

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 687

An Approach of Software Engineering

through Middleware

Ganesh S. Wedpathak

Head of Dept., Dept. of Computer Science & Information Tech., AITRC, Vita, Shivaji University, Kolhapur, India.

ABSTRACT: The challenge for software engineering research is to devise notations, techniques, methods and tools for

distributed system construction that systematically build and exploit the capabilities that middleware deliver.The

construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered

between network operating systems and application communication and coordination of distributed components.

Existing middleware products enable software engineers to build systems that are distributed across a local-area

network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive

and reconfigurable middleware and middleware for dependable and wireless systems.

KEYWORDS: Middleware, Synchronous, DTP(Distributed Transaction protocol),CORBA,MOM,RPC.

I. INTRODUCTION

Various commercial trends have lead to an increasing demand for distributed systems. Firstly, the number of mergers

between companies is continuing to increase. The different divisions of a newly merged company have to deliver unified

services to their customers and this usually demands an integration of their IT systems. The time available for delivery of

such an integration is often so short that building a new system is not an option and therefore existing system components

have to be integrated into a distributed system that appears as an integrating computing facility. Secondly, the time available

for providing new services are decreasing. Often this can only be achieved if components are procured off-the-shelf and

then integrated into a system rather than built from scratch. Components to be integrated may have incompatible

requirements for their hardware and operating system platforms; they have to be deployed on different hosts, forcing the

resulting system to be distributed. Finally, the Internet provides new opportunities to offer products and services to a vast

number of potential customers. In this setting, it is difficult to estimate the scalability requirements. An e-commerce site that

was designed to cope with a given number of transactions per day may suddenly find itself exposed to demand that is by

orders of magnitude larger. The required scalability cannot usually be achieved by central-ized or client-server architectures

but demands a distributed system. Distributed systems can integrate legacy components, thus preserving investment, they

can decrease the time to market, they can be scalable and tolerant against failures. The caveat, however, is that the

construction of a truly distributed systems is considerably more difficult than building a centralized or client/server system.

This is because there are multiple points of failure in a distributed system, system components need to communicate with

each other through a network, which complicates communication and opens the door for security attacks. Middleware has

been devised in order to conceal these difficulties from application engineers as much as possible; As they solve a real

problem and simplify distributed system construction, middleware products are rapidly being adopted in industry [6].In

order to build distributed systems that meet the requirements, software engineers have to know what middleware is

available, which one is best

suited to the problems at hand, and how middleware can be used in the architecture, design and implementation of

distributed systems. The principal contribution of this paper is an assessment of both, the state-of-the-practice that current

middleware products offer and the state-of-the-art in middleware research. Software engineers increasingly use middleware

to build distributed systems. Any research into distributed software engineering that ignores this trend will only have limited

impact. We, therefore, analyze the influence that the increasing use of middleware should have on the software engineering

research agenda. We argue that requirements engineering techniques are needed that focus on non-functional requirements,

as these influence the selection and use of middleware. We identify that software architecture research should produce

methods that guide engineers towards selecting the right middleware and employing it so that it meets a set of non-

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 688

functional requirements. We then highlight that the use of middleware is not transparent for system design and that design

methods are needed that address this issue. This paper is further structured as follows. In Section 3,we discuss some of the

difficulties involved in building distributed systems and delineate requirements for middleware. In Section 4, we use these

requirements to attempt an assessment of the support that current middleware products provide for distributed system

construction. We then present an overview of ongoing middleware research in Section 5 in order to provide a preview of

what future middleware products might be capable of. In Section 6, we delineate a research agenda for distributed software

engineering that builds on the capabilities of current and future middleware and conclude the paper in Section 7.

II. RELATED WORK

In this particular area we identify that software architecture research should produce methods that systematically guide

engineers towards selecting the right middleware and employing it in such a way that it meets a set of non-functional

requirements. We then highlight that the use of middleware is not transparent for system design and that design methods are

needed that address this issue.Two trends are important for the discussion of the impact of middleware on software

engineering research. Firstly, middleware products are conceived to deliver immediate benifits in the construction of

distributed systems. They are therefore rapidly adopted in industry. Secondly, middleware vendors have a proven track

record to incorporate middleware research results into their products. An example is the ISO/ODP Trader, which was

defined in 1993, adopted as a CORBA standard in 1997 and last year became available in the first CORBA products. There

is therefore a good chance that some of the state-of-the-art research in the areas of flexible, scalable, real-time and mobile

middleware will become state of the practice in 3-5 years.Unless research into software engineering for distributed

systems delivers principles, notations,methods and tools that are compatible with the capabilities that current middleware

products provide and that middleware research will generate in the future, software engineering research results will only be

of limited industrial significance. Industry will adopt the middleware that is known to deliver the benefits and ignore

incompatible software engineering methods and tools. Middleware products and research, however, only support

programming and largely ignore all other activities that are needed in software processes for distributed systems. We,

therefore, have a chance to achieve a symbiosis between software engineering and middleware. The aim of this section is to

identify the software engineering research themes that will lead to the principles, notations, methods and tools that are

needed to support all life cycle activities when building distributed systems using middleware.

III. REQUIREMENTS OF MIDDLEWARE

In this section, we review the difficulties that arise during distributed system construction. We argue in this section that it is

too expensive and time consuming if application designers have to resolve these problems by directly using network

operating system primitives. Instead they require a middleware that provides higher-level primitives. This approach to

distributed system construction with middleware is sketched in Figure 1.

Figure 1: Middleware in Distributed System Construction

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 689

Thus middleware is layered between network operating systems and application components [13]. Middleware facilitates

the communication and coordination of components that are distributed across several networked hosts. The aim of

middleware is to provide application engineers with highlevel primitives that simplify distributed system construction.

The idea of using middleware to build distributed systems is comparable to that of using database management systems

when building information systems. It enables application engineers to abstract from the implementation of low-level

details, such as concurrency control, transaction management and network communication, and allows them to focus on

application requirements.

Network Communication
As shown in Figure 1, the different components of a distributed system may reside on different hosts. In order for the

distributed system to appear as an integrated computing facility, the components have to communicate with each other. This

communication can only be achieved by using network protocols, which are often classier by the ISO/OSI reference model

[25]. Distributed systems are usually built on top of the transport layer, of which TCP or UDP are good examples. The

layers underneath are provided by the network operating system .Different transport protocols have in common that they

can transmit messages between different hosts. If the communication between distributed systems is programmed at this

level of abstraction, application engineers need to implement session and presentation layer. This is too costly, too

errorprone and too time-consuming. Instead, application engineers should be able to request parameterized services from

possibly more than one remote components and may wish to execute them as atomic and isolated transactions, leaving the

implementation of session and presentation layer to the middleware. The parameters that a component requesting a service

needs to pass to a component that provides a service are often complex data structures. The presentation layer

implementation of the middleware should provide the ability to transform these complex data structures into a format that

can be transmitted using a transport protocol, i.e.a sequence of bytes.This transformation is referred to as marshalling and

the reverse is called unmarshalling.

 Coordination
 By virtue of the fact that components reside on different hosts, distributed systems have multiple points of control.

Components on the same host execute concurrently, which leads to a need for synchronization when components

communicate with each other. This synchronization needs to be implemented in the session layer implementation provided

by the middleware.Synchronization can be achieved in different ways. A component can be blocked while it waits for

another component to complete execution of a requested service. This form of communication is often called synchronous.

After issuing a request, a component can also continue to perform its operations and synchronize with the service providing

component at a later point. This synchronization can then be initiated by either the client component (using, for example

polling),in which case the interaction is often called deferred synchronous. Synchronization that is initiated by the server is

referred to as asynchronous communication. Thus, applica-tion engineers need some basic mechanisms that support various

forms synchronization between communicating components. Sometimes more than two components are involved in a

service request. These forms of communications are also referred to as group requests. This is often the case when more

than one component is interested in events that occur in some other component. An example is a distributed stock ticker

application where an event, such as a share price update, needs to be communicated to multiple distributed display

components, to inform traders about the update. Although the basic mechanisms for this push-style communication are

available in multi-cast networking protocols additional support is needed to achieve reliable delivery and marshalling of

complex request parameters.

A slightly different coordination problem arises due to the sheer number of components that a distributed system may

have. The components, i.e. modules or libraries, of a centralized application reside in virtual memory while the application

is executing. This is inappropriate for distributed components for the following reasons:

¯ Hosts sometimes have to be shut down and components hosted on these machines have to be stopped and restarted when

the host resumes operation;

¯ The resources required by all components on a host maybe greater than the resources the host can provide; and

¯ Depending on the nature of the application, components may be idle for long periods, thus wasting resources if they were

kept in virtual memory all the time.

 For these reasons, distributed systems need to use a concept called activation that allows for component executing

processes to be started (activated) & terminated (deactivated) independently from the applications that they execute.The

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 690

middleware should manage persistent storage of components’ state prior to deactivation and restore components’ state

during activation. Middleware should also enable application programmers to determine the activation policies that define

when components are activated and de-activated. Given that components execute concurrently on distributed hosts, a server

component may be requested from different client components at the same time. The middleware should support different

mechanisms called threading policies to control how the server component reacts to such concur- rent requests. The

server component may be single-threaded, queue requests and process them in the order of their arrival. Alternatively, the

component may also spawn new threads and execute each request in its own thread. Finally the component may use a

hybrid threading policy that uses a pool with a fixed number of threads to execute requests, but starts queuing once there are

no free threads in the pool.

Reliability
 Network protocols have varying degrees of reliability.Protocols that are used in practice do not necessarily guarantee

that every packet that a sender transmits is actually received by the receiver and that the order in which they are sent is

preserved. Thus, distributed system implementations have to put error detection and correction mechanisms in place to

cope with these unreliabilities. Unfortunately, reliable delivery of service requests and service results does not come for

free. Reliability has to be paid for with decreases in performance. To allow engineers to trade-off reliability and

performance in a flexible manner, different degrees of service request reliability are needed inpractice. For communication

about service requests between two components, the reliabilities that have been suggested in the distributed system

literature are best effort, at-most-once, at- least-once and exactly-once [13]. Best effort service requests do not give any

assurance about the execution of the request. At-most-once requests are guaranteed to execute only once. It may happen

that they are not executed, but then the requester is notified about the failure. At-least-once service requests are guaranteed

to be executed, possibly more than once. The highest degree of reliability is provided by exactly-once requests, which are

guaranteed to be executed once and only once. Additional reliabilities can be defined for group requests. In particular, the

literature mentions k-reliability, time-outs, and totally-ordered requests. K-reliability denotes that at least K components

receive the communication. Time-outs allow the specification of periods after which no delivery of the request should be

attempted to any of the addressed components. Finally totally-ordered group communication denotes that a request never

overtakes a request of a previous group communication. The above reliability discussion applies to individual requests.

We can extend it and consider more than one request. Transactions [18] are important primitives that are used in reliable

distributed systems. Transactions have ACID properties, which means they enable multiple request to be executed in an

atomic, consistency-preserving, isolated and every completed transaction is consistent. It demands that a transaction is

isolated from concurrent transaction and, finally that once the transaction is completed its effect cannot be undone. Every

middleware that is used in critical applications needs to support distributed transactions.Reliability may also be increased

by replicating components [4], i.e. components are available in multiple copies on different hosts. If one component is

unavailable, for example because its host needs to be rebooted, a replica on a different host can take over and provide the

requested service. Sometimes components have an internal state and then the middleware should support replication in such

a way that these states are kept in sync.

Scalability
 Scalability denotes the ability to accommodate a growing future load. In centralized or client/server systems,scalability is

limited by the load that the server host can bear. This can be overcome by distributing the load across several hosts. The

challenge of building a scalable distributed system is to support changes in the allocation of components to hosts without

changing the architecture of the system or the design and code of any component. This can only be achieved by respecting

the different dimensions of transparency identified in the ISO Open Distributed Processing (ODP) reference model [24] in

the architecture and design of the system. Access transparency, for example demands that the way a component accesses the

services of another component is in-dependent of whether it is local or remote. Another example is location transparency,

which demands that components do not know the physical location of the components they interact with. A detailed

discussion of the different transparency dimension is beyond the scope of this paper and the reader is referred to [13]. If

components can access services without knowing the physical location and without changing the way they request it,

load balancing mechanisms can migrate components between machines in order to reduce the load on one host and increase

it on another host. It should again be transparent to users whether or not such a migration occurred. This is referred to as

migration transparency. Replication can also be used for load balancing. Components whose services are in high demand

may have to exist in multiple copies. Replication transparency means that it is transparent for the requesting components,

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 691

whether they obtain a service from the master component itself or from a replica. The different transparency criteria that

will lead to scalable systems are very difficult to achieve if distributed systems are built directly on network operating

system primitives. To overcome these difficulties, we demand from middleware that they support access, location,

migration and replication transparency.

Heterogeneity
The components of distributed systems may be procured off the-shelf, may include legacy and new components. As a result

they are often rather heterogeneous. This heterogeneity comes in different dimensions: hardware and operating system

platforms, programming languages and indeed the middleware itself. Hardware platforms use different encodings for atomic

data types, such as numbers and characters. Mainframes use the EBCDIC character set, Unix servers may use 7-bit ASCII

characters, while Windows-based PCs use 16-bit Unicode character encodings. Thus the character encoding of

alphanumeric data that is sent across different types of platforms has to be adjusted. Likewise, mainframes and RISC

servers, for example, use big-endian representations for numbers, i.e. the most significant byte encoding an integer,

long or floating point number comes last. PCs, however, use a little-endian representation where the significance of bytes

decreases. Thus, whenever a number is sent from a little-endian host to a big-endian host or vice versa, the order of bytes

with which this number is encoded needs to be swapped. This heterogeneity should be resolved by the middleware rather

than the application engineer. When integrating legacy components with newly-built components, it often occurs that

different programming languages need to be used. These programming languages may follow different paradigms.

While legacy components tend to be written in imperative languages, such as COBOL PL/I or C, newer components are

often implemented using object-oriented programming languages. Even different object-oriented languages have

considerable differences in their object model, type system, approach to inheritance and late binding. These differences

need to be resolved by the middleware. As we shall see in the next section, there is not just one, but many approaches to

middleware. The availability of different middleware solutions may present a selection problem, but sometimes there is no

optimal single middleware, and multiple middleware systems have to be combined. This may be for a variety of reasons.

Different middleware may be required due to availability of programming language bindings, particular forms of

middleware may be more appropriate for particular hardware platforms (e.g. COM on Windows and CORBA on

Mainframes). Finally, the different middleware systems will have different performance characteristics and depending on

the deployment a different middleware may have to be used as a backbone than the middleware that is used for local

components. Thus middleware will have to be interoperable with other implementations of the same middleware or even

different types of middleware in order to facilitate distributed system construction.

IV. MIDDLEWARE SOLUTIONS

 In this section, we review the state of current middleware products. We identify the extent to which they address the

above requirements and highlight their shortcomings. As it is impossible to review individual middleware products in this

paper, we first present a classification, which allows us to abstract from particular product characteristics and which

provides a conceptual framework for comparing the different approaches .The four categories that we consider are

transactional, message-oriented, procedural, and object or component middleware. We have chosen this classification

based on th primitives that middleware products provide for the interaction between distributed components, which are

distributed transactions, message passing, remote procedure calls and remote object requests.

Transactional Middleware
Transactional middleware supports transactions involving components that run on distributed hosts. Transaction to

implement distributed transactions. The products in this category include IBM’s CICS [22], BEA’s Tuxedo [19] and

Transarc’s Encina. Network Communication: Transactional middleware enables application engineers to define the services

that server components offer, implement those server components and then write client components that request several of

those services within a transaction. Client and server components can reside on different hosts and therefore requests are

transported via the network in a way that is transparent to client and server components.

Coordination: The client components can request services using synchronous or asynchronous communication.

Transactional middleware supports various activation policies and allows services to be activated on demand and

deactivated when they have been idle for some time. Activation can also side in memory.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 692

Reliability: A client component can cluster more than one service request into a transaction, even if the server components

reside on different machines. In order to implement these transactions, transactional middleware has to assume that the

participating servers implement the two-phase commit protocol. If server components are built using database management

systems, they can delegate implementation of the two-phase commit to these database management systems. For this

implementation to be portable, a standard has been defined. The Distributed Transaction Processing (DTP)Protocol, which

has been adopted by the Open Group, defines a programmatic interface for two-phase commit in its XA-protocol [43]. DTP

is widely supported by relational and object-oriented database management systems. This means that distributed

components that have been built using any of these database management systems can easily participate in distributed

transactions. This makes them fault-tolerant, as they automatically recover to the end of all completed transactions.

Scalability: Most transaction monitors support load balancing, and replication of server components. Replication of

servers is often based on replication capabilities that the database management systems provide upon which the server

components rely.

 Heterogeneity: Transactional middleware supports heterogeneity because the components can reside on different

hardware and operating system platforms. Also different database management systems can participate in

transactions, due to the standardized DTP protocol. Resolution of data heterogeneity is, however, not well-supported by

transactional middleware, as the middleware does not provide primitives to express complex data structures that could be

used as service request parameters and therefore also does not marshal them. The above discussion has shown that

transactional middle ware can simplify the construction of distributed systems. Transactional middleware, however, has

several weaknesses. Firstly, it creates an undue overhead if there is no need to use transactions, or transactions with ACID

semantics are inappropriate. This is the case, for example, when the client per-marshalling between the data structures that a

client uses and the parameters that services require needs to be done manually in many products. Thirdly, although the API

for the two-phase commit is standardized, there is no standardized approach for defining the services that server

components offer. This reduces the portability of a distributed system between different transaction monitors.

 Message-Oriented Middleware(MOM)
 Message-oriented middleware (MOM) supports the communication between distributed system components by facilitating

message exchange. Products in this category include IBM’s MQSeries [16] and Sun’s Java Message Queue [20].

Network Communication: Client components use MOM to send a message to a server component across the network. The

message can be a notification about an event, or a request for a service execution from a server component. The content of

such a message includes the service parameters. The server responds to a client request with a reply-message containing the

result of the service execution.

Coordination: A strength of MOM is that this paradigm supports asynchronous message delivery very naturally. The client

continues processing as soon as the middleware has taken the message. Eventually the server will send a message including

the result and the client will be able to collect that message at an appropriate time. This achieves de-coupling of client and

server and leads to more scalable systems. The weakness, at the same time is that the implementation of synchronous

requests is cumbersome as the synchronization needs to be implemented manually in the client. A further strength of MOM

is that it supports group communication by distributing the same message to multiple receivers in a transparent way.

 Reliability: MOM achieves fault-tolerance by implementing message queues that store messages temporarily on persistent

storage. The sender writes the message into the message queue and if the receiver is unavailable due to a failure, the

message queue retains the message until the receiver is available again.

 Scalability: MOMs do not support access transparency very well, because client components use message queues for

communication with remote components, while it does not make sense to use queues for local communication. This lack of

access transparency disables migration and replica queues need to be set up by administrators and the use of queues is hard-

coded in both client and server components, which leads to rather inflexible and poorly adaptable architectures.

Heterogeneity: MOM does not support data heterogeneity very well either, as the application engineers have to write

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 693

the code that marshals. With most products, there are different programming language bindings available. In assessing

the strengths and weaknesses of MOM, we can note that this class of middleware is particularly wellsuited for

implementing distributed event notification and publish/subscribe-based architectures. The persistence of message

queues means that this event notification can be achieved in fault tolerant ways so that components receive events

when they restart after a failure. However, message oriented middleware also has some weaknesses. It only supports at-

least once reliability. Thus the same message could be delivered more than once. Moreover, MOM does not support

transaction properties, such as atomic delivery of messages to all or none receivers. There is only limited support for

scalability and heterogeneity.

Procedural Middleware
Remote Procedure Calls (RPCs) were devised by Sun Mi-crosystems in the early 1980s as part of the Open Network

Computing (ONC) platform. Sun provided remote procedure calls as part of all their operating systems and submitted

RPCs as a standard to the X/Open consortium, which adopted it as part of the Distributed Computing Environment

(DCE) [36]. RPCs are now available on most Unix implementations and also on Microsoft’s Windows operating

systems.

 Network Communication: RPCs support the definition of server components as RPC programs. An RPC program

exports a number of parameterized procedures and associated parameter types. Clients that reside on other hosts can

invoke those procedures across the network. Procedural middleware implements these procedure calls by marshalling

the parameters into a message that is sent to the host where the server component is located. The server component

unmarshalls the message and executes the procedure and transmits marshalled results back to the client, if required.

Marshalling and unmarshalling are implemented in client and server stubs,that are automatically created by a compiler

from an RPC program definition

 Coordination: RPCs are synchronous interactions between exactly one client and one server. Asynchronous and

multicast communication is not supported directly by procedural middleware. Procedural middleware provides

different forms of activating server components. Activation policies define whether a remote procedure program is

always available or has to be started on demand. For startup on demand,the RPC server is started by an inetd daemon

as soon as a request arrives. The inetd requires an additional configuration table that provides for a mapping between

remote procedure program names and the location of programs in the file system.

 Reliability: RPCs are executed with at-most once semantics.The procedural middleware returns an exception if an RPC

fails. Exactly-once semantics or transactions are not supported by RPC programs.

 Scalability: The scalability of RPCs is rather limited. Unix and Windows RPCs do not have any replication

mechanisms that could be used to scale RPC programs. Thus replication has to be addressed by the designer of the

RPC-based system,publish/subscribe-based architectures. The persistence of message queues means that this event

notification can beachieved in fault tolerant ways so that components receive events when they restart after a failure.

However, message-oriented middleware also has some weaknesses. It only supports at-least once reliability. Thus the

same message could be delivered more than once. Moreover, MOM does not support transaction properties, such as

atomic delivery of messages to all or none receivers. There is only limited support for scalability and heterogeneity.

Procedural Middleware
Remote Procedure Calls (RPCs) were devised by Sun Mi-crosystems in the early 1980s as part of the Open Network

Computing (ONC) platform. Sun provided remote procedure calls as part of all their operating systems and submitted

RPCs as a standard to the X/Open consortium, which adopted it as part of the Distributed Computing Environment

(DCE) [36]. RPCs are now available on most Unix imple-mentations and also on Microsoft’s Windows operating

systems.

 Network Communication: RPCs support the definition of server components as RPC programs. An RPC program

exports a number of parameterized procedures and associated parameter types. Clients that reside on other hosts can

invoke those procedures across the network. Procedural middleware implements these procedure calls by marshalling

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 694

the parameters into a message that is sent to the host where the server component is located. The server component

unmarshalls the message and executes the procedure and transmits marshalled results back to the client, if required.

Marshalling and unmarshalling are implemented in client and server stubs,that are automatically created by a compiler

from an RPC program definition.

 Coordination: RPCs are synchronous interactions between exactly one client and one server. Asynchronous and

multicast communication is not supported directly by procedural middleware. Procedural middleware provides

different forms of activating server components. Activation policies define whether a remote procedure program is

always available or has to be started on demand. For startup on demand, the RPC server is started by an inetd

daemon as soon as a request arrives. The inetd requires an additional configuration table that provides for a mapping

between remote procedure program names and the location of programs in the file system.

Reliability: RPCs are executed with at-most once semantics.The procedural middleware returns an exception if an RPC

fails. Exactly-once semantics or transactions are not supported by RPC programs.

 Scalability: The scalability of RPCs is rather limited. Unix and Windows RPCs do not have any replication

mechanisms that could be used to scale RPC programs. Thus replication has to be addressed by the designer of the

RPC-based system, which means in practice that RPC-based systems are only deployed on a limited scale.

Heterogeneity: Procedural middleware can be used with different programming languages. Moreover, it can be

used across different hardware and operating system platforms.Procedural middleware standards define standardized

data representations that are used as the transport representation of requests and results. DCE, for example standardizes

the Network Data Representation (NDR) for this purpose. When

marshalling RPC parameters, the stubs translate hardware specific data representations into the standardized form and

the reverse mapping is performed during unmarshalling. Procedural middleware is weaker than transactional

middleware and MOM as it is not as fault tolerant and scalable.Moreover, the coordination primitives that are available

in procedural middleware are more restricted as they only sup- port synchronous invocation directly. Procedural

middleware improve transactional middleware and MOM with respect to interface definitions from which

implementations that automatically marshal and unmarshal service parameters and results. A disadvantage of

procedural middleware is that this interface definition is not reflexive. This means that procedures exported by one

RPC program cannot return another RPC program. Object and component middleware resolve this problem.

Object and Component Middleware
 Object middleware evolved from RPCs. The development of object middleware mirrored similar evolutions in

programming languages where object-oriented programming languages, such as C++ evolved from procedural

programming languages such as C. The idea here is to make object-oriented principles, such as object identification

through references and inheritance, available for the development of distributed systems. Systems in this class of

middleware include the Common Object Request Broker Architecture (CORBA) of the OMG [34, 37], the latest

versions of Microsoft’s Component Object (COM) [5] and the Remote Method Invocation (RMI) capabilities that have

been available since Java1.1 [28]. More recent products in this category include middleware that supports distributed

components, such as Enterprise Java Beans [30]. Unfortunately, we can only discuss and compare this important class

of middleware briefly and refer to [8, 13] for more details.

 Network Communication: Object middleware support distributed object requests, which mean that a client object

requests the execution of an operation from a server object that may reside on another host. The client object has to

have an object reference to the server object. Marshalling operation parameters and results is again achieved by stubs

that are generated from an interface definition.

 Coordination: The default synchronization primitives in object middleware are synchronous requests, which block

the client object until the server object has returned the response. However, the other synchronization primitives are

supported,too. CORBA 3.0, for example, supports both deferred synchronous and asynchronous object requests.

Object middleware supports different activation policies. These include whether server objects are active all the time

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 695

or started ondemand. Threading policies are available that determine whether new threads are started if more than

one operation is requested by concurrent clients, or whether they are queued and executed sequentially. CORBA also

supports group communication through its Event and Notification services. This service can be used to implement

push-style architectures.

Reliability: The default reliability for object requests is atmost once. Object middleware support exceptions, which

clients catch in order to detect that a failure occurred during execution of the request. CORBA messaging, or the

Notification service [33] can be used to achieve exactly-once reliability. Object middleware also supports the concept

of transactions. CORBA has an Object Transaction service [32] that can be used to cluster requests from several

distributed objects into transactions. COM is integrated with Microsoft’s Transaction Server [21], and the Java

Transaction Service [7]provides the same capability for RMI.

Scalability: The support of object middleware for building scalable applications is still somewhat limited. Some

CORBA implementations support load-balancing, for example by employing using name servers that return an object

reference for a server on the least loaded host, or using factories that create server objects on the least loaded host, but

support for replication is still rather limited.

Heterogeneity: Object middleware supports heterogeneity in many different ways. CORBA and COM both have

multiple programming language bindings so that client and server objects do not need to be written in the same

programming language. They both have a standardized data representation that they use to resolve heterogeneity of

data across platforms. Java/RMI takes a different approach as heterogeneity is already resolved by the Java Virtual

Machine in which both client and server objects reside. The different forms of object middleware inter-operate.

CORBA defines the Internet Inter-Orb Protocol (IIOP) standard [34], which governs how different CORBA

implementations exchange request data. Java/RMI leverages this protocol and uses it as a transport protocol for remote

method invocations, which means that a Java client can perform a remote method invocation of a CORBA server and

vice versa. CORBA also specifies an inter-working specification to Microsoft’s COM. Object middleware provides

very powerful component models. They integrate most of the capabilities of transactional, message-oriented or

procedural middleware. However, the scalability of object middleware is still rather limited and this disables use of the

distributed object paradigm on a large scale.

V. MIDDLEWARE STATE-OF-THE-ART

 While middleware products are already successfully employed in industrial practice, they still have several

shortcomings, which prevent their use in many application domains. These weaknesses lead to relatively inflexible

systems that do not respond well to changing requirements; the do not really scale beyond local area networks; they are

not yet dependable and are not suited to use in wireless networks. In this section, we review the state-of-the-art of

middleware research that addresses the current weaknesses that will influence the next-generation of middleware

products. We discuss trading, reflection and application-level transport mechanisms that support the construction of

more flexible software architectures. We present replication techniques that will lead to better scalability and fault-

tolerance. We then discuss research into middleware that supports real-time applications and finally address

middleware research results for mobile and pervasive computing.

Flexible Middleware
Trading: Most middleware products use naming for component identification: MOMs use named message queues,

DCE has a Directory service, CORBA has a Naming service,COM uses monikers and Java/RMI uses the RMIRegistry

to bind names to components. Before a client component can make a request, it has to resolve a name binding in order

to obtain a reference to the server component. This means that clients need to uniquely identify their servers, albeit in a

location-transparent way. In many application domains, it is unreasonable to assume that client components can

identify the component from which they can obtain a service.Even if they can, this leads to inflexible architectures

where client components cannot dynamically adapt to better service providers becoming available.

Trading has been suggested as an alternative to naming and it offers more flexibility. The ISO/ODP standard defines

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 696

the principal characteristics of trading [2]. The idea is similar to the yellow pages of the telephone directory. Instead of

using names, components are located based on service types.The trader registers the type of service that a server

component offers and the particular qualities of service (QoS) that it guarantees. Clients can then query the trader for

server components that provide a particular service type and demand the QoS guarantees from them. The trader

matches such a service query with the service offers that it knows about and returns a component reference to the

client. From then on the client and the server communicate without involvement of the trader. The idea of trading has

matured and is starting to be adopted in middleware products. The OMG has defined a Trading service [32] that

adapts the ODP trader ideas to the distributed object paradigm and first implementations of this service are becoming

available. Thus trading enables the dynamic connection of clients with server components based on the service

characteristics rather than the server’s name.

Reflection: Another approach to more flexible execution environments for components is reflection. Reflection is a

well-known paradigm in programming languages [17]. Programs use refection mechanisms to discover the types or

classes and define method invocations at run-time. Reflection is already supported to some extend by current

middleware products. The interface repository and dynamic invocation in-terface of CORBA enable client

programmers to discover the types of server components that are currently known and then dynamically create requests

that invoke operations from these components. Current research into reflective middleware [9] goes beyond reflective

object and component models. It aims to support meta object protocols [29]. These protocols are used for inspection

and adaptation of the middleware execution environment itself. In [12] it is suggested, for example, to use an

environment meta-model. Inspection of the environment meta-model supports queries of the middleware’s behaviour

upon events, such as message arrival, enquiring of requests, marshalling and unmarshalling, thread creation and

scheduling of requests. Adaptation of the environment meta-model enables components to adjust the behaviour of the

middleware to any of those events.

Application-level Transport Protocols: While marshalling and unmarshalling is mostly best done by the

middleware,there are applications, where the middleware creates an undue overhead. One important application of

reflection is therefore to marshalling. This is particularly the case when there is an application-specific data

representation that is amenable for transmission through a network that and heterogeneity does not need to be resolved

by the middleware.In [14] we investigate the combined use of middleware and markup-languages, such as XML [14].

We suggest to transmit XML documents as uninterpreted byte strings using middleware. This combination is motivated

by the fact that XML supports semantic translations between data structures and by the fact that existing markup

language definitions, such as FpML [15] or FIXML [23] can be leveraged. On the other had, the HTTP protocol with

which XML was originally used is clearly inappropriate to meet reliability requirements.It can be expected that

interoperability between application-level and middleware data-structures will become available in due course, because

the OMG have started an adoption process for technology that will provide seamless interoperability between CORBA

data structures and XML structured documents [35].

Scalable Middleware
Although middleware is successfully used in scalable applications on local-area networks, current middleware

standards and products impose limitations that prevent their use in globally distributed systems. In particular, current

middleware platforms do not support replication to the neces- sary extent to achieve global distribution [31]. State of

the art research addresses this problem through non-transparent replication.

Replication: Tanenbaum is addressing this problem for distributed object middleware in the Globe project [42]. The

aim of Globe is to provide an object based middleware that scales to a billion users. To achieve this aim, Globe makes

extensive use of replication. Unlike other replication mechanisms, such as Isis [4], Globe does not assume the existence

of a universally applicable replication strategy. It rather suggests that replication policies have to be object-type

specific,and therefore they have to be determined by server object designers. Thus, Globe assumes that each type of

object its own strategy that proactively replicates objects.

Real-time Middleware
A good summary of the state of the art in real-time middleware has been produced in the EU funded CaberNet network

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 697

of excellence by [1].Most current middleware products are only of limited use in real-time and embedded systems

because all requests have the same priority. Moreover the memory requirements of current middleware products

prevent deployment in embedded systems. These problems have been addressed by various research groups. TAO

[39] is a real-time CORBA prototype developed that supports request prioritization and the definition of scheduling

policies. The CORBA 3.0 specification [41] builds on this research and standardizes real-time and minimal

middleware.

Middleware for Mobile Computing
Current middleware products assume continuous availability of high-bandwidth network connections. These cannot be

achieved with physically mobile hosts for various reasons. Wireless local area network protocols, such as WaveLAN,

do achieve reasonable bandwidth. However, they only operate if hosts are within reach of a few hundred metres from

their base station. Network outages occur if mobile hosts roam across areas covered by different base stations or if

they enter ‘radio shadows’. Wide-area wireless network protocols, such as GSM have similar problems during cell

handovers. In addition, their bandwidth is by orders of magnitude smaller; GSM achieves at most 9,600 baud. State-of-

the-art wireless and wide-area protocols, such as GSRM and UTMS will improve this situation. However, they will not

be available for another two years. Several problems occur when current middleware products are used with these

wireless network protocols. Firstly, they all treat unreachability of server or client components as exceptional

situation and raise errors that client or server component programmers have to deal with. Secondly, the transport

representation that is chosen for wired networks efficient. Middleware products are therefore optimized to simplify

both, the translation between different heteroge- neous data representations, and the routing of messages to their

intended receivers. Such optimizations do not need to choose size efficient encodings for the network protocol and are

therefore inappropriate when packets are sent through a 9,600 baud wireless connection.Research into middleware for

mobile computing aims to overcome these issues by providing coordination primitives, such as tuple spaces, that

treat unreach- ability as normal rather than exceptional situations. Moreover, they use compressed transport

representation to save bandwidth. A good overview into the state of the art for mobile middleware is

given by [38] and we therefore avoid to delve into detail in this paper.

V. MIDDLEWARE AND SOFTWARE ENGINEERING RESEARCH

In this section, we analyze the consequences of the availability of middleware products and their evolution as a result of

middleware research on the software engineering research agenda. We argue on the importance of non-functional

requirements for building software systems with existing and upcoming middleware and identify a need for

requirements engineering techniques that focus on non-functional requirements.

 Requirements Engineering
 The challenges of co-ordination, reliability, scalability and heterogeneity in distributed system construction that we

discussed in Section 2 and that engineers are faced with are of a nonfunctional nature. Software engineers

thus have to define software architectures that meet these nonfunctional requirements. However, the relationship

between non-functional requirements and software architectures is only very poorly understood. We first discuss the

requirements engineering end of this relationship.Existing requirements engineering methods tend to have a very strong

focus on functional requirements. In particular the object-oriented and use-case driven approaches of Jacobsen [27]

and more recently Rational [26] more or lesscompletely ignore non-functional concerns. A goal-oriented approach,

such as [10] seems to provide a much better basis, but needs to be augmented to specifically address nonfunctional

concerns. For non-functional goals to be a useful input to middleware-oriented architecting, these goals need to be

quantified. For neers need to have quantitative requirements models for the required response time, peak loads and

overall transaction or data volume that an architecture is expected to scale up to. Thus requirements engineering

research needs to devise methods and tools that can be used to elicit and model non-functional requirements from a

quantitative point of view. Once a particular middleware system has been chosen for a software architecture, it is

extremely expensive to revert that choice and adopt a different middleware or a different architecture. The choice is

influenced by the non-functional requirements. Unfortunately, requirements tend to be unstable and change over time.

Non-functional requirements often change with the setting in which the system is embedded, for example when new

hardware or operating system platforms are added as a result of a merger, or when scalability requirements increase as

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 698

a result of having to build web-based interfaces that customers use directly. Requirements engineering methods,

therefore, not only have to identify the current requirements, but also elicit and estimate the ranges in which

they can evolve during the planned life time of the distributed system.

Software Architecture
There is only very little work on the influence of middleware on software architectures, with [11] being a notable

exception. Indeed, we believe that research on software architecture description languages has over-emphasized

functionality and not sufficiently addressed the specification of how global properties and non-functional requirements

are achieved in an architecture. These requirements cannot be attributed to individual components or connectors and

can therefore not be specified by current architectural description languages. Distributed software engineering research

needs to identify notations, methods and tools that support architecting. Research needs to provide methods that help

software engineers to systematically derive software architectures that will meet a set of non-functional requirements

and overcome the guesswork that is currently being done. This includes support for identifying the appropriate

middleware or combinations of middlewares for the problem at hand. Moreover,software engineering research needs to

define architecting processes that are capable of mitigating the risks of choosing the wrong middleware or architectures.

These processes will need to rely on methods that quantitatively model the performance and scalability that a particular

middleware-based architecture will achieve and use validation techniques, such as model checking, to validate that

models actually do meet the requirements. The models need to be calibrated using metrics that have been collected by

observing middleware performance in practice.Many architecture description languages support the explicit modeling

of connectors by means of which components communicate [40]. A main contribution of [11] is the observation

that connectors are most often implemented using middleware primitives. We would like to add the observation that

each middleware only supports a very limited set of connectors. Specifying the behaviour of connectors explicitly in an

ADL is therefore modelling overkill that is only needed if architects opt out of using middleware at all. For most

applications, the specification of each connector is completely unnecessary. Instead, software architecture research

should develop middleware-oriented ADLs that have built-in sup-port for all connectors provided by the middleware

that practitioners actually use.

Design
In [13], we have argued that the use of middleware in a design is not, and never will be, entirely transparent to

designers. There are a number of factors that, despite of the ISO/ODP transparency dimensions, necessitate designers

to be aware of the involvement of middleware in the communication between components. These factors are:

¯ Network latency implies that the communication between two distributed components is by orders of magnitude

slower than a local communication.

¯ Component activation and de-activation of stateful components lead to a need for implementing

persistence of these components.

¯ Components need to be designed so that they can cope with the concurrent interactions that occur in a distributed

environment.

 ¯ The components have a choice of the different synchronization primitives a particular middleware offers, and

need to exploit them properly. In particular, they have to avoid the deadlocks or liveness problems that can occur as a

result of using these synchronization primitives.

The software engineering community needs to develop middleware-oriented design notations,methods and tool

that take the above concerns into account. Discussing the state of the art middleware research above,we have

highlighted a trend to give the programmer more influence on how the middleware behaves. Globe’s replication

strategies, TAO’s scheduling policies and reflection capabilities that influence the middleware execution engine have

to be used by the designer. This means, effectively,that the programmer gets to see more of the middleware and that

distribution and heterogeneity become less transparent.If this is really necessary, and the middleware research

community puts forward good reasons, programmers will have to be aided even more in the design of distributed

components.Thus appropriate principles, notations, methods and tools for the design of replication strategies,

scheduling policies and the use reflection capabilities are needed from software engineering research.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 699

VII . SUMMARY

We have discussed why the construction of distributed systems is difficult and indicated the support that software

engineers can expect from current middleware products to simplify the task. We have then reviewed the current state of

the art in middleware research and used this knowledge to derive a software engineering research agenda that will

produce the principles, notations, methods and tools that are needed to support all activities during the life cycle of a

software engineering process.

REFERENCES

[1] J. Bates. The State of the Art in Distributed and Dependable Computing. Technical report, Laboratory for Communications

Engineering, Cambridge University,http://www.newcastle.research.ec.org/cabernet/sota/report,Oct. 1998.Int. Conf. on Open Distributed
Processing, Berlin, Germany,Vol-4,pp 341–352. North-Holland, 1993.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison Wesley, Vol 14,pp-140-

146,1987.
[3] K. P. Birman. Building Secure and Reliable Network Applications. Manning Publishing, Vol 7,pp-20-29, 1997.

 [4] D. Box. Essential COM. Addison Wesley Longman, Vol 18 ,pp-121-127, 1998.

 [5] J. Charles. Middleware Moves to the Forefront. IEEE Computer, pp 17–19, May 1999.
[6] S. Cheung. Java Transaction Service (JTS). Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303, Vol 2,pp-23-25, Mar.1999.

[7] P. Chung, Y. Huang, S. Yajnik, D. Liang, J. Shin, C.-Y. Wang,and Y.-M. Wang. DCOM and CORBA: Side by Side, Step by Step, and Layer by

Layer. C++ Report, pp 18–29, January1998.
[8] P. Cointe, editor. Meta-Level Architectures and Reflection: ¾Ò International Conference, Reflection ’99, St. Malo, France, volume 1616 of

Lecture Notes in Computer Science.Springer, Vol 2,pp-12-21, 1999.

[9] A. Dardenne, A. van Lamswerde, and S. Fickas. Goaldirected Requirements Acquisition. Science of Computer Programming, Vol 20:3–
50, pp-67-68,1993.

[10] E. di Nitto and D. Rosenblum. Exploiting ADLs to Specify Architectural Styles Induced by Middleware Infrastructures Vol 14,pp-112-116,

[11] F. Eliassen, A. Andersen, G. S. Blair, F. Costa, G. Coulson,V. Goebel, O. Hansen, T. Kristensen, T. Plagemann, H. O.Rafaelsen, K. B.
Saikoski, and W. Yu. Next Generation Middleware: Requirements, Architecture and Prototypes. In Proceedings of the Ø IEEE Workshop on

Future Trends in Distributed Computing Systems, pp 60–65. IEEE Computer Society Press, Dec. 1999.

[12] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons , pp-57-58, Apr. 2000.
[13] W. Emmerich, A. Finkelstein, and W. Schwarz. Markup Meets Middleware. In Ø Int. Workshop on Future Trends in Distributed

Systems, Capetown, South Africa, pp 261–266. IEEE Computer Society Press, 1999.

[14] FpML. Introducing FpML: A New Standard for e-commerce.http://www.fpml.org, 1999.
[15] L. Gilman and R. Schreiber. Distributed Computing with IBM MQSeries. Wiley, Vol 23 ,pp-12-18 ,1996.

[16] A. Goldberg. Smalltalk-80: The Language and its Implementation. Addison Wesley, Vol19 ,pp-32-34, 1985.

[17] J. N. Gray. Notes on Database Operating Systems. In R. Bayer, R. Graham, and G. Seegm¨uller, editors, Operating systems: An advanced
course, volume 60 of Lecture Notes n Computer Science, chapter 3.F., pp 393–481. Springer,1978. [18] C. L. Hall. Building Client/Server

Applications Using TUXEDO. Wiley, 1996.

[19] M. Hapner, R. Burridge, and R. Sharma. Java Message Service Specification. Technical report, Sun Microsystems,
http://java.sun.com/products/jms, ,pp-28-30 ,Nov. 1999.

[20] S. Hillier. Microsoft Transaction Server Programming. Microsoft Press, Vol 11 pp-64-69, 1998.

[21] E. S. Hudders. CICS: A Guide to Internal Structure. Vol 5,pp-72-84, Wiley,1994.
[22] Infinity. Infinity network trade Overview http://www.infinity.com/ntm/pdf/ntmOverview.pdf, 1999.

[23] ISO 10746-1. Open Distributed Processing – Reference model. Technical report, International Standardization Organization, 1998. [24]

ISO 7498-1.Information processing systems – Open Systems Interconnection – Basic Reference Model: The Basic Model. Technical report,
International Standards Organisation, 1994.

[25]M. v. Steen, P. Homburg, and A. S. Tanenbaum. Globe: A Wide-Area Distributed System. IEEE Concurrency, pp 70–78, January-March

1999[26] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process. Addison Wesley, 1999.

[27] I. Jacobson, M. Christerson, P. Jonsson, and G. Over
¨
gaard. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison

Wesley, pp-91-96 1992.

[28] JavaSoft. Java Remote Method Invocation Specification, revision 1.50, jdk 1.2 edition, Oct. 1998.
[29] G. Kiczales, J. d. Rivi`eres, and D. G. Bobrow. The Art of the Metaobject Protocol. MIT Press, 1991.

[30] R. Monson-Haefel. Enterprise Javabeans. O’Reilly UK, Vol 22,pp-32-37,1999.

[31] B. C. Neuman. Scale in Distributed Systems. In T. Casa Systems. IEEE Computer Society press, Vol 13,pp-11-23, 1994.
[32] Object Management Group. CORBAservices: Common Object Services Specification, Revised Edition. 492 Old Connecticut Path,

Framingham, MA 01701, USA, December 1998

[33] Object Management Group. Notification Service. 492 Old Connecticut Path, Framingham, MA 01701, USA,Jan. 1998.
[34] Object Management Group. The Common Object Request Broker: Architecture and Specification Revision 2.2. 492 Old Connecticut Path,

Framingham, MA 01701, USA, February 1998.

[35] Object Management Group. XML/Value Request for Proposals. 492 Old Connecticut Path, Framingham, MA 01701,USA, Aug. 1999.
[36] Open Group, editor. DCE 1.1: Remote Procedure Calls. The Open Group, Vol 4,pp-14-20,1997

[37] R. Orfali, D. Harkey, and J. Edwards. Instant CORBA. Wiley, Vol 13,pp-12-14 ,1997.

[38] G.-C. Roman, A. L. Murphy, and G. P. Picco. A Software Engineering Perspective on Mobility. In A. C. W. Finkelstein,editor, Future of

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302013 700

Software Engineering. ACM Press, 2000.

[39] D. Schmidt, C. Gill, and D. Levine. Evaluating Strategies for Real-Time CORBA Dynamic Scheduling. In ½ Ø Interna tional IEEE Real-
Time Symposium. IEEE Computer Society Press, 1998[40] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

[41] J. Siegel. Component and Object Technology: A Preview of CORBA 3. IEEE Computer, pp 114–116, May 1999.
[42] X/Open Group. Distributed Transaction Processing: The XA+ Specification, Version 2. X/Open Company, ISBN 1-85912-046-6,

Reading, UK, Vol 8,pp-12-16 ,1994.

BIOGRAPHY

Asst.Prof. Ganesh S. Wedpathak is working as a Head of Dept. in the Computer Science Engineering & Information

Technology Department, Adarsh Institute Of Technology & Research Center Vita,Shivaji University Kolhapur ,India.

He received Master of Technology (M.Tech) degree from JNTU, Hyderabad, AP, India. His research interests are

Software Engineering, Software Testing ,System Programming etc.

