An IaaS Cloud System with Federation Threshold

B. Sundarrajan1, K.G.S. Venkatesan2, M. Sriram3, Vimal Chand4
Assistant Professor, Dept. of C.S.E., Bharath University, Chennai, India1
Associate Professor, Dept. of C.S.E., Bharath University, Chennai, India2
Assistant Professor, Dept. of C.S.E., Bharath University, Chennai, India3
Dept. of C.S.E., Bharath University, Chennai, India4

ABSTRACT: Cloud information center management may be a key downside as a result of the various and heterogeneous methods which will be applied, starting from the VM placement to the federation with different clouds. Performance analysis of Cloud Computing infrastructures is needed to predict and quantify the cost-benefit of a method portfolio and therefore the corresponding Quality of Service (QoS) toughened by users. Such analyses aren’t possible by simulation or on-the-field experimentation, as a result of the good variety of parameters that have to be propelled to be investigated. During this paper, we have a tendency to gift AN analytical model, supported random Reward Nets (SRNs), that’s each ascendable to model systems composed of thousands of resources and versatile to represent totally different policies and cloud-specific methods. Many performance metrics ar outlined and evaluated to research the behavior of a Cloud information center: utilization, convenience, waiting time, and responsiveness. A resiliency analysis is additionally provided to require under consideration load bursts. Finally, a general approach is given that, ranging from the thought of system capability, will facilitate system managers to opportunely set the info center parameters below totally different operating conditions.

KEYWORDS: Performance evaluation, Cost-benefit, Quality of service, Cloud-specific, Resiliency analysis

I. INTRODUCTION

Cloud computing is the use of computing resources (hardware and software) that area unit delivered as a service over a network (typically the Internet). The name comes from the common use of a cloud-shaped image as AN abstraction for the advanced infrastructure it contains in system diagrams. Cloud computing entrusts remote services with a user’s knowledge, package and computation [2]. Cloud computing consists of hardware and package resources created offered on the web as managed third-party services. These services usually give access to advanced package applications and high-end networks of server computers.

The goal of cloud computing is to use ancient supercomputing or high-performance computing power, usually utilized by military and analysis facilities, to perform tens of trillions of computations per second, in consumer-oriented applications like money portfolios, to deliver customized info, to produce knowledge storage or to power massive, immersive pc games [5]. The cloud computing uses networks of huge teams of servers usually running affordable shopper laptop technology with specialised connections to unfold data-processing chores across them. This shared IT infrastructure contains massive pools of systems that area unit connected along. Often, virtualization techniques area unit wont to maximize the ability of cloud computing [9].

II. LITERATURE SURVEY

Cloud computing is an emerging infrastructure paradigm that promises to eliminate the need for companies to maintain expensive computing hardware. Through the use of virtualization and resource time-sharing, clouds address with a single set of physical resources a large user base with diverse needs. Thus, clouds have the potential to provide their owners the benefits of an economy of scale and, at the same time, become an alternative for both the industry and
the scientific community to self-owned clusters, grids, and parallel production environments. For this potential to become reality, the first generation of commercial clouds needs to be proven to be dependable. In this work we analyze the dependability of cloud services. Towards this end, we analyze long-term performance traces from Amazon Web Services and Google App Engine, currently two of the largest commercial clouds in production [12].

Advanced computing on cloud computing infrastructures can only become viable alternative for the enterprise if these infrastructures can provide proper levels of non functional properties (NPFs). A company that focuses on service-oriented architectures (SOA) needs to know what configuration would provide the proper levels for individual services if they are deployed in the cloud. In this paper we present an approach for performance evaluation of cloud computing configurations. While cloud computing providers assure certain service levels, this it typically done for the platform and not for a particular service instance [15].

Live migration of virtual machines (VM) across physical hosts provides a significant new benefit for administrators of data centers and clusters. Previous memory-to-memory approaches demonstrate the effectiveness of live VM migration in local area networks (LAN), but they would cause a long period of downtime in a wide area network (WAN) environment [9]. This paper describes the design and implementation of a novel approach, namely, CR/TR-Motion, which adopts check pointing/recovery and trace/replay technologies to provide fast, transparent VM migration for both LAN and WAN environments. With execution trace logged on the source host, a synchronization algorithm is performed to orchestrate the running source and target VMs until they reach a consistent state. CR/TR-Motion can greatly reduce the migration downtime and network bandwidth consumption [8].

Cloud computing aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user QoS (Quality of Service) requirements. Cloud applications have different composition, configuration, and deployment requirements. Quantifying the performance of resource allocation policies and application scheduling algorithms at finer details in Cloud computing environments for different application and service models under varying load, energy performance, and system size is a challenging problem to tackle [11].

Cloud Computing is emerging today as a commercial infrastructure that eliminates the need for maintaining expensive computing hardware. Through the use of virtualization, clouds promise to address with the same-shared set of physical resources a large user base with different needs. Thus, clouds promise to be for scientists an alternative to clusters, grids, and supercomputers. However, virtualization may induce significant performance penalties for the demanding scientific computing workloads. In this work we present an evaluation of the usefulness of the current cloud computing services for scientific computing. We analyze the performance of the Amazon EC2 platform using micro-benchmarks and kernels. While clouds are still changing, our results indicate that the current cloud services need an order of magnitude in performance improvement to be useful to the scientific community [18].

III. EXISTING SYSTEM

In order to integrate business needs and application level wants, in terms of Quality of Service (QoS), cloud service provisioning is regulated by Service Level Agreements (SLAs) : contracts between purchasers and suppliers that categorical the value for a service, the QoS levels needed throughout the service provisioning, and also the penalties related to the SLA violations. In such a context, performance analysis plays a key role permitting system managers to guage the results of various resource management methods on the information center functioning and to predict the corresponding costs/benefits [29].

Cloud systems disagree from ancient distributed systems. 1st of all, they're characterised by a really sizable amount of resources that may span completely different body domains [37]. Moreover, the high level of resource abstraction permits to implement explicit resource management techniques like VM multiplexing or VM live migration that, even though clear to final users, got to be thought of within the style of performance models.

n-the-field experiments ar chiefly targeted on the offered QoS, they're supported a recording equipment approach that produces troublesome to correlate obtained knowledge to the inner resource management methods enforced by the
system supplier. Simulation doesn’t permit conducting comprehensive analyses of the system performance owing to the good range of parameters that got to be investigated [39].

IV. PROPOSED SYSTEM

Here is that the projected system based mostly on Stochastic Reward Nets (SRNs), that exhibits the higher than mentioned options permitting capturing the key ideas of associate degree IaaS cloud system [40]. The projected model is scalable enough to represent systems composed of thousands of resources and it makes potential to represent each physical and virtual resources exploiting cloud specific ideas like the infrastructure physical property. With relevance the prevailing literature, the innovative facet of the current work is that a generic and comprehensive read of a cloud system is bestowed. Low level details, like VM multiplexing, square measure simply integrated with cloud based mostly actions like federation, permitting to research completely different mixed methods. Associate degree complete set of performance metrics is outlined concerning each the system supplier (e.g., utilization) and therefore the final users (e.g., responsiveness) [45].

V. COMPARATIVE STUDY

We have analyzed the various research works on several parameters and presented their comparison in the table below.

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ISSUES</th>
</tr>
</thead>
</table>
VI. CONCLUSION

A random model was given here to guage the performance of associate IaaS cloud system. Many performance metrics are outlined, like handiness, utilization, and responsiveness, permitting investigation the impact of various methods on each supplier and user point-of-views, in a very market-oriented space, like the Cloud Computing, associate correct analysis of those parameters is needed so as to quantify the offered QoS and opportunely manage SLAs. Future works can embody the analysis of involuntary techniques ready to modification on-the fly the system configuration so as to react to a modification on the operating conditions. This may conjointly extend the model so as to represent PaaS and SaaS Cloud systems and to integrate the mechanisms required to capture VM migration and information centre consolidation aspects that cowl an important role in energy saving policies.

VII. ACKNOWLEDGEMENT

The author would like to thank the Vice Chancellor, Dean-Engineering, Director, Secretary, Correspondent, HOD of Computer Science & Engineering, Dr. K.P. Kaliyanmurthie, Bharath University, Chennai for their motivation and constant encouragement. The author would like to specially thank Dr. A. Kumaravel, Dean School of Computing, for his guidance and for critical review of this manuscript and for his valuable input and fruitful discussions in completing the work and the Faculty Members of Department of Computer Science &Engineering. Also, he takes privilege in extending gratitude to his parents and family members who rendered their support throughout this Research work.
REFERENCES

13. Teerawat Issayikul • Ekram Hoss, “Introduction to Network Simulator NS2”.
International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

