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Abstract -A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood. For example, consider a road 

network database with available paths for two points. A customer may want to rank the paths with respect to their distance defined after 
aggregating the qualities of other features (road condition, travelling time, and traffic monitoring and road length)  within a distance range. This 
ranking  is obtained  by range score and influence score function. Propose  appropriate  indexing techniques  and search algori thms for 
computing the spatial preference queries on a road network.  Extensive evaluation of our methods on both real and synthetic data reveals that 
an optimized branch- and-bound solution is efficient and robust with respect to different parameters. 
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INTRODUCTION 

Spatial database systems manage large collections of 

geographic entities, which apart from spatial attributes 

contain nonspatial information (e.g., name, size, type, price, 

etc.). In this paper, we study an interesting type of 

preference queries, which select the best spatial location 

with respect to the quality of facilities in its spatial 

neighborhood.Given a set D of interesting objects (e.g., 

candidate locations), a top-k spatial preference query 
retrieves the k objects in D with the highest scores. The 

score of an object is defined by the  quality of features  (e.g., 

facilities or services) in its spatial neighborhood.  As a 

motivating example, consider a real estate agency office that 

holds a database with available flats for lease. Here 

“feature” refers to a class of objects in a spatial map such as 

specific facilities or services. A customer may want to rank 

the contents of this database with respect to the quality of 

their locations, quantified by aggregating nonspatial 

characteristics  of other features (e.g., restaurants, cafes, 

hospital, market, etc.) in the spatial neighborhood of the flat 

(defined by a spatial range around it). Quality may be 
subjective and query-parametric. For example, a user may 

define quality with respect to non-spatialattributes of 

restaurants around it (e.g., whether they serve seafood, price 

range, etc.). 

 

As another example, the user (e.g., a tourist) wishes to find a 

hotel p that is close to a high- quality restaurant and a high 

quality cafe. Fig. 1a illustrates  the locations of an object 

data set D(hotels) in white, and two feature data sets: the set 

F1(restaurants)  in gray, and the set F2 (cafes) in black. For 

the ease of discussion, the qualities are normalized to values 
in [0,1].The score of p of a hotel p is defined in terms of: 1) 

the maximum quality for each feature in the neighborhood 

region of p, and 2) the aggregation of those qualities. 

 

A simple score instance, called the range score, binds the 

neighborhood region to a circular region at p with radius r 

shown as a circle in Fig.1a, and the aggregate function to 

SUM. For instance, the maximum quality of gray and black 

points within the circle of p1 are 0.9 and0.6, respectively, so 

the score of p1 is 0.9+0.6=1.5.Similarly, we obtain score of 

p2 is1.0+0.1=1.1 and score of p3 is 0.7+0.7=1.4. Hence, the 

hotel p1 is returned as the top result. 

 
In fact, the semantics of the aggregate function is relevant to 

the user‟s query. The SUM function attempts to balance the 

overall qualities of all features. For the MIN function, the 

top result becomes p3, with the score of min is 0.7.It ensures 

that the top result has reasonably high qualities in all 

features. For the MAX function, the top result is p2, with 

max {1.0,0.1}=1.0.  It is used to optimize the quality in a 

particular feature, but not necessarily all of them. 

 

The neighborhood region in the above spatial preference 

query can also be defined by other score functions. A 
meaningful score function is the influence score. As 

opposed to the crisp radius r constraint in the range score, 

the influence score smoothens the effect of r and assigns 

higher weights to cafes that are closer to the hotel. Fig.1b 

shows a hotel P 5 and three cafes S1, S2, S3 (with their 

quality values). The circles have their radii as multiples of 

r.Now, the score of a café Si is computed by multiplying its 

quality with the weight 2-j, where j is the order of the 

smallest circle containing Si. For example, the scores of S 1, 

S2, and S3 are0.15, 0.225, and 0.125 respectively. The 

influence score of P 5 is taken as the highest value (0.225). 

 
Traditionally, there are two basic ways for ranking objects: 

1) spatial ranking, which orders the objects according to 

their distance from a reference point, and 2) non spatial 

ranking, which orders the objects by an aggregate function 

on their non-spatial values. Our top-k spatial preference 

query integrates these two types of ranking in an intuitive 

way. As indicated by our examples, this new query has a 

wide range of applications in service recommendation and 

decision support systems. 

 

To our knowledge, there is no existing efficient solution for 
processing  the top-k spatial preference query. A brute force 
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approach for evaluating it is to compute the scores of all 

objects in D and select the top-k ones. This method, 

however, is expected to be very expensive for large input 

data sets. In this paper, we propose alternative techniques 

that aim at minimizing the I/O accesses to the object and 

feature data sets, while being also computationally efficient. 

Our techniques apply on spatial-partitioning access methods 

and compute upper score bounds for the objects indexed by 

them, which are used to effectively prune the search space.  

Specifically, we contribute the branch-and-bound (BB) 

algorithm and the feature join (FJ) algorithm for efficiently 
processing the top-k spatial preference query. 

 

Furthermore, this paper studies top-k spatial preference 

query on road network and in which the distance  between 

two points defined by their shortest path distance that have 

not been investigated   in  our preliminary work[1]  and    

three   relevant extensions   have been proposed. The first 

extension is an optimized version of BB that exploits a more 

efficient technique for computing the scores of the objects. 

The second extension studies adaptations of the proposed 

algorithms for aggregate functions other than SUM, e.g., the 
functions MIN and MAX. The third extension develops 

solutions for the top-k spatial preference query based on the 

influence score. 

 

Figure 1: (a) Range score,(b) Influence score, c=0.2 km 

LITERATURE REVIEW 

Object ranking is a popular retrieval task in various 

applications. In relational databases, we rank tuples using an 

aggregate score function on their attribute values [3]. For 
example, a real estate agency maintains a database that 

contains information  of flats available for rent. A potential 

customer wishes to view the top 10 flats with the largest 

sizes and lowest prices. In this case, the score of each flat is 

expressed by the sum of two qualities: size and price, after 

normalization to the domain [0,1]. In spatial databases, 

ranking is often associated to nearest neighbor (NN) 

retrieval. Given a query location, we are interested in 

retrieving the set of nearest objects to it that qualify a 

condition. Assuming that the set of interesting objects is 

indexed by an R-tree [4], we can apply distance bounds and 
traverse the index in a branch-and-bound fashion to obtain 

the answer [5]. 

 

Nevertheless, it is not always possible to use 

multidimensional indexes for top-k retrieval. First, such 

indexes break down in high-dimensional spaces [6], [7]. 

Second, top-k queries may involve an arbitrary set of user-

specified attributes from possible ones and indexes may not 

beavailable for all possible attribute combinations because 

they are too expensive to create and maintain. Third, 

information fordifferent rankings to be combined for 

different attributes   could appear in different databases in a 

distributed database scenario and unified indexes may not 

exist for them. Solutions for top-k queries [8], [3], [9], [10] 

focus on the efficient merging of object rankings that may 

arrive from different   sources. Their motivation is to 

minimize the number ofaccesses to the input rankings until 

the objects with the top-k aggregate scores have been 

identified.  To achieve this, upper and lower bounds for the 
objects seen so far are maintained while scanning the sorted 

lists. 

 

In the following sections, we first review the R-tree, which 

are the most popular spatial access method and the NN 

search algorithm of [5]. Then, survey our feature-based 

spatial queries. 

Spatial Query Evaluation on R-Trees: 

The most  popular  spatial access method  is the  R-tree  [4],  

which   indexes  minimum bounding  rectangles  (MBRs)  of 

objects. Fig. 2 shows a set D ={p1 ... p8} of spatial objects 

and an R-tree that indexes them. R-trees can efficiently 

process main spatial query types,including spatial range 

queries, nearest neighbor queries, and spatial joins. Given a 

spatial region W, a spatial range query retrieves from D the 

objects that intersect W. For instance, consider a range 

query that asks for all objects within the shaded area in Fig. 
2. Starting from the root of the tree, the query is processed 

by recursively following entries, having MBRs that intersect 

the query region. For instance, e1 does not intersect the 

query region, thus the sub tree pointed by e1cannot contain 

any query result. In contrast, e2 is followed by the algorithm 

and the points in the corresponding node are examined 

recursively to find the query result p7. 

 

A nearest neighbor query takes as input a query object q and 
returns the closest object in D to q. For instance, the nearest 

neighbor of q in Fig. 2 is p7. Its  generalization  is the k-NN 

query, which returns the k  closest objects to q, given a 

positive integer k. NN (and k-NN) queries can be efficiently 

processed using the best-first (BF)  algorithm of  [5], 

provided that D is indexed by an R-tree. A min-heap H 

which organizes R-tree entries based on the (minimum) 

distance of their MBRs to q is initialized with the root 

entries. In order to find the NN of q in Fig. 2, BF first inserts 

to H entries e1, e2, e3, and their distances to q. Then, the 

nearest entry e2 is retrieved from H and objects p1, p7, p8 
are inserted to H. The next nearest entry in H is p7, which is 

the nearest neighbor of q. In terms of I/O, the BF algorithm 

is shown to be no worse than any NN algorithm on the same 

R-tree [5]. 

 

The aggregate R-tree (aR-tree) [11] is a variant of the R tree, 

where each non leaf entry augments an aggregate measure 

for some attribute value of all points in its sub tree. As an 
example,  the tree shown in Fig. 2 can be upgraded to a 

MAX aR-tree over the point set, if entries e1 ,e2 ,e3   

contain   the  maximum   measure values of    sets {p2 ,p3 

},{p1 ,p8 ,p7 },{p4, p5, p6} respectively. Assume that the 

measure values of p4, p5, p6 are 0.2, 0.1, and 0.4, 

respectively. In this case, the aggregate measure augmented   
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in e3 would be max {0.2, 0.1, 0.4} = 0.4. In this paper, we 

employ MAX aR-trees for indexing the feature data sets, in 

order to accelerate the processing of top-k spatial preference 

queries. 
 

 

Figure 2: Spatial Queries on R-Trees 

METHODOLOGY 

Spatial preference query refers to ranking objects based on 

quality of features in its spatial neighborhood.  

Neighborhood concept specified by range score and   

influence score function. Qualities of features in road 
network   such as road condition, traffic monitoring, road 

length, and vehicles type are considered.  Brute force 

approach has been used for evaluating spatial preference 

query in previous work [2]. It computes scores of all objects 

in given set and select top-k ones and it was very expensive 

for large input data sets.  The proposed work aims to 

minimize I/O accesses to object and feature data sets, while 

being computationally efficient and in which the distance 

between two points defined by their shortest path distance. 

 
Spatial preference query integrates two types of ranking that 

are Spatial Ranking and Non Spatial Ranking. Spatial 

Ranking refers to ranking objects based on distance from 

reference point. Non Spatial Ranking based on aggregated 

qualities of features in road network. 

 

Apply on spatial-partitioning  access methods  and compute  

upper  score bounds  for the objects  indexed  in R-tree, used 

to effectively prune  the  search space. In this paper, we 

assume that the object data set D is indexed by an R-tree and 
each feature data set Fc is indexed by an MAX a R-tree, 

where each non leaf entry augments the maximum quality of 

features in its sub tree. The rationale of indexing different 

feature data sets by separate aR- trees is that: 1) a user 

queries for only few features (e.g., road condition and road 

length) out of all  possible features (e.g.,  traffic monitoring,  

road length, road condition, vehicle types,etc.), and 2) 

different users may consider different subsets of features. 

Based on the above indexing scheme, we develop various 

algorithms for processing top-k spatial preference queries 

and compute upper bound score computation. 

Group Probing Algorithm: 

Due to separate score computations for different objects, SP 

is inefficient for large-object data sets. In view of this, we 

propose the group probing (GP) algorithm, a variant of SP, 

which reduces I/O cost by computing scores of objects in 

the same leaf node of the R-tree concurrently. In GP, when a 

leaf node is visited, its points are first stored in a set V and 

then their component scores are computed concurrently at a 

single traversal of the Fc tree. 

 

Algorithm 1 shows the procedure for computing   the cth 

component score for a group of points. Consider a subset V 

of D for which we want to compute their range score at 

feature tree Fc. Initially, the procedure is called with N 

being the root node of Fc. If e is a non-leaf entry and its 

mildest from some point pcV is within the range c, then the 

procedure is applied recursively on the child node of e, since 
the sub tree of   Fc rooted ate may contribute to the 

component score of p. In case e is a leaf entry (i.e., a feature 

point), the scores of points in V are updated if they are 

within distance c from e. 

 

Algorithm 1 : Group Range Score Algorithm 

 

Algorithmgroup range (Node N,Set V,Value c,Value r) 

a. foreachentryecNdo 

b. If Nisnon-leafthen 

c. If ¥pcV, mindist(p,e)*rthen 
d. readthechildnodeNpointedbye; 

e. GroupRange(N,V,c,r); 

f. Else 

g. foreachpcVsuchthatdist(p,e)*rdo 

h. ?(p)= maKY?(p).w(e)}; 

Branch and Bound Algorithm: 

GP is still expensive as it examines all objects in D and 

computes their component scores. We now propose an 

algorithm that can significantly reduce the number of 

objects to be examined. The key idea is to compute, for non-

leaf entries e in the object tree D, an upper bound Z (e) of 

the score? (p) For any point p in the sub tree of e. If Z (e) * r 

then we need not access the sub tree of e, thus we can save 

numerous score computations. 

Algorithm 2: Branch and Bound Algorithm 

Wk: = new min-heap of size k (initially empty); 

V: = 0; 

Algorithm BB (Node N) 

a) 1: V: = Ye\ e c N}; 

b) 2: If N is non-leaf then 

c) 3: for c: = 1 to m do 
d) 4: compute? (e) For all e c V concurrently; 

e) 5: remove entries e in V such that Z+ (e) * v; 

f) 6: sort entries e c V in descending order of? (e); 

g) 7: for each entry e c V such that Z (e) > v do 

h) 8: read the child node N pointed by e; 

i) 9: BB (N); 

j) 10: else 

k) 11: for c: =1 to m do 

l) 12: compute? (e) For all e c V concurrently; 

m) 13: remove entries e in V such that Z+ (e) * v; 

n) 14: update Wk (and v) by entries in V; 

Modules Description: 

SpatialDataEvents: 

Spatial database system contains spatial and non-spatial 

information for road network. Select the spatial location 

according to client preference. Score is defined by the 

quality of features and features refer to classes of object in 

spatial map. Quality of the spatial events may be subjective 
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or query parametric. If the spatial events are subjective then 

the quality with respective to non-spatial attributes, qualities 

are normalized to values 0 to 1 and quality values can be 

obtained from rating providers. The Query-parametric 

Values are based on the queries. Range score binds 

neighborhood region to crisp radius and the aggregation of 

qualities. Influence score smoothens the effect of radius and 

assign the higher weights. 

Preferential Queries: 

The preference queries involve selecting the best spatial 

location based on multiple feature data sets on road network. 

It retrieves k points in a data set with highest score. In the 

preference queries apply the R-tree indexing feature to data 

sets with three concepts such as MAX aR-tree to road 

network, efficient tree traversal algorithm and obtain the 

quality from rating providers. 

Ranking of spatial query points: 

The two basic ways for ranking objects for road network as 

following: 1.Spatial Ranking - It orders according to their 

distance. 2. Non Spatial Ranking- It orders based on 

aggregate function. By applying the brute-force approach, 

compute score of all objects in given set and select the top-k 
ones. It is expensive large data sets. Here the proposal work 

is to minimize I/O access of features and it‟s also 

computationally efficient 

Top-k Spatial Query: 

Top-k spatial preference query retrieves k objects in 

database with the highest scores. It uses the concept of 
Branch-and-bound (BB) algorithm and feature join (FJ) 

algorithm to compute the upper bound score of objects in 

optimized way. The solution for top-k queries is obtained 

via merging of object rankings and minimizes the number of 

access until top-k aggregates reached.  An alternate method 

for top-k query is multi-way spatial join. 

PERFORMANCE EVALUATION 

Performance metrics are measured based on the three 

concepts such as 1. Query size 2. Rank and neighbor range 

3. Number of spatial objects. 

PerformanceonQuerieswithRangeScores 

Fig. 3 plots the cost of the algorithms with respect to the 
number m of feature data sets. The costs of GP, BB, and 

BB* rise linearly as m increases because the number of 

component score computations is at most linear to m. On the 

other hand, the cost of FJ increases significantly with m, 

because the number of qualified combinations of entries is 

exponential to m. 

 

Figure 3: Effect of m, range scores. (a) I/O. (b) Time. 

Fig. 4 shows the cost of the algorithms as a function of the 

number k of requested results. GP, BB, and BB* compute 

the scores of objects in D in batches, so their performance is 

insensitive to k. Ask increases, FJ has weaker pruning power 

and its cost increases slightly. 

 

 

Figure 4: Effect of k, range scores. (a) I/O. (b) Time. 

Fig. 5 shows the cost of the algorithms, when varying the 

query range r. As r increases, all methods access more nodes 

in feature trees to compute the scores of the points.  The 

difference in execution time between BB* and FJ shrinks as 
r increases. 

 

Figure 5: Effect of r, range scores. (a) I/O. (b) Time. 

CONCLUSION 

We studied top-k spatial preference queries, which provide a 

novel type of ranking for spatial objects based on qualities 

of features in their neighborhood. The neighborhood of an 

object p is captured by the scoring function: 1) the range 

score restricts the neighborhood to a crisp region centered at 

p, whereas 2) the influence score relaxes the neighborhood 

to the whole space and assigns higher weights to locations 

closer to p. We presented few algorithms for processing top-

k spatial preference queries.  The algorithm GP reduces I/O 

cost by computing scores of objects in the same leaf node 

concurrently. The algorithm BB derives upper bound scores 
for non-leaf entries in the object tree, and prunes those that 

cannot lead to better results. The algorithm BB* is a variant 

of BB that utilizes an optimized method for computing the 

scores of objects and upper bound scores of non-leaf entries.  

 

The algorithm FJ performs a multi way join on feature trees 

to obtain qualified combinations of feature points and then 

search for their relevant objects in the object tree. Based on 

our experimental findings, BB* is scalable to large data sets 
and it is the most robust algorithm with respect to various 

parameters. However, FJ is the best algorithm in cases 

where the number m of feature data sets is low and each 
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feature data set is small. 
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