
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 86

AN EFFICIENT AND EFFECTIVE RANKING ON SPATIAL DATA BY QUALITY

PREFERENCES

Dhanavarapu Ramakrishna
1
 and K. Rajani Devi

2

1Student, M.Tech (IT), Siddharth Nagar,Nalanda Institute of Engineering and Technology, A.P, India.
1ramakrishna4007@gmail.com

2Head of the Department, (IT), Siddharth Nagar, Nalanda Institute of Engineering and Technology, A.P, India.

Abstract -A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood. For example, consider a road

network database with available paths for two points. A customer may want to rank the paths with respect to their distance defined after
aggregating the qualities of other features (road condition, travelling time, and traffic monitoring and road length) within a distance range. This
ranking is obtained by range score and influence score function. Propose appropriate indexing techniques and search algori thms for
computing the spatial preference queries on a road network. Extensive evaluation of our methods on both real and synthetic data reveals that
an optimized branch- and-bound solution is efficient and robust with respect to different parameters.

Keywords– Queryprocessing, spatial databases.

INTRODUCTION

Spatial database systems manage large collections of

geographic entities, which apart from spatial attributes

contain nonspatial information (e.g., name, size, type, price,

etc.). In this paper, we study an interesting type of

preference queries, which select the best spatial location

with respect to the quality of facilities in its spatial

neighborhood.Given a set D of interesting objects (e.g.,

candidate locations), a top-k spatial preference query
retrieves the k objects in D with the highest scores. The

score of an object is defined by the quality of features (e.g.,

facilities or services) in its spatial neighborhood. As a

motivating example, consider a real estate agency office that

holds a database with available flats for lease. Here

“feature” refers to a class of objects in a spatial map such as

specific facilities or services. A customer may want to rank

the contents of this database with respect to the quality of

their locations, quantified by aggregating nonspatial

characteristics of other features (e.g., restaurants, cafes,

hospital, market, etc.) in the spatial neighborhood of the flat

(defined by a spatial range around it). Quality may be
subjective and query-parametric. For example, a user may

define quality with respect to non-spatialattributes of

restaurants around it (e.g., whether they serve seafood, price

range, etc.).

As another example, the user (e.g., a tourist) wishes to find a

hotel p that is close to a high- quality restaurant and a high

quality cafe. Fig. 1a illustrates the locations of an object

data set D(hotels) in white, and two feature data sets: the set

F1(restaurants) in gray, and the set F2 (cafes) in black. For

the ease of discussion, the qualities are normalized to values
in [0,1].The score of p of a hotel p is defined in terms of: 1)

the maximum quality for each feature in the neighborhood

region of p, and 2) the aggregation of those qualities.

A simple score instance, called the range score, binds the

neighborhood region to a circular region at p with radius r

shown as a circle in Fig.1a, and the aggregate function to

SUM. For instance, the maximum quality of gray and black

points within the circle of p1 are 0.9 and0.6, respectively, so

the score of p1 is 0.9+0.6=1.5.Similarly, we obtain score of

p2 is1.0+0.1=1.1 and score of p3 is 0.7+0.7=1.4. Hence, the

hotel p1 is returned as the top result.

In fact, the semantics of the aggregate function is relevant to

the user‟s query. The SUM function attempts to balance the

overall qualities of all features. For the MIN function, the

top result becomes p3, with the score of min is 0.7.It ensures

that the top result has reasonably high qualities in all

features. For the MAX function, the top result is p2, with

max {1.0,0.1}=1.0. It is used to optimize the quality in a

particular feature, but not necessarily all of them.

The neighborhood region in the above spatial preference

query can also be defined by other score functions. A
meaningful score function is the influence score. As

opposed to the crisp radius r constraint in the range score,

the influence score smoothens the effect of r and assigns

higher weights to cafes that are closer to the hotel. Fig.1b

shows a hotel P 5 and three cafes S1, S2, S3 (with their

quality values). The circles have their radii as multiples of

r.Now, the score of a café Si is computed by multiplying its

quality with the weight 2-j, where j is the order of the

smallest circle containing Si. For example, the scores of S 1,

S2, and S3 are0.15, 0.225, and 0.125 respectively. The

influence score of P 5 is taken as the highest value (0.225).

Traditionally, there are two basic ways for ranking objects:

1) spatial ranking, which orders the objects according to

their distance from a reference point, and 2) non spatial

ranking, which orders the objects by an aggregate function

on their non-spatial values. Our top-k spatial preference

query integrates these two types of ranking in an intuitive

way. As indicated by our examples, this new query has a

wide range of applications in service recommendation and

decision support systems.

To our knowledge, there is no existing efficient solution for
processing the top-k spatial preference query. A brute force

Dhanavarapu Ramakrishna et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 86-90

© JGRCS 2010, All Rights Reserved 87

approach for evaluating it is to compute the scores of all

objects in D and select the top-k ones. This method,

however, is expected to be very expensive for large input

data sets. In this paper, we propose alternative techniques

that aim at minimizing the I/O accesses to the object and

feature data sets, while being also computationally efficient.

Our techniques apply on spatial-partitioning access methods

and compute upper score bounds for the objects indexed by

them, which are used to effectively prune the search space.

Specifically, we contribute the branch-and-bound (BB)

algorithm and the feature join (FJ) algorithm for efficiently
processing the top-k spatial preference query.

Furthermore, this paper studies top-k spatial preference

query on road network and in which the distance between

two points defined by their shortest path distance that have

not been investigated in our preliminary work[1] and

three relevant extensions have been proposed. The first

extension is an optimized version of BB that exploits a more

efficient technique for computing the scores of the objects.

The second extension studies adaptations of the proposed

algorithms for aggregate functions other than SUM, e.g., the
functions MIN and MAX. The third extension develops

solutions for the top-k spatial preference query based on the

influence score.

Figure 1: (a) Range score,(b) Influence score, c=0.2 km

LITERATURE REVIEW

Object ranking is a popular retrieval task in various

applications. In relational databases, we rank tuples using an

aggregate score function on their attribute values [3]. For
example, a real estate agency maintains a database that

contains information of flats available for rent. A potential

customer wishes to view the top 10 flats with the largest

sizes and lowest prices. In this case, the score of each flat is

expressed by the sum of two qualities: size and price, after

normalization to the domain [0,1]. In spatial databases,

ranking is often associated to nearest neighbor (NN)

retrieval. Given a query location, we are interested in

retrieving the set of nearest objects to it that qualify a

condition. Assuming that the set of interesting objects is

indexed by an R-tree [4], we can apply distance bounds and
traverse the index in a branch-and-bound fashion to obtain

the answer [5].

Nevertheless, it is not always possible to use

multidimensional indexes for top-k retrieval. First, such

indexes break down in high-dimensional spaces [6], [7].

Second, top-k queries may involve an arbitrary set of user-

specified attributes from possible ones and indexes may not

beavailable for all possible attribute combinations because

they are too expensive to create and maintain. Third,

information fordifferent rankings to be combined for

different attributes could appear in different databases in a

distributed database scenario and unified indexes may not

exist for them. Solutions for top-k queries [8], [3], [9], [10]

focus on the efficient merging of object rankings that may

arrive from different sources. Their motivation is to

minimize the number ofaccesses to the input rankings until

the objects with the top-k aggregate scores have been

identified. To achieve this, upper and lower bounds for the
objects seen so far are maintained while scanning the sorted

lists.

In the following sections, we first review the R-tree, which

are the most popular spatial access method and the NN

search algorithm of [5]. Then, survey our feature-based

spatial queries.

Spatial Query Evaluation on R-Trees:

The most popular spatial access method is the R-tree [4],

which indexes minimum bounding rectangles (MBRs) of

objects. Fig. 2 shows a set D ={p1 ... p8} of spatial objects

and an R-tree that indexes them. R-trees can efficiently

process main spatial query types,including spatial range

queries, nearest neighbor queries, and spatial joins. Given a

spatial region W, a spatial range query retrieves from D the

objects that intersect W. For instance, consider a range

query that asks for all objects within the shaded area in Fig.
2. Starting from the root of the tree, the query is processed

by recursively following entries, having MBRs that intersect

the query region. For instance, e1 does not intersect the

query region, thus the sub tree pointed by e1cannot contain

any query result. In contrast, e2 is followed by the algorithm

and the points in the corresponding node are examined

recursively to find the query result p7.

A nearest neighbor query takes as input a query object q and
returns the closest object in D to q. For instance, the nearest

neighbor of q in Fig. 2 is p7. Its generalization is the k-NN

query, which returns the k closest objects to q, given a

positive integer k. NN (and k-NN) queries can be efficiently

processed using the best-first (BF) algorithm of [5],

provided that D is indexed by an R-tree. A min-heap H

which organizes R-tree entries based on the (minimum)

distance of their MBRs to q is initialized with the root

entries. In order to find the NN of q in Fig. 2, BF first inserts

to H entries e1, e2, e3, and their distances to q. Then, the

nearest entry e2 is retrieved from H and objects p1, p7, p8
are inserted to H. The next nearest entry in H is p7, which is

the nearest neighbor of q. In terms of I/O, the BF algorithm

is shown to be no worse than any NN algorithm on the same

R-tree [5].

The aggregate R-tree (aR-tree) [11] is a variant of the R tree,

where each non leaf entry augments an aggregate measure

for some attribute value of all points in its sub tree. As an
example, the tree shown in Fig. 2 can be upgraded to a

MAX aR-tree over the point set, if entries e1 ,e2 ,e3

contain the maximum measure values of sets {p2 ,p3

},{p1 ,p8 ,p7 },{p4, p5, p6} respectively. Assume that the

measure values of p4, p5, p6 are 0.2, 0.1, and 0.4,

respectively. In this case, the aggregate measure augmented

Dhanavarapu Ramakrishna et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 86-90

© JGRCS 2010, All Rights Reserved 88

in e3 would be max {0.2, 0.1, 0.4} = 0.4. In this paper, we

employ MAX aR-trees for indexing the feature data sets, in

order to accelerate the processing of top-k spatial preference

queries.

Figure 2: Spatial Queries on R-Trees

METHODOLOGY

Spatial preference query refers to ranking objects based on

quality of features in its spatial neighborhood.

Neighborhood concept specified by range score and

influence score function. Qualities of features in road
network such as road condition, traffic monitoring, road

length, and vehicles type are considered. Brute force

approach has been used for evaluating spatial preference

query in previous work [2]. It computes scores of all objects

in given set and select top-k ones and it was very expensive

for large input data sets. The proposed work aims to

minimize I/O accesses to object and feature data sets, while

being computationally efficient and in which the distance

between two points defined by their shortest path distance.

Spatial preference query integrates two types of ranking that

are Spatial Ranking and Non Spatial Ranking. Spatial

Ranking refers to ranking objects based on distance from

reference point. Non Spatial Ranking based on aggregated

qualities of features in road network.

Apply on spatial-partitioning access methods and compute

upper score bounds for the objects indexed in R-tree, used

to effectively prune the search space. In this paper, we

assume that the object data set D is indexed by an R-tree and
each feature data set Fc is indexed by an MAX a R-tree,

where each non leaf entry augments the maximum quality of

features in its sub tree. The rationale of indexing different

feature data sets by separate aR- trees is that: 1) a user

queries for only few features (e.g., road condition and road

length) out of all possible features (e.g., traffic monitoring,

road length, road condition, vehicle types,etc.), and 2)

different users may consider different subsets of features.

Based on the above indexing scheme, we develop various

algorithms for processing top-k spatial preference queries

and compute upper bound score computation.

Group Probing Algorithm:

Due to separate score computations for different objects, SP

is inefficient for large-object data sets. In view of this, we

propose the group probing (GP) algorithm, a variant of SP,

which reduces I/O cost by computing scores of objects in

the same leaf node of the R-tree concurrently. In GP, when a

leaf node is visited, its points are first stored in a set V and

then their component scores are computed concurrently at a

single traversal of the Fc tree.

Algorithm 1 shows the procedure for computing the cth

component score for a group of points. Consider a subset V

of D for which we want to compute their range score at

feature tree Fc. Initially, the procedure is called with N

being the root node of Fc. If e is a non-leaf entry and its

mildest from some point pcV is within the range c, then the

procedure is applied recursively on the child node of e, since
the sub tree of Fc rooted ate may contribute to the

component score of p. In case e is a leaf entry (i.e., a feature

point), the scores of points in V are updated if they are

within distance c from e.

Algorithm 1 : Group Range Score Algorithm

Algorithmgroup range (Node N,Set V,Value c,Value r)

a. foreachentryecNdo

b. If Nisnon-leafthen

c. If ¥pcV, mindist(p,e)*rthen
d. readthechildnodeNpointedbye;

e. GroupRange(N,V,c,r);

f. Else

g. foreachpcVsuchthatdist(p,e)*rdo

h. ?(p)= maKY?(p).w(e)};

Branch and Bound Algorithm:

GP is still expensive as it examines all objects in D and

computes their component scores. We now propose an

algorithm that can significantly reduce the number of

objects to be examined. The key idea is to compute, for non-

leaf entries e in the object tree D, an upper bound Z (e) of

the score? (p) For any point p in the sub tree of e. If Z (e) * r

then we need not access the sub tree of e, thus we can save

numerous score computations.

Algorithm 2: Branch and Bound Algorithm

Wk: = new min-heap of size k (initially empty);

V: = 0;

Algorithm BB (Node N)

a) 1: V: = Ye\ e c N};

b) 2: If N is non-leaf then

c) 3: for c: = 1 to m do
d) 4: compute? (e) For all e c V concurrently;

e) 5: remove entries e in V such that Z+ (e) * v;

f) 6: sort entries e c V in descending order of? (e);

g) 7: for each entry e c V such that Z (e) > v do

h) 8: read the child node N pointed by e;

i) 9: BB (N);

j) 10: else

k) 11: for c: =1 to m do

l) 12: compute? (e) For all e c V concurrently;

m) 13: remove entries e in V such that Z+ (e) * v;

n) 14: update Wk (and v) by entries in V;

Modules Description:

SpatialDataEvents:

Spatial database system contains spatial and non-spatial

information for road network. Select the spatial location

according to client preference. Score is defined by the

quality of features and features refer to classes of object in

spatial map. Quality of the spatial events may be subjective

Dhanavarapu Ramakrishna et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 86-90

© JGRCS 2010, All Rights Reserved 89

or query parametric. If the spatial events are subjective then

the quality with respective to non-spatial attributes, qualities

are normalized to values 0 to 1 and quality values can be

obtained from rating providers. The Query-parametric

Values are based on the queries. Range score binds

neighborhood region to crisp radius and the aggregation of

qualities. Influence score smoothens the effect of radius and

assign the higher weights.

Preferential Queries:

The preference queries involve selecting the best spatial

location based on multiple feature data sets on road network.

It retrieves k points in a data set with highest score. In the

preference queries apply the R-tree indexing feature to data

sets with three concepts such as MAX aR-tree to road

network, efficient tree traversal algorithm and obtain the

quality from rating providers.

Ranking of spatial query points:

The two basic ways for ranking objects for road network as

following: 1.Spatial Ranking - It orders according to their

distance. 2. Non Spatial Ranking- It orders based on

aggregate function. By applying the brute-force approach,

compute score of all objects in given set and select the top-k
ones. It is expensive large data sets. Here the proposal work

is to minimize I/O access of features and it‟s also

computationally efficient

Top-k Spatial Query:

Top-k spatial preference query retrieves k objects in

database with the highest scores. It uses the concept of
Branch-and-bound (BB) algorithm and feature join (FJ)

algorithm to compute the upper bound score of objects in

optimized way. The solution for top-k queries is obtained

via merging of object rankings and minimizes the number of

access until top-k aggregates reached. An alternate method

for top-k query is multi-way spatial join.

PERFORMANCE EVALUATION

Performance metrics are measured based on the three

concepts such as 1. Query size 2. Rank and neighbor range

3. Number of spatial objects.

PerformanceonQuerieswithRangeScores

Fig. 3 plots the cost of the algorithms with respect to the
number m of feature data sets. The costs of GP, BB, and

BB* rise linearly as m increases because the number of

component score computations is at most linear to m. On the

other hand, the cost of FJ increases significantly with m,

because the number of qualified combinations of entries is

exponential to m.

Figure 3: Effect of m, range scores. (a) I/O. (b) Time.

Fig. 4 shows the cost of the algorithms as a function of the

number k of requested results. GP, BB, and BB* compute

the scores of objects in D in batches, so their performance is

insensitive to k. Ask increases, FJ has weaker pruning power

and its cost increases slightly.

Figure 4: Effect of k, range scores. (a) I/O. (b) Time.

Fig. 5 shows the cost of the algorithms, when varying the

query range r. As r increases, all methods access more nodes

in feature trees to compute the scores of the points. The

difference in execution time between BB* and FJ shrinks as
r increases.

Figure 5: Effect of r, range scores. (a) I/O. (b) Time.

CONCLUSION

We studied top-k spatial preference queries, which provide a

novel type of ranking for spatial objects based on qualities

of features in their neighborhood. The neighborhood of an

object p is captured by the scoring function: 1) the range

score restricts the neighborhood to a crisp region centered at

p, whereas 2) the influence score relaxes the neighborhood

to the whole space and assigns higher weights to locations

closer to p. We presented few algorithms for processing top-

k spatial preference queries. The algorithm GP reduces I/O

cost by computing scores of objects in the same leaf node

concurrently. The algorithm BB derives upper bound scores
for non-leaf entries in the object tree, and prunes those that

cannot lead to better results. The algorithm BB* is a variant

of BB that utilizes an optimized method for computing the

scores of objects and upper bound scores of non-leaf entries.

The algorithm FJ performs a multi way join on feature trees

to obtain qualified combinations of feature points and then

search for their relevant objects in the object tree. Based on

our experimental findings, BB* is scalable to large data sets
and it is the most robust algorithm with respect to various

parameters. However, FJ is the best algorithm in cases

where the number m of feature data sets is low and each

Dhanavarapu Ramakrishna et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 86-90

© JGRCS 2010, All Rights Reserved 90

feature data set is small.

REFERENCES

[1]. M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k

Spatial PreferenceQueries,” Proc. IEEE Int‟l Conf. Data

Eng. (ICDE),2007.

[2]. N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k

Queries over Web-AccessibleDatabases,” Proc. IEEE Int‟l

Conf. Data Eng. (ICDE), 2002.

[3]. Guttman, “R-Trees: A Dynamic Index Structure for Spatial

Searching,” Proc. ACMSIGMOD, 1984.

[4]. [4] G.R. Hjaltason and H. Samet, “Distance Browsing in

Spatial Databases,” ACMTrans. Database Systems, vol. 24,

no. 2, pp. 265-318, 1999.

[5]. R. Weber, H.-J. Schek, and S. Blott, “A Quantitative

Analysis and Performance Studyfor Similarity-Search

Methods in High- Dimensional Spaces,” Proc. Int‟l Conf.

VeryLarge Data Bases (VLDB), 1998.

[6]. K.S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,

“When is „Nearest Neighbor‟Meaningful?” Proc. Seventh

Int‟l Conf. Database Theory (ICDT), 1999.

[7]. R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation

Algorithms for Middleware,”Proc. Int‟l Symp. Principles

of Database Systems (PODS), 2001.

[8]. I.F. Ilyas, W.G. Aref, and A. Elmagarmid, “Supporting

Top-k Join Queries inRelational Databases,” Proc. 29th

Int‟l Conf. Very Large Data Bases (VLDB), 2003.

[9]. N. Mamoulis, M.L. Yiu, K.H. Cheng, and D.W. Cheung,

“Efficient Top-k Aggregationof Ranked Inputs,” ACM

Trans. Database Systems, vol. 32, no. 3, p. 19, 2007.

[10]. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient

OLAP Operations in SpatialData Warehouses,” Proc. Int‟l

Symp. Spatial and Temporal Databases (SSTD), 2001.

[11]. S. Hong, B. Moon, and S. Lee, “Efficient Execution of

Range Top-kQueries inAggregate R-Trees,” IEICE Trans.

Information and Systems, vol. 88-D, no. 11, pp. 2544-

2554, 2005.

[12]. T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing

Top-k Most InfluentialSpatial Sites,” Proc. 31st Int‟l Conf.

Very Large DataBases (VLDB), 2005.

[13]. Y. Du, D. Zhang, and T. Xia, “The Optimal-Location

Query,” Proc. Int‟l Symp. Spatialand Temporal Databases

(SSTD), 2005.

[14]. D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive

Computation of The Min-DistOptimal-Location Query,”

Proc. 32nd Int‟l Conf. Very Large Data Bases

(VLDB),2006.

[15]. Y. Chen and J.M. Patel, “Efficient Evaluation of All-

Nearest-Neighbor Queries,” Proc.IEEE Int‟l Conf. Data

Eng. (ICDE), 2007.

[16]. N. Mamoulis and D. Papadias, “Multiway Spatial Joins,”

ACM Trans. DatabaseSystems, vol. 26, no. 4, pp. 424-475,

2001.

