number of iterations to obtain the estimated image from the degraded image. The 

ISNR values of the estimated image is tabulated in the table.2 based on frame analysis is used in ADMM.  
 

VI.CONCLUSION 

 
Presented a new strategy to extend recent fast image deconvolution algorithms, based on the alternating direction 

method of multipliers (ADMM), to problems with unknown boundary conditions. Considered frame based analysis 

formulation, and gave the convergence guarantees for the algorithms proposed. Experiments show the results in terms 

of  restoration quality. Ongoing and future work includes theinstead of adopting a standard BC or a boundary 

smoothing scheme, a more realistic model of actual imaging systems treats the external boundary pixels as unknown; 

i.e., the problem is seen as one of simultaneous deconvolution and inpainting, where the unobserved boundary pixels 

are estimated together with the deconvolved image. 

http://www.ijareeie.com/


 
    ISSN (Print)  : 2320 – 3765 

    ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 10, October 2014 
 

                     10.15662/ijareeie.2014.0310035 

Copyright to IJAREEIE                                                               www.ijareeie.com                                                                       12711    

REFERENCES 

 
[1] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, ―Fast image recovery using variable splitting and constrained optimization,‖ IEEE Trans. Image 

Proc., vol. 19, pp. 2345–2356, 2010. 
[2] ——, ―An augmented Lagrangian approach to the constrainedoptimization formulation of imaging inverse problems,‖ IEEETrans. Image Proc., 

vol. 20, pp. 681–695, 2011. 

[3] A. Beck and M. Teboulle, ―A fast iterative shrinkagethresholding algorithm for linear inverse problems,‖ SIAMJour.Imaging Sciences, vol. 2, pp. 

183–202, 2009. 

[4] J. Bioucas-Dias and M. Figueiredo, ―A new TwIST: two-stepiterative shrinkage/thresholding algorithms for image restoration,‖ IEEE Trans. 

Image Proc., vol. 16, pp. 2992–3004, 2007. 
[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ―Distributed optimization and statistical learning via the alternatingdirection method of 

multipliers,‖ Foundations and Trends inMachine Learning, vol. 3, pp. 1–122, 2011. 
[6] T. Chan, A. Yip, and F. Park, ―Simultaneous total variation image inpainting and blind deconvolution,‖ International Journalof Imaging Systems 

and Technology, vol. 15, pp. 92–102, 2005. 

[7] P. Combettes and J.-C.Pesquet, ―Proximal Splitting Methodsin Signal Processing‖, in Fixed-Point Algorithms for InverseProblems in Science and 
Engineering (H. Bauschke et al, Editors), pp. 185–212, Springer, 2011. 

[8] P. Combettes and V. Wajs, ―Signal recovery by proximalforward-backward splitting,‖ SIAM Journal on MultiscaleModeling& Simulation, vol. 4, 

2005. 
[9] I. Daubechies, M. Defrise, C. De Mol, ―An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,‖ Comm. Pure 

and App. Math., vol. 57, pp. 1413–1457,2004. 

[10] M. Donatelli, C. Estatico, A. Martinelli, and S. SerraCapizzano, ―Improved image deblurring with anti-reflectiveboundary conditions and re-
blurring,‖ Inverse Problems,vol. 22, pp. 2035–2053, 2006. 

 

BIOGRAPHY 

 

 

 
 

 
 

 
 

 

 

 

 
 

 

Ms.K.Kalyani. received the B.Tech Degree in E.C.E from J B womens Engineering College (JBWEC) Tirupati, 

India in 2012.She is pursuing her M.tech Degree at Annamacharya Institute of Technology and Sciences (AITS) 

Tirupati. Her area of interest in Digital Image Processing. 

 

Ms.K. Jansi LakshmireceievedB.Tech (ECE) from JNT University, Hyderabad,in 2010, and M.Tech (VLSI 

System Design) from JNT University, Anantapur, in 2012. She is currently working as Assistant Professor in 

Annamacharya  Institute of science and technology, Tirupati. Her research area of interest in VLSI System 

Design. 

 

 

Ms.N.Pushpalathacompleted her B.Tech at JNTU, Hyderabad in 2004 and M.Tech at A.I.T.S., Rajampet in 

2007. Presently she is working as Assistant Professor of ECE, Annamacharya Institute of Technology and 

Sciences Tirupati since 2006. She has guidedmany B.Tech projects and M.Tech Projects. Her Research area 

includes Data Communications and Ad-hoc Wireless Sensor Networks.  

http://www.ijareeie.com/

