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ABSTRACT: The challenge for software engineering research is to devise notations, techniques, methods and tools for 

distributed system construction that systematically build and exploit the capabilities that middleware deliver.The 

construction of a large class of distributed systems can be simplified  by leveraging  middleware, which  is layered 

between network  operating  systems and  application communication and coordination of distributed components. 

Existing middleware products enable software engineers to build  systems  that  are distributed  across a  local-area 

network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive 

and reconfigurable middleware and middleware for dependable and wireless systems.  
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I. INTRODUCTION 

 

Various commercial trends have lead to an  increasing demand for distributed systems. Firstly, the number of mergers 

between companies is continuing to increase.  The different divisions of a newly merged company have to deliver unified 

services to their customers and this usually demands an integration of their IT systems.  The time available for delivery of 

such an integration is often so short that building a new system is not an option and therefore existing system components 

have to be integrated into a distributed system that appears as an integrating computing facility. Secondly, the time available 

for providing new services are decreasing. Often this can only be achieved if components are procured off-the-shelf and 

then integrated into a system rather than built from scratch.  Components to be integrated may have incompatible 

requirements for their hardware and operating system platforms; they have to be deployed on different hosts, forcing the 

resulting system to be distributed. Finally, the Internet provides new opportunities to offer products and services to a vast 

number of potential customers. In this setting, it is difficult to estimate the scalability requirements. An e-commerce site that 

was designed to cope with a given number of transactions per day may suddenly find itself exposed to demand that is by 

orders of magnitude larger. The required scalability cannot usually be achieved by central-ized or client-server architectures 

but demands a distributed system. Distributed systems can integrate legacy components, thus preserving investment, they 

can decrease the time to market, they can be scalable and tolerant against failures.  The caveat, however, is that the 

construction of a truly distributed systems is considerably more difficult than building a centralized or client/server system.   

This is because there are multiple points  of  failure in a  distributed  system,  system components need to communicate with 

each other  through a network, which complicates communication and opens the door for security attacks.  Middleware has 

been devised in order to conceal these difficulties from application engineers as much as possible; As they solve a real 

problem and simplify distributed system construction, middleware products are rapidly being adopted in industry [6].In 

order to build distributed systems that meet the requirements, software engineers have to know what middleware is 

available, which one is best  

 

suited to the problems at hand, and how middleware can be used in the architecture, design and implementation of 

distributed systems. The principal contribution of this paper is an assessment of both, the state-of-the-practice that current 

middleware products offer and the state-of-the-art in middleware  research. Software engineers increasingly use middleware 

to build distributed systems. Any research into distributed software engineering that ignores this trend will only have limited 

impact. We, therefore, analyze the influence that the increasing use of middleware should have on the software engineering 

research agenda.  We argue that requirements engineering techniques are needed that focus on non-functional  requirements, 

as these influence the selection and use of middleware. We identify that software architecture research should produce 

methods that guide engineers towards selecting the right middleware and employing it so that it meets a set of non-
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functional requirements. We then highlight that the use of middleware is not transparent for system design and that design 

methods are needed that address this issue. This paper is further structured as follows.  In  Section 3,we discuss some of the 

difficulties involved in building distributed systems and delineate requirements for middleware. In Section 4, we use these  

requirements to attempt an assessment of the support that current middleware products provide for distributed system 

construction. We then present an overview of ongoing middleware research in Section 5  in order to provide a preview of 

what future middleware products might be capable of.  In Section 6, we delineate a research agenda for distributed software 

engineering that builds on the capabilities of current and future middleware and conclude the paper in Section 7. 

 

II. RELATED WORK 

 
In this particular area we  identify  that  software  architecture  research should produce methods that systematically guide 

engineers towards selecting the right middleware and employing it in such a way that it meets a set of non-functional 

requirements. We then highlight that the use of middleware is not transparent for system design and that design methods are 

needed that address this issue.Two trends are important for the discussion of the impact of middleware on software 

engineering research.  Firstly, middleware products are conceived to  deliver immediate benifits in the construction  of 

distributed systems.  They are therefore rapidly adopted in industry. Secondly, middleware vendors have a proven track 

record to incorporate middleware research results into their products. An example is the ISO/ODP Trader, which was 

defined in 1993, adopted as a CORBA standard in 1997 and last year became available in the first CORBA products. There 

is therefore a good chance that some of the state-of-the-art research in the areas of flexible, scalable, real-time and mobile 

middleware will become state of the practice in 3-5 years.Unless  research  into software  engineering  for  distributed 

systems delivers principles, notations,methods and tools that are compatible with the capabilities that current middleware 

products provide and that middleware research will generate in the future, software engineering research results will only be 

of limited industrial significance. Industry will adopt the middleware that is known to deliver the benefits and ignore 

incompatible software engineering methods and tools. Middleware products and research, however, only support 

programming and largely ignore all other activities that are needed in software processes for distributed systems.  We, 

therefore, have a chance to achieve a symbiosis between software engineering and middleware.  The aim of this section is to 

identify the software engineering research themes that will lead to the principles, notations, methods and tools that are 

needed to support all life cycle activities when building distributed systems using middleware. 

 

III. REQUIREMENTS OF MIDDLEWARE 
 

In this section, we review the difficulties that arise during distributed system construction. We argue in this section that it is 

too expensive and time consuming if application designers have to resolve these problems by directly using network 

operating system primitives. Instead they require a middleware that provides higher-level primitives. This approach to 

distributed system construction with middleware is sketched in Figure 1. 

 

 

 

 

  
  

 

 

 

 

 

 

                                    

 

 

                                                                            

Figure 1: Middleware in Distributed System Construction 
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Thus middleware is layered between network operating systems and application components [13].  Middleware facilitates 

the  communication and coordination of components that are distributed across several networked hosts. The aim of 

middleware is to provide application engineers with highlevel  primitives that simplify  distributed  system  construction. 

The idea of using middleware to build distributed systems is comparable to that of using database management systems 

when building information systems.  It enables application engineers to abstract from the implementation of low-level 

details,  such as concurrency control,  transaction management and network communication, and allows them to focus on 

application requirements. 

 

Network Communication 
As shown in  Figure 1, the  different components of a distributed system may reside on different hosts. In order for the 

distributed system to appear as an integrated computing facility, the components have to communicate with each other. This 

communication can only be achieved by using network protocols, which are often classier by the ISO/OSI reference model 

[25].  Distributed systems are usually built on top of the transport layer, of which TCP or UDP are good examples.  The 

layers underneath are provided by the network operating system .Different transport protocols have in common that they 

can transmit messages between different hosts.  If the communication between distributed systems is programmed at this 

level of abstraction, application engineers need to implement session and presentation layer.  This is too costly, too 

errorprone and too time-consuming.  Instead,  application engineers should be able to request parameterized services from 

possibly more than one remote components and may wish to execute them as atomic and isolated transactions, leaving the 

implementation of session and presentation layer to the middleware. The parameters that a component  requesting a service 

needs to pass to a component that provides a service are often complex data structures. The presentation layer 

implementation of the middleware should provide the ability to transform these complex data structures into a format that 

can be transmitted using a transport protocol, i.e.a sequence of bytes.This transformation is referred to as marshalling and 

the reverse is called unmarshalling. 

 

 Coordination 
      By  virtue  of the  fact that  components reside on  different hosts,  distributed systems have multiple points  of control. 

Components on the same host execute concurrently, which leads to a need for synchronization when components 

communicate with each other. This synchronization needs to be implemented in the session layer implementation provided 

by the middleware.Synchronization can be achieved in different ways. A component can be blocked while it waits for 

another component to complete execution of a requested service.  This form of communication is often called synchronous. 

After issuing a request, a component can also continue to perform its operations and synchronize with the service providing 

component at a later point.  This synchronization can then be initiated by either the client component (using, for example 

polling),in which case the interaction is often called deferred synchronous.  Synchronization that is initiated by the server is 

referred to as asynchronous communication. Thus, applica-tion engineers need some basic mechanisms that support various 

forms synchronization between communicating components. Sometimes more than two components are involved in a 

service request. These forms of communications are also referred to as group requests. This is often the case when more 

than one component is interested in events that occur in some other component.  An example is a   distributed stock ticker 

application where an event,  such as a share price update, needs to  be communicated   to multiple  distributed display 

components, to inform traders about the update.  Although the basic mechanisms for this push-style communication are 

available in multi-cast networking protocols additional support is needed to achieve reliable delivery and marshalling of 

complex request parameters. 

 

A slightly different coordination problem arises due to the sheer number of components that a distributed   system may 

have.  The components, i.e.  modules or libraries, of a centralized application reside in virtual memory while the application 

is executing.  This is inappropriate for distributed components for the following reasons: 

¯  Hosts sometimes have to be shut down and components hosted on these machines have to  be stopped and restarted when 

the host resumes operation; 

¯  The resources required by all components on a host maybe greater than the resources the host can provide; and 

¯  Depending on the nature of the application, components may be idle for long periods, thus wasting resources if they were 

kept in virtual memory all the time. 

 For these reasons, distributed systems need  to  use a concept called activation that allows for component executing 

processes to be started (activated) & terminated (deactivated) independently from the applications that they execute.The 
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middleware should manage persistent storage of components’ state prior to deactivation and restore components’ state 

during activation.  Middleware should also enable application programmers to determine the activation policies that define 

when components are activated and de-activated. Given that components execute concurrently on distributed hosts, a server 

component may be requested from different client components at the same time. The middleware should support different 

mechanisms called threading  policies to control how the  server component reacts  to  such concur- rent requests. The 

server component may be single-threaded, queue requests and process them in the order of their arrival. Alternatively, the 

component may also  spawn new threads and execute each request in its own thread. Finally the component may use a 

hybrid threading policy that uses a pool with a fixed number of threads to execute requests, but starts queuing once there are 

no free threads in the pool. 

 

Reliability 
         Network protocols have varying degrees of reliability.Protocols that are used in practice do not necessarily guarantee 

that every packet that a sender transmits is actually received by the receiver and that the order in which they are sent is 

preserved.  Thus, distributed system implementations have to put error detection and correction mechanisms in place to 

cope with these unreliabilities. Unfortunately, reliable delivery of service requests and service results does not come for 

free.  Reliability has to be paid for with decreases in performance. To allow engineers to trade-off reliability and 

performance in a flexible manner, different degrees of service request reliability are needed inpractice. For  communication  

about  service  requests  between  two components, the reliabilities that have been suggested in the distributed system 

literature are best effort, at-most-once, at- least-once and exactly-once [13]. Best effort service requests do not  give any 

assurance about the  execution  of  the  request. At-most-once requests are guaranteed to execute only once.  It may happen 

that they are not executed, but then the requester is notified about the failure. At-least-once service requests are guaranteed 

to be executed, possibly more than once.  The highest degree of reliability is provided by exactly-once requests, which are 

guaranteed to be executed once and only once. Additional reliabilities can be defined for group requests. In particular, the 

literature mentions k-reliability, time-outs, and totally-ordered requests.  K-reliability denotes that at least K components 

receive the communication. Time-outs allow the specification of periods after which no delivery of the request should be 

attempted to any of the addressed components. Finally totally-ordered group communication denotes that a request never 

overtakes a request of a previous group communication. The above  reliability  discussion  applies  to  individual  requests.  

We can extend it and consider more than one request.  Transactions [18] are important primitives that are used in reliable 

distributed systems. Transactions have ACID properties, which means they enable multiple request to be executed in an 

atomic, consistency-preserving, isolated and every completed transaction is consistent.  It demands that a transaction is 

isolated from concurrent transaction and, finally that once the transaction is completed its effect cannot be undone. Every 

middleware that is used in critical applications needs to support distributed transactions.Reliability  may  also  be  increased  

by  replicating  components [4], i.e.  components are available in multiple copies on different hosts.  If one component is 

unavailable, for example because its host needs to be rebooted, a replica on a different host can take over and provide the 

requested service. Sometimes components have an internal state and then the middleware should support replication in such 

a way that these states are kept in sync. 

 

Scalability 
 Scalability denotes the ability to accommodate a growing future load. In centralized or client/server systems,scalability is 

limited by the load that the server host can bear. This can be overcome by distributing the load across several  hosts. The 

challenge of building a scalable distributed system is to support changes in the allocation of components to hosts without 

changing the architecture of the system or the design and code of any component. This can only be achieved by respecting 

the different dimensions of transparency  identified in the ISO Open Distributed Processing (ODP) reference model [24] in 

the architecture and design of the system. Access transparency, for example demands that the way a component accesses the 

services of another component is in-dependent of whether it is local or remote. Another example is location transparency, 

which demands that components do not know the physical location of the components they interact with. A detailed 

discussion of the different transparency dimension is beyond the scope of this paper and the reader is referred to [13]. If  

components  can  access  services  without  knowing  the physical location and without changing the way they request it, 

load balancing mechanisms can migrate components between machines in order to reduce the load on one host and increase 

it on another host.  It should again be transparent to users whether or not such a migration occurred.  This is referred to as 

migration transparency. Replication can also be used for load balancing.  Components whose services are in high demand 

may have to exist in multiple copies.  Replication transparency means that it is transparent for the requesting components, 
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whether they obtain a service from the master component itself or from a replica. The different transparency criteria that 

will lead to scalable systems are very difficult to achieve if distributed systems are built  directly  on  network  operating  

system primitives. To overcome these difficulties, we demand from middleware that they support access, location, 

migration and replication transparency. 

 

Heterogeneity 
The components of distributed systems may be procured off the-shelf, may include legacy and new components. As a result 

they are often rather heterogeneous. This heterogeneity comes in different dimensions: hardware and operating system 

platforms, programming languages and indeed the middleware itself. Hardware platforms use different encodings for atomic 

data types, such as numbers and characters. Mainframes use the EBCDIC character set,  Unix servers may use 7-bit ASCII 

characters, while Windows-based PCs use 16-bit Unicode character  encodings.   Thus  the  character  encoding of  

alphanumeric data that is sent across different types of platforms has to be adjusted.  Likewise, mainframes and RISC 

servers,  for  example,  use  big-endian  representations  for numbers, i.e.   the most significant  byte encoding an integer, 

long or floating point number comes last. PCs, however, use a little-endian representation where the significance of bytes 

decreases.  Thus, whenever a number is sent from a little-endian host to a big-endian host or vice versa, the order of bytes 

with which this number is encoded  needs to be swapped. This heterogeneity should be resolved by the middleware rather 

than the application engineer. When integrating legacy components with newly-built components,  it  often  occurs  that  

different  programming  languages  need  to  be  used.   These  programming languages may follow different paradigms.  

While legacy components tend to be written in imperative languages, such as COBOL PL/I  or C,  newer components  are  

often  implemented  using object-oriented programming languages. Even different object-oriented languages have 

considerable differences in their object model, type system, approach to inheritance and late binding.  These differences 

need to be resolved by the middleware. As we shall see in the next section, there is not just one, but many approaches to 

middleware.  The availability of different middleware solutions may present a selection problem, but sometimes there is no 

optimal single middleware, and multiple middleware systems have to be combined. This may be for a variety of reasons.  

Different middleware may be required due to availability of programming language bindings, particular forms of 

middleware may be more appropriate for particular hardware platforms (e.g.  COM on  Windows and CORBA on 

Mainframes).  Finally, the different middleware systems will have different performance characteristics and depending on 

the deployment a different middleware may have to be used as a backbone than the middleware that is used for local 

components. Thus middleware will have to be interoperable with other implementations of the same middleware or even 

different types of middleware in order to facilitate distributed system construction. 

 

IV. MIDDLEWARE SOLUTIONS 

 

 In this section,  we review the state of current middleware products.  We identify the extent to which they address the 

above requirements and highlight their shortcomings.  As it is impossible to review individual middleware products in this 

paper, we first present a classification, which allows us to abstract from particular product characteristics and which 

provides a conceptual framework for comparing the different  approaches .The  four  categories  that  we  consider  are  

transactional, message-oriented,  procedural,  and  object  or  component middleware. We have chosen this classification 

based on th primitives that middleware products provide for the interaction between distributed components, which are 

distributed transactions, message passing, remote procedure calls and remote object requests. 

 

Transactional Middleware 
Transactional  middleware  supports  transactions  involving components  that  run  on  distributed  hosts.    Transaction to 

implement distributed transactions.  The products in this category include IBM’s CICS [22], BEA’s Tuxedo [19] and 

Transarc’s Encina. Network Communication: Transactional middleware enables application engineers to define the services 

that server components offer, implement those server components and then write client components that request several of 

those services within a transaction.  Client and server components can reside on different hosts and therefore requests are  

transported via the  network in a way  that is transparent to  client and server components. 

 

Coordination:  The client components can request services using synchronous or asynchronous communication. 

Transactional middleware supports various activation policies and allows services to be activated on demand and 

deactivated when they have been idle for some time. Activation can also side in memory. 
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Reliability:  A client component can cluster more than one service request into a transaction, even if the server components 

reside on different machines.  In order to implement these transactions, transactional middleware has to assume that the 

participating servers implement the two-phase commit protocol.  If server components are built using database management 

systems, they can delegate implementation of the two-phase commit to these database management systems. For this 

implementation to be portable, a standard has been defined. The Distributed Transaction Processing (DTP)Protocol, which 

has been adopted by the Open Group, defines a programmatic interface for two-phase commit in its XA-protocol [43]. DTP 

is widely supported by relational and object-oriented database management systems.  This means that distributed 

components that have been built using any of these database management systems can easily participate in distributed 

transactions.  This makes them fault-tolerant, as they automatically recover to the end of all completed transactions. 

 

Scalability:   Most  transaction  monitors  support  load  balancing, and replication of server components.  Replication of  

servers  is  often  based  on  replication  capabilities  that the database management systems provide upon which the server 

components rely. 

 

 Heterogeneity:  Transactional middleware supports heterogeneity  because  the  components  can  reside  on  different 

hardware and  operating  system  platforms.   Also  different database  management systems  can  participate in  

transactions, due to the standardized DTP protocol.  Resolution of data heterogeneity is, however, not well-supported by 

transactional middleware,  as the  middleware does not  provide primitives to express complex data structures that could be 

used as service request parameters and therefore also does not marshal them. The above discussion has shown that 

transactional middle ware can simplify the construction of distributed systems. Transactional middleware, however, has 

several weaknesses. Firstly, it creates an undue overhead if there is no need to use transactions, or transactions with ACID 

semantics are inappropriate. This is the case, for example, when the client per-marshalling between the data structures that a 

client uses and the parameters that services require needs to be done manually in many products.  Thirdly, although the API 

for the two-phase commit is standardized, there is no standardized approach for defining the services that  server 

components offer. This reduces the portability of a distributed system between different transaction monitors. 

 

 Message-Oriented Middleware(MOM) 
 Message-oriented middleware (MOM) supports the communication between distributed system components by facilitating 

message exchange.  Products in this category include IBM’s MQSeries [16] and Sun’s Java Message Queue [20]. 

  

Network Communication:  Client components use MOM to send a message to a server component across the network. The 

message can be a notification about an event, or a request for a service execution from a server component. The content of 

such a message includes the service parameters. The server responds to a client request with a reply-message containing the 

result of the service execution. 

 

Coordination: A strength of MOM is that this paradigm supports asynchronous message delivery very  naturally.  The client 

continues processing as soon as the middleware has taken the message. Eventually the server will send a message including 

the result and the client will be able to collect that message at an appropriate time.  This achieves de-coupling of client and 

server and leads to more scalable systems. The weakness, at the same time is that the implementation of synchronous 

requests is cumbersome as the synchronization needs to be implemented manually in the client.  A further strength of MOM 

is that it supports group communication by distributing the same message to multiple receivers in a transparent way. 

 

 Reliability: MOM achieves fault-tolerance by implementing message queues that store messages temporarily on persistent 

storage. The sender writes the message into the message queue and if the receiver is unavailable due to a failure, the 

message queue retains the message until the receiver is available again. 

 

  Scalability: MOMs do not support access transparency very well,  because client  components use  message queues  for 

communication with remote components, while it does not make sense to use queues for local communication.  This lack of 

access transparency disables migration and replica queues need to be set up by administrators and the use of queues is hard-

coded in both client and server components, which leads to rather inflexible and poorly adaptable architectures. 

 

Heterogeneity:  MOM does not support data heterogeneity very well either, as the application engineers have to write 
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the code that marshals. With most products, there are different programming language bindings available. In assessing  

the  strengths  and  weaknesses  of  MOM,  we can note that this class of middleware is particularly wellsuited  for 

implementing  distributed  event  notification  and publish/subscribe-based architectures.   The  persistence  of message 

queues means that this event notification  can be achieved in fault tolerant ways so that components receive events 

when they restart after a failure. However, message oriented middleware also has some weaknesses. It only supports at-

least once reliability. Thus the same message could be delivered more than once. Moreover, MOM does not support 

transaction properties, such as atomic delivery of messages to all or none receivers. There is only limited support for 

scalability and heterogeneity. 

 

Procedural Middleware 
Remote Procedure Calls (RPCs) were devised by Sun Mi-crosystems in the early 1980s as part of the Open Network 

Computing (ONC) platform.  Sun  provided remote procedure calls as part of all their operating systems and submitted 

RPCs as a standard to the X/Open consortium, which adopted it as part of the Distributed Computing Environment 

(DCE) [36].  RPCs are now available on most Unix implementations and also on Microsoft’s Windows operating 

systems. 

 

  Network Communication:  RPCs  support the  definition of server components as RPC programs. An RPC   program 

exports a number of parameterized procedures and associated parameter types. Clients that reside on other hosts can 

invoke those procedures across the network. Procedural middleware implements these procedure calls by marshalling 

the parameters into a message that is sent to the host where the server component is located.  The server component 

unmarshalls the message and executes the procedure and transmits marshalled results back to the client, if required. 

Marshalling and unmarshalling are implemented in client and  server stubs,that are automatically created by a compiler 

from an RPC program definition 

 

  Coordination:  RPCs are synchronous interactions between exactly one client and one server. Asynchronous and 

multicast communication is not supported directly by procedural middleware.  Procedural middleware provides 

different forms of activating server components.  Activation policies define whether a remote procedure program is 

always available or has to be started on demand. For startup on demand,the RPC server is started by an inetd daemon 

as soon as a request arrives. The inetd requires an additional configuration table that provides for a mapping between 

remote procedure program names and the location of programs in the file system. 

 

 Reliability: RPCs are executed with at-most once semantics.The procedural middleware returns an exception if an RPC 

fails.  Exactly-once semantics or transactions are  not supported by RPC programs. 

 

 Scalability: The scalability of RPCs is rather limited. Unix and Windows RPCs do not have any replication 

mechanisms that could be used to scale RPC programs. Thus replication has to be addressed by the designer of the 

RPC-based system,publish/subscribe-based architectures.  The persistence  of message queues means that this event 

notification  can beachieved in fault tolerant ways so that components receive events when they restart after a failure. 

However, message-oriented middleware also has some weaknesses. It only supports at-least once reliability. Thus the 

same message could be delivered more than once. Moreover, MOM does not support transaction properties, such as 

atomic delivery of messages to all or none receivers. There is only limited support for scalability and heterogeneity. 

 

Procedural Middleware 
Remote Procedure Calls (RPCs) were devised by Sun Mi-crosystems in the early 1980s as part of the Open Network 

Computing (ONC) platform.  Sun  provided remote procedure calls as part of all their operating systems and submitted 

RPCs as a standard to the X/Open consortium, which adopted it as part of the Distributed Computing Environment 

(DCE) [36].  RPCs are now available on most Unix imple-mentations and also on Microsoft’s Windows operating 

systems. 

 

 Network Communication:  RPCs  support the  definition of server components as RPC programs. An RPC program 

exports a number of parameterized procedures and associated parameter types. Clients that reside on other hosts can 

invoke those procedures across the network. Procedural middleware implements these procedure calls by marshalling 
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the parameters into a message that is sent to the host where the server component is located.  The server component 

unmarshalls the message and executes the procedure and transmits marshalled results back to the client, if required. 

Marshalling and unmarshalling are implemented in client and  server stubs,that are automatically created by a compiler 

from an RPC program definition. 

 

  Coordination:  RPCs are synchronous interactions between exactly one client and one server. Asynchronous and 

multicast communication is not supported directly by procedural middleware.  Procedural middleware provides 

different forms of activating server components.  Activation policies define whether a remote procedure program is 

always available or has to be started on demand. For startup on demand, the RPC server is started by an inetd 

daemon as soon as a request arrives. The inetd requires an additional configuration table that provides for a mapping 

between remote procedure program names and the location of programs in the file system. 

 

Reliability: RPCs are executed with at-most once semantics.The procedural middleware returns an exception if an RPC 

fails.  Exactly-once semantics or transactions are  not supported by RPC programs. 

 

  Scalability: The scalability of RPCs is rather limited. Unix and Windows RPCs do not have any replication 

mechanisms that could be used to scale RPC programs. Thus replication has to be addressed by the designer of the 

RPC-based system, which means in practice that RPC-based systems are only deployed on a limited scale. 

 

Heterogeneity: Procedural middleware can be used with different programming languages.  Moreover, it     can be  

used across different hardware and operating system platforms.Procedural middleware standards define standardized 

data representations that are used as the transport representation of requests and results.  DCE, for example standardizes 

the Network Data Representation (NDR) for this purpose. When 

marshalling RPC parameters, the stubs translate hardware specific data representations into the standardized form and 

the reverse mapping is performed during unmarshalling. Procedural middleware is weaker than transactional 

middleware and MOM as it is not as fault tolerant and scalable.Moreover, the coordination primitives that are available 

in procedural middleware are more restricted as they only sup-  port synchronous invocation  directly.   Procedural  

middleware improve transactional middleware and      MOM with respect  to interface definitions  from which  

implementations that automatically marshal and unmarshal service parameters and results.  A disadvantage of 

procedural middleware is that this interface definition is not reflexive.  This means that procedures exported by one 

RPC program cannot return  another RPC program.  Object and component middleware resolve this problem. 

 

Object and Component Middleware 
 Object middleware evolved from RPCs. The development of object middleware mirrored similar evolutions in 

programming  languages  where  object-oriented  programming  languages, such as C++ evolved from procedural 

programming languages such as C. The idea here is to make object-oriented  principles, such as object identification 

through references and inheritance, available for the development of distributed systems.  Systems in this class of 

middleware include the Common Object Request Broker Architecture (CORBA) of the OMG [34, 37], the latest 

versions of Microsoft’s Component Object (COM) [5] and the Remote Method Invocation (RMI) capabilities that have 

been available since Java1.1 [28]. More recent products in this category include middleware that supports distributed 

components, such as Enterprise Java Beans [30].  Unfortunately, we can only discuss and compare this important class 

of middleware briefly and refer to [8, 13] for more details. 

 

 Network Communication:  Object middleware support distributed object requests, which mean that a client object 

requests the execution of an operation from a server object that may reside on another host.  The client object has to 

have an object reference to the server object.  Marshalling operation parameters and results is again achieved by stubs 

that are generated from an interface definition. 

 

 Coordination: The default synchronization primitives in object middleware are synchronous requests,   which block 

the client object until the server object has returned the response. However, the other synchronization primitives are 

supported,too.  CORBA 3.0, for example, supports both deferred synchronous and asynchronous object requests. 

Object middleware supports different activation policies.  These include whether server objects are active all the time 
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or started ondemand.   Threading  policies are available that  determine whether  new threads  are started  if  more than  

one operation is requested by concurrent clients, or whether they are queued and executed  sequentially.  CORBA also  

supports group communication through its Event and Notification services. This service can be used to implement 

push-style architectures. 

 

Reliability:  The default reliability for object requests is atmost once.  Object middleware support exceptions, which 

clients catch in order to detect that a failure occurred during execution of the request.  CORBA messaging, or the 

Notification service [33] can be used to achieve exactly-once reliability. Object middleware also supports the concept 

of transactions. CORBA has an Object Transaction service [32] that can be used to cluster requests from several 

distributed objects into transactions.  COM is integrated with Microsoft’s Transaction Server [21], and the Java 

Transaction Service [7]provides the same capability for RMI. 

 

Scalability:  The  support  of  object middleware  for building scalable applications is still somewhat limited.   Some 

CORBA implementations support load-balancing, for example by employing using name servers that return an object 

reference for a server on the least loaded host, or using factories that create server objects on the least loaded host, but 

support for replication is still rather limited. 

 

Heterogeneity: Object middleware supports heterogeneity in many different ways.  CORBA and COM both have 

multiple programming language bindings so that client and server objects do not need to be written in the same 

programming language. They both have a standardized data representation that they use to  resolve heterogeneity of 

data across platforms.  Java/RMI takes a different approach as heterogeneity is already resolved by the Java Virtual 

Machine in which both client and server objects reside.  The different forms of object middleware inter-operate. 

CORBA defines the Internet Inter-Orb Protocol (IIOP) standard [34], which governs how different CORBA 

implementations exchange request data.  Java/RMI leverages this protocol and uses it as a transport protocol for remote 

method invocations, which means that a Java client can perform a remote method invocation of a CORBA server and 

vice versa.  CORBA also specifies an inter-working specification to Microsoft’s COM. Object middleware provides 

very powerful component models. They integrate most of the capabilities of transactional, message-oriented or 

procedural middleware.  However, the scalability of object middleware is still rather limited and this disables use of the 

distributed object paradigm on a large scale. 

 

V.   MIDDLEWARE STATE-OF-THE-ART 

 

        While  middleware  products are  already  successfully  employed in industrial practice,  they still have several 

shortcomings, which prevent their use in many application domains.  These weaknesses lead to relatively inflexible 

systems that do not respond well to changing requirements; the do not really scale beyond local area networks; they are 

not yet dependable and are not suited to use in wireless networks. In this section, we review the state-of-the-art of 

middleware research that addresses the current weaknesses that will influence the next-generation of middleware 

products. We discuss trading, reflection and application-level transport mechanisms that support the construction of 

more flexible software architectures.  We present replication techniques that will lead to better scalability and fault-

tolerance.  We then discuss research into middleware that supports real-time applications and finally address 

middleware research results for mobile and pervasive computing. 

 

Flexible Middleware 
Trading:  Most middleware products use naming for component identification:  MOMs use named message queues, 

DCE has a Directory service, CORBA has a Naming service,COM uses monikers and Java/RMI uses the RMIRegistry 

to bind names to components.  Before a client component can make a request,  it has to resolve a name binding in order 

to obtain a reference to the server component.  This means that clients need to uniquely identify their servers, albeit in a 

location-transparent way. In many application domains, it is unreasonable to assume that client components can 

identify the  component from which they  can obtain a service.Even if they can, this leads to inflexible architectures 

where client components cannot dynamically adapt to better service providers becoming available. 

 

Trading has been suggested as an alternative to naming and it offers more flexibility. The ISO/ODP standard defines 
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the principal characteristics of trading [2]. The idea is similar to the yellow pages of the telephone directory.  Instead of 

using names, components are located based on service types.The trader registers the type of service that a server 

component offers and the particular qualities of service (QoS) that it guarantees. Clients can then query the trader for 

server components that provide a particular service type and demand the QoS guarantees from them.  The trader 

matches such a  service query with the service offers that it knows about and returns a component reference to the 

client.  From then on the client and the server communicate without involvement of the trader. The idea of trading has 

matured and is starting to be adopted in middleware products.  The OMG has defined a Trading service  [32]  that  

adapts the  ODP  trader ideas  to the  distributed object paradigm and first implementations of this service are becoming 

available. Thus trading enables the dynamic connection of clients with server components based on the service 

characteristics rather than the server’s name. 

 

Reflection: Another approach to more flexible execution environments for components is reflection. Reflection is a 

well-known paradigm in programming languages [17]. Programs use refection mechanisms to discover the types or 

classes and define method invocations at run-time. Reflection is already supported to some extend by current 

middleware products.  The interface repository and dynamic invocation in-terface of CORBA enable client 

programmers to discover the types of server components that are currently known and then dynamically create requests 

that invoke operations from these components. Current research into reflective middleware [9] goes beyond reflective 

object and component models.  It aims to support meta object protocols [29]. These protocols are used for inspection 

and adaptation of the middleware execution environment itself.  In [12] it is suggested, for example, to use an 

environment meta-model. Inspection of the environment meta-model supports queries of the middleware’s behaviour 

upon events, such as message arrival, enquiring of requests, marshalling and unmarshalling, thread creation and 

scheduling of requests. Adaptation of the environment meta-model enables components to adjust the behaviour of the 

middleware to any of those events. 

 

Application-level Transport  Protocols:  While  marshalling and unmarshalling is mostly best done by the 

middleware,there are applications, where the middleware creates an undue overhead.   One  important application  of 

reflection  is therefore to marshalling.  This is particularly the case when there is  an  application-specific  data  

representation  that  is amenable for transmission through a network that and heterogeneity does not need to be resolved 

by the middleware.In [14] we investigate the combined use of middleware and markup-languages, such as XML [14]. 

We suggest to transmit XML documents as uninterpreted byte strings using middleware. This combination is motivated 

by the fact that XML supports semantic translations between data structures and by the fact that existing markup 

language definitions, such as FpML [15] or FIXML [23] can be leveraged. On the other had,  the HTTP protocol with  

which  XML  was originally used is clearly inappropriate to meet reliability requirements.It can be expected that 

interoperability between application-level and middleware data-structures will become available in due course, because 

the OMG have started an adoption process for technology that will provide seamless interoperability between CORBA 

data structures and XML structured documents [35]. 

 

Scalable Middleware 
Although middleware is  successfully  used  in scalable applications on local-area networks, current middleware 

standards and products impose limitations that prevent their use in globally distributed systems.  In particular, current 

middleware platforms do not support replication to the neces- sary extent to achieve global distribution [31].  State of 

the art research addresses this problem through non-transparent replication. 

 

Replication: Tanenbaum is addressing this problem for distributed object middleware in the Globe project [42].  The 

aim of Globe is to provide an object based middleware that scales to a billion users.  To achieve this aim, Globe makes 

extensive use of replication. Unlike other replication mechanisms, such as Isis [4], Globe does not assume the existence 

of a universally applicable replication strategy. It rather suggests that replication policies have to be object-type 

specific,and therefore they have to be determined by server object designers. Thus, Globe assumes that each type of 

object its own strategy that proactively replicates objects. 

 

Real-time Middleware 
A good summary of the state of the art in real-time middleware has been produced in the EU funded CaberNet network 



         

            ISSN(Online): 2320-9801 

              ISSN (Print):  2320-9798                                                                                                                                 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 2, February 2015 

 

Copyright to IJIRCCE                                                                 10.15680/ijircce.2015.0302013                                                        697 

   

of excellence by [1].Most current middleware products are only of limited use in real-time and embedded systems 

because all requests have the same priority.  Moreover the memory requirements of current middleware products 

prevent deployment in embedded systems.  These problems have been addressed by various research groups.  TAO 

[39] is a real-time CORBA prototype developed that supports request prioritization and the definition of scheduling 

policies. The CORBA 3.0 specification [41] builds on this research and standardizes real-time and minimal 

middleware. 

 

Middleware for Mobile Computing 
Current middleware products assume continuous availability of high-bandwidth network connections.  These cannot be 

achieved  with  physically mobile hosts for various reasons.  Wireless local area network protocols, such as WaveLAN, 

do achieve reasonable bandwidth. However, they only operate if hosts are within reach of a few hundred metres from 

their base station.  Network outages occur  if mobile hosts roam across areas covered by different base stations or if 

they enter ‘radio shadows’.  Wide-area wireless network protocols, such as GSM have similar problems during cell 

handovers. In addition, their bandwidth is by orders of magnitude smaller; GSM achieves at most 9,600 baud. State-of-

the-art wireless and wide-area protocols, such as GSRM and UTMS will improve this situation. However, they will not 

be available for another two years. Several problems occur when current middleware products are used with these 

wireless network protocols. Firstly, they all  treat  unreachability of  server or  client  components  as exceptional 

situation  and  raise  errors  that client  or server component programmers have to deal with.  Secondly, the transport 

representation that is chosen for wired networks efficient.  Middleware products are therefore optimized to simplify 

both,  the  translation  between  different  heteroge- neous data representations, and the routing of messages to their 

intended receivers. Such optimizations do not need to choose size efficient encodings for the network protocol and are 

therefore inappropriate when packets are sent through a 9,600 baud wireless connection.Research  into  middleware  for  

mobile  computing  aims to overcome these issues by providing coordination primitives, such  as  tuple spaces, that  

treat unreach-  ability  as  normal rather than exceptional situations. Moreover, they use compressed transport 

representation to save bandwidth. A good overview into the state of the art for mobile middleware is 

given by [38] and we therefore avoid to delve into detail in this paper. 

 

V. MIDDLEWARE  AND  SOFTWARE  ENGINEERING RESEARCH 
 

In this section, we analyze the consequences of the availability of middleware products and their evolution as a result of 

middleware research on the  software engineering research agenda.   We  argue  on  the  importance  of  non-functional 

requirements  for  building  software  systems  with  existing and upcoming middleware and identify a need for 

requirements engineering techniques that focus on non-functional requirements.    

 

 Requirements Engineering 
 The challenges of co-ordination, reliability, scalability and heterogeneity  in  distributed  system  construction  that  we 

discussed  in  Section  2  and  that  engineers  are  faced with are  of  a  nonfunctional  nature.   Software  engineers  

thus have to define software architectures that  meet these nonfunctional requirements. However, the relationship 

between non-functional requirements and  software architectures  is only very poorly understood.  We first discuss the 

requirements engineering end of this relationship.Existing requirements engineering methods tend to have a very strong 

focus on functional requirements.  In particular the object-oriented and use-case driven approaches of Jacobsen [27] 

and more recently  Rational [26] more or lesscompletely ignore non-functional concerns. A goal-oriented approach, 

such as [10] seems to provide a much better basis, but needs to be augmented to specifically address nonfunctional 

concerns. For non-functional goals to be a useful input to middleware-oriented architecting, these goals need to be 

quantified. For neers need to have quantitative requirements models for the required response time,  peak loads and 

overall transaction or data volume that an architecture is expected to scale up to.  Thus requirements engineering 

research needs to devise methods and tools that can be used to elicit and model non-functional requirements from a 

quantitative point of view. Once a particular middleware system has  been chosen for a software architecture, it is 

extremely expensive to revert that choice and adopt a different middleware or a different architecture. The choice is 

influenced by the non-functional requirements. Unfortunately, requirements tend to be unstable and change over time. 

Non-functional requirements often change with the setting in which the system is embedded, for example when new 

hardware or operating system platforms are added as a result of a merger, or when scalability requirements increase as 
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a result of having to build web-based interfaces that customers use directly. Requirements engineering methods, 

therefore, not only have to identify the current requirements, but also elicit and estimate the ranges in which 

they can evolve during the planned life time of the distributed system. 

 

Software Architecture 
There is only very little  work on the influence of middleware on software architectures, with [11] being a notable 

exception.  Indeed, we believe that research on software architecture description languages has over-emphasized 

functionality and not sufficiently addressed the specification of how global properties and non-functional requirements 

are achieved in an architecture.  These requirements cannot be attributed to individual components or connectors and 

can therefore not be specified by current architectural description languages. Distributed software engineering research 

needs to identify notations, methods and tools that support architecting.  Research needs to  provide methods that  help  

software engineers to systematically derive software architectures that will meet a set of non-functional requirements 

and overcome the guesswork that is currently being done.  This includes support for identifying the appropriate 

middleware or combinations of middlewares for the problem at hand.  Moreover,software engineering research needs to 

define architecting processes that are capable of mitigating the risks of choosing the wrong middleware or architectures. 

These processes will need to rely on methods that quantitatively model the performance and scalability that a particular 

middleware-based architecture will achieve and use validation techniques, such as model checking, to validate that 

models actually do meet the requirements.  The models need to be calibrated using metrics that have been collected by 

observing middleware performance in practice.Many architecture description languages support the explicit modeling  

of  connectors  by  means  of  which  components communicate [40].  A main contribution of [11] is the observation 

that connectors are most often implemented using middleware primitives. We would like to add the observation that 

each middleware only supports a very limited set of connectors. Specifying the behaviour of connectors explicitly in an 

ADL is therefore modelling overkill that is only needed if architects opt out of using middleware at all. For most 

applications, the specification of each connector is completely unnecessary. Instead, software architecture research 

should develop middleware-oriented ADLs that have built-in sup-port for all connectors provided by the middleware 

that practitioners actually use. 

 

Design 
In [13], we have argued that the use of middleware in a design is not,  and never will  be,  entirely transparent to  

designers.  There are a number of factors that, despite of the ISO/ODP transparency dimensions, necessitate designers 

to be aware of the involvement of middleware in the communication between components. These factors are: 
 

¯  Network latency  implies that  the  communication between two distributed components is by orders of magnitude 

slower than a local communication. 

¯  Component  activation   and   de-activation   of   stateful  components  lead  to  a  need  for  implementing 

persistence of these components. 

¯  Components need to be designed so that they can cope with the  concurrent interactions  that occur  in  a distributed 

environment. 

        ¯  The components have a choice of the different synchronization primitives a particular middleware   offers, and 

need to exploit them properly. In particular, they have to avoid the deadlocks or liveness problems that can occur as a 

result of using these synchronization primitives. 
 

The  software  engineering  community  needs  to  develop middleware-oriented  design  notations,methods  and  tool 

that take the above concerns into account. Discussing the state of the art middleware research above,we have 

highlighted a trend to give the programmer more influence on how the middleware behaves.  Globe’s replication 

strategies,  TAO’s scheduling policies and reflection capabilities that influence the middleware execution engine have 

to be used by the designer.  This means, effectively,that the programmer gets to see more of the middleware and that 

distribution and heterogeneity become less transparent.If this is really necessary, and the middleware research 

community puts forward good reasons, programmers will have to be aided even more in the design of distributed 

components.Thus appropriate principles, notations, methods and tools for the design of replication strategies, 

scheduling policies and the use reflection capabilities are needed from software engineering research. 
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VII . SUMMARY 

 

We have discussed why the construction of distributed systems is difficult and indicated the support that software 

engineers can expect from current middleware products to simplify the task. We have then reviewed the current state of 

the art in middleware research and used this knowledge to derive a software engineering research agenda that will 

produce the principles, notations, methods and tools that are needed to support all activities during the life cycle of a 

software engineering process. 
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