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Abstract – In this paper we analyze and present the benefits offered in the lossless compression by applying a choice of preprocessing methods 

that exploits the advantage of redundancy of the source file. Textual data holds a number of properties that can be taken into account in order to 
improve compression. Pre-processing cope up with these properties by applying a number of transformations that make the redundancy “more 
visible” to the compressor. Many pre-processing algorithms come into being for text files which complement each other and are performed prior 
to actual compression. Here our focus is on the Length-Index Preserving Transform (LIPT), its derivatives ILPT, NIT & LIT and StarNT 
Transformation algorithm. The algorithms are briefly presented before calling attention to their analysis. 
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INTRODUCTION 

The amplified spread of computing has led to a massive 

outbreak in the volume of data to be stored on hard disks 

and sent over the Internet. This escalation has led to a 

crucial need for "Data compression" which is the process of 

encoding information using fewer bits than the original 

representation would use. It is the ability of reducing the 

amount of storage or Internet bandwidth required to handle 

this data. The most vital objective of any compression 

algorithm is the compression efficiency. Intuitively, the 

behavior of a compression algorithm would depend on the 

data and their internal structure. The more redundancy the 
source data has, the more effective a compression algorithm 

may be.   

 

The vital feature of merit for data compression is the 

"compression ratio", which is the ratio of the size of a 

compressed file to the original uncompressed file. For 

example, suppose a data file takes up 30 kilobytes (KB). 

Using data compression techniques, the file could be 

reduced in size to, say, 15 KB that makes it easier to store 

on disk and helps faster transmission over an Internet 

connection. Thus the data compression software reduces the 

size of the data file in this case by a factor of two, and hence 
the "compression ratio" of 2:1 is attained. Thus Data 

compression is the process of encoding the data in such a 

way that, fewer bits are needed to represent the data than the 

original data and thus reducing the size of the data. This 

process is carried out by means of specific encoding 

schemes.  

 

The text compression techniques have captured the attention 

more in the recent past as there has been a substantial 

expansion in the usage of internet, digital storage 

information system, transmission of text files, and 
embedded system usage.  

 

Though there are bountiful methods existing, however, none 

of these methods has been able to reach the theoretical best-

case compression ratio consistently, which suggests that 

better algorithms may be possible.  One approach to attain 

better compression ratios is to develop different 
compression algorithms.   

 

A number of sophisticated algorithms have been proposed 

for lossless text compression of which Burrows Wheeler 

Transform (BWT) [4] and Prediction by Partial Matching 

[12] outperform the classical algorithms like Huffman, 

Arithmetic and LZ families [22] of Gzip and Unix –

compress [20]. PPM achieves better compression than 

almost all existing compression algorithms but the main 

problem is that it is intolerably slow and also consumes 

large amount of memory to store context information. BWT 
sorts lexicographically the cyclic rotations of a block of data 

generating a list of every character and its arbitrarily long 

forward context. It utilizes Move-To-Front (MTF) [1] and 

an entropy coder as the backend compressor. Efforts have 

been made to improve the efficiency of PPM [6], [8], [17] 

and BWT [1], [3], [18]. 

 

An alternative approach, however, is to develop generic, 

reversible transformations that can be applied to a source 

text that improves an existing algorithm‟s ability to 

compress. Thus Preprocessing techniques came in to being. 

 
Several significant observations could be made regarding 

this model. The transformation has to be perfectly 

reversible, in order to keep the lossless feature of text 

compression [12]. The compression and decompression 

algorithms remain unchanged, thus they do not exploit the 

transformation-related information during the compression 

[17], [22]. These notions are clearly depicted in the Fig1. 

The goal is to boost the compression ratio in comparison 

with that obtained using the compression algorithms alone. 

Thus these techniques achieve much better compression 

ratio. 
 

http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
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Figure. 1  Text compression paradigm incorporating a lossless, reversible 

transformation 

As shown in the above fig, text preprocessing algorithms are 

reversible transformations, which are performed before the 

actual compression scheme during encoding and afterwards 

during decoding. The original text is offered to the 

transformation input and its output is the transformed text, 

further applied to an existing compression algorithm. 

Decompression uses the same methods in the reverse order: 

decompression of the transformed text first and the inverse 

transform after that. Since textual data make up a substantial 

part of the internet and other information systems, efficient 

compression of textual data is of significant practical 
interest. 

 

In the subsequent sections we put in words the Length Index 

Preserving Transformation (LIPT) [9], Initial Letter 

Preserving Transform (ILPT), Numerical Index Transform 

(NIT), Literal Index Transform (LIT) [16] and finally the 

StarNT [19] Transform. The last section holds the 

conclusion remarks.  

LENGTH INDEX PRESERVING TRANSFORM 

(LIPT)  

The core concept of compression is to transform the text 

into some intermediate form which can be compressed with 

better efficiency and which exploits the natural redundancy 

of the language in making this transformation. LIPT 

encoding scheme by Fauzia S. Awan and Amar Mukherjee 
[9], [2] makes use of recurrence of same length of words in 

the English language to create context in the transformed 

text that the entropy coders can exploit. LIPT uses letters of 

the alphabet to denote lengths of the words. Hence these 

letters will be repeated again and again in the transformed 

text resulting in better context. In addition to this, LIPT also 

uses the letters of the alphabet to denote the offset within a 

block of words in the English dictionary having the same 

length. This serves to induce additional context in the 

transformed text. 

 

Word frequency data from Calgary [5], Canterbury [5] and 
Gutenberg Corpus [10] are collected to support the central 

theme of repetition of length of words in English text. From 

the Fig.2 it is clear that the maximum number of words has 

length 3 and most words lie in the range of length 2 to 9 

after which the word frequency comes to negligible level. 

 

 

Figure:  2 Frequency of words Vs length of words in test corpus 

LIPT comprises of two steps,  

Step1: Make an efficient dictionary 

Step2: Encode the input text data  

 

The description of LIPT is as follows. A dictionary D of 

words in the corpus is partitioned into disjoint dictionaries 

Di, each containing words of length i, where i = 1,2…n. 

Each dictionary Di is partially sorted according to the 
frequency of words in the corpus. Then a mapping is used to 

generate the encoding for all words in each dictionary Di. 

Di[j] denotes the jth word in dictionary Di. In LIPT, the jth 

word Di[j], in the dictionary D is represented as 

*Clen[c][c][c] (the square brackets denote the optional 

occurrence of a character or letter of the alphabet enclosed 

and are not part of the transformed representation) where 

Clen stands for a character in the alphabet [a-z, A-Z] each  

denoting a corresponding length [1-26, 27-52] and each c 

cycles through [a-z, A-Z]. If j = 0 then the encoding is * 

Clen. For j>0, the encoding is * Clen c[c][c]. Thus, for 1 £ j £ 
52 the encoding is * Clenc; for 53 £ j £ 2756 it is * Clencc, 

and for 2757 £ j £ 140608 it is * Clenccc. Let us denote the 

dictionary of words containing the transformed words as 

DLIPT. Thus, the 0th word of length 10 in the dictionary D 

will be encoded as “*j” in DLIPT, D10[1] as “*ja”, D10[27] 

as “*jA”, D10[53] as “*jaa”, D10[79] as “*jaA”, D10[105] 

as “*jba” , D10[2757] as “*jaaa”, D10[2809] as “*jaba”, 

and so on. 

 

The transform must also be able to handle special 

characters, punctuation marks and capitalization. The 

character „*‟ is used to denote the beginning of an encoded 
word. The character „~‟ at the end of an encoded word 

denotes that the first letter of the input text word is 

capitalized. The character „`‟ denotes that all the alphabets 

in the input word are capitalized. A capitalization mask, 

preceded by the character „^‟, is placed at the end of 

encoded word to denote capitalization of alphabets other 

than the first letter and all capital letters. The character „\‟ is 

used as escape character for encoding the occurrences of „*‟, 

„~‟, „`‟, „^‟, and „\‟ in the input text. The decoding process is 

the reverse of the above mentioned encoding process. 

Dictionary Making Algorithm: 

a. Start constructing dictionary „D‟ (English language 

dictionary with about 60,000 words taking 0.5 Mb 

is used here) 



P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62 

© JGRCS 2010, All Rights Reserved                58 

b. Partition dictionary „D‟ in to disjoint dictionaries 

D1, D2, …, Dn, where D1 possessing words of 

length 1,  D2 of length 2 and so on 

c. Sort each disjoint dictionary according to their 

frequency of occurrence 

d. Start assigning addresses to the words as 

Clen[c][c][c] 

Where Clen denotes a character in the set [a-z, 

A-Z], each character representing 

corresponding length in set [1-26, 27-52] 

e. Each c cycles through [a-z, A-Z]. 
f. Handle special characters as mentioned 

Encoding steps: 

a. The words in the input file are extracted 

b. These words are searched in the Dictionary D using 

a two level index search method. 
c. If found, its position and block number (i and j of 

Di[j]) are noted and the corresponding 

transformation at the same position and length 

block in DLIPT is looked up. This is the encoding 

for the respective input word. 

d. If the input word is not found in dictionary D then 

it is transferred for output as it is. 

e. Once the whole file or the entire text is transformed 

as in steps 1 and 2, the transformed text is then fed 

to a compressor (e.g. Bzip2, PPM etc.). 

Decoding steps: 

a. Using the compressor as was used at the sending 

end, the received encoded text is first decoded and 

the transformed LIPT text is recovered. 

b. Reverse transformation is then applied on the 

decompressed transformed text. The words with „*‟ 

represent transformed words and those without „*‟ 
represent non-transformed words and do not need 

any reverse transformation. The length character in 

the transformed words gives the length block and 

the next three characters give the offset in the 

respective block and then there might be a 

capitalization mask. The words are looked up in the 

original dictionary D in the respective length block 

and at the respective position in that block as given 

by the offset characters. The transformed words are 

replaced with the respective English dictionary D 

words. 

c. The capitalization mask is applied. 
 

This scheme allows for a total of 140608 encodings for each 

word length. Since the English words re limited to a 

maximum length of around 22 and the maximum number of 

words in any Di in the English dictionary is less than 

10,000, this scheme deals with all English words in the 

dictionary. 

ILPT, NIT, AND LIT TRANSFORMS  

The three transform methods to be portrayed here are all 

derived by Radu RADESCU [14], [15] from Length-Index 

Preserving Transform (LIPT), which is presented in the 

previous section. ILPT, NIT, and LIT do lossless reversible 

text transforms, and are based upon LIPT Transform [2], 

[14], [15]. These methods do not offer a significant increase 

in the execution time performance, because they use the 

same method of loading a dictionary as LIPT does, and the 

static dictionary and the code dictionary remain the same. 

 

Initial Letter Preserving Transform (ILPT) is similar to 

LIPT [8] in all the aspects except the characteristic that the 

dictionary is sorted in blocks according to the initial letters 

of the words instead of length. Then descending order of 

frequencies of occurrence, the words in each block of letters 

are sorted. Thus the character used for LIPT is the length of 

the coded word but in the case of ILPT, it is the first letter of 

the coded word, that is instead of * Clen[c][c][c], for ILPT is 
*Cinit[c][c][c], where Cinit represents the first letter of the 

coded word. Besides that single feature, everything else 

remains as for LIPT.  

 

Numerical Index Transform (NIT) uses variable addresses 

based on numbers instead of letters of the alphabet. When 

this method applied on English dictionary D which is sorted 

first by length of the words and then the frequency of their 

appearance, offered a performance inferior to LIPT. And 

hence, the dictionary was sorted globally in descending 

order of the frequency of appearance of the words. No 
sorting of blocks in the newly created dictionary. The 

transformed words are represented by the character “*” 

followed by the corresponding code of the respective word. 

This way the first word is coded as “*0”, the 1000th word is 

coded as “*999”, and so on. Special characters are treated 

the same way as was done in LIPT. 

 

Literal Index Transform (LIT) method is very much similar 

to NIT, except that here, for the specification of the linear 

address of a word in the dictionary, the alphabets [a–z; A–Z] 

are used instead of numbers. 
  

In these transformations, the size of the dictionary of 

transformation is variable depending on the individual 

transform. From the observations, it is clear that ILPT has 

the dictionary of transformation with the smallest size. 

Another fact is that the frequency of the repeated words 

remains the same in the original text file and the 

transformed one, only the frequency of the characters 

changes. This factor, together with reducing the file size, 

contributes to a better compression by using these 

transforms. Also, arranging words in descending order of 

their frequency of use, leads to use shorter codes for words 
used more often and longer codes for less used words. This 

again leads to smaller size of the files. 

STARNT TRANSFORMATION 

Star New Transform (StarNT), a fast transform algorithm 
was proposed by Weifeng Sun, Nan Zhang and Amar 

Mukherjee [19]. This method is superior to LIPT [9] not 

only in compression performance, but also in time 

complexity. When bzip2 and PMD assisted with StarNT, 

both achieves a better compression performance. In this 

transformation, Ternary Search Tree [11] is applied to 

accelerate the transform encoding. Searching in Ternary 

search trees are quite straightforward. Furthermore, ternary 

search trees are quite space efficient. Figure 3 illustrates a 

ternary search tree for seven words (a, air, all, an, and, as, 

at) where only 9 nodes instead of 16 nodes are used. 
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Figure. 3 Illustration of a Ternary Search Tree 

In the transform encoding module, words in the transform 

dictionary are stored in the ternary search tree with the 

address of corresponding codewords. The ternary search tree 

is split into 26 distinct ternary search sub-trees. The root 

addresses of these ternary search sub-trees are stored in an 

array. Each ternary search tree contains all words with same 

initial characters. For example, all words with initial 

character „a‟ in the transform dictionary exist in the first 

ternary search sub-tree, while all words with initial character 

„b‟ exist in the second sub-tree, and so on.  
 

The order in which we insert nodes into the ternary search 

tree has a lot of performance impact. First, this order 

determines the time needed to construct the ternary search 

tree of the transform dictionary. Second, it also determines 

the performance of the search operation that is the key factor 

of the transform efficiency. In this transform the natural 

order of words in the transform dictionary is followed. 

Results show that this approach works very well.  

Dictionary Mapping: 

The transform dictionary used is prepared in advance, and 

shared by both the transform encoding module and the 

transform decoding module. The words in the transform 

dictionary D are sorted according to the following rules: 

 

Most frequently used words are listed in the beginning of 

the dictionary in the decreasing order of their frequency of 
occurrence. There are 312 words in this group. 

 

The remaining words are sorted in D according to their 

lengths. Words with longer lengths are stored after words 

with shorter lengths. Words with same length are sorted in 

the decreasing order of their frequency of occurrence. 

 

To gain a much better compression performance for the 

backend data compression algorithm, only letters [a..z, A..Z] 

can be used to represent the codeword. 

 

The first 26 words are assigned “a”, “b”, …,“z” as their 
codewords. The next 26 words are assigned “A”, “B”, …, 

“Z”. The 53rd word is assigned “aa”, 54th “ab”. Following 

this order, “ZZ” is assigned to the 2756th word in the 

Dictionary. The 2757th word is assigned “aaa”, the 

following 2758th word is assigned “aab”, and so on. Using 

this mapping mechanism, totally 52+52*52+52*52*52 = 

143,364 words can be included in the Dictionary. Capital 

conversion technique is also introduced by placing the 

escape symbol and flag director at the end of the codewords.  

 

Transform Encoding: 

In this transformation, the character „*‟ means that the 

following word does not exist in the transform dictionary D. 

The key reason for this change from the earlier Star family 

is to reduce the size of the transformed intermediate file and 
thus the encoding/decoding time of the backend 

compression algorithm can be minimized. 

 

The initial letter capitalized words and all-letter capitalized 

words are handled by some specialized operations. The 

character „»‟ appended to the transformed word denotes that 

the initial letter of the corresponding word in the original 

text file is capitalized. The appended character „ ` ‟ denotes 

that all letters of the corresponding word in the original text 

file are capitalized. The character „n‟ is used as escape 

character for encoding the occurrence of „*‟, „»‟, „ ` ‟ , and 
„n‟ in the input text file. 

Encoding Algorithm: 

a. Initiate a Transformer 

b. Read the input text 

c. If word exist in Transform Dictionary 

Replace word with corresponding codeword 
Append special symbol if necessary 

Else 

Prefix the word with character „*‟ 

d. Continue steps 2 and 3 till end of file 

 

The transform decoding module performs the inverse 

operation of the transform encoding module. 

EXPERIMENTAL RESULTS  

In this section the tables showing the comparison between 

various algorithms are given. In Table I, the compression 

results in terms of average bits per character (BPC) is given. 

To support the point of repetition of length of words in 

English text, the word frequency data from Calgary, 

Canterbury [5] and Gutenberg corpus [10] are used. 

 
The compression results on text files derived from 

Canterbury, Calgary [5] and Gutenberg corpus [10] show 

compression ratio improvement of around 5% for BZip2 

with LIPT. The compression results also show an 

improvement in the range of around 2% to 7% for 

compression methods with LIPT [14]. 

Table 1: BPC Comparison between original Bzip2 –9, and Bzip2 –9 with 

LIPT for the files in three Corpuses 
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From the table, it is clear that LIPT outperforms Bzip2. For 

example, when we have a look at the average BPC of the 

selected Calgary files, it is 2.36 for Bzip2 and only 2.22 for 

Bzip2 with LIPT. This is a remarkable difference 

 

Software compression [7], [13], [15] results are presented 

for the files using Initial Letter Preservation Transform 

(ILPT), Literal Index Transform (LIT) and Numerical Index 

Transform (NIT) with the classic archiver WinRar (see 

Tables II– IV). For the purpose of evaluation, some 

representative Romanian text files and two test files, called 
“book1” and “book2” are taken from the set of evaluation of 

lossless compression algorithms Calgary Corpus [5]. 

Table 2: Initial letter preserving transform 

 

Table 3: Numerical Index Transform 

 

Table 4: Literal Index Transform 

 
 

In the following graphical representations (Fig 4-9) there is 

a noticed improvement in the compression of files with 

increase in the size of the file. As transformation algorithm 
is based on the exploitation of redundancy, larger the file, 

better the compression. 

 

  

Figure 4. The original and ILPT transformed file             Figure 5. WinRar archived file with and without ILPT 

    

Figure 6. The file with and without NIT    Figure 7. WinRar archived file with and without NIT 
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Figure 8. The file with and without LIT    Figure 9. WinRar archived file with and without LIT 

 

Now the experimental data for StarNT is illustrated in Table 

V. All these data are average values of 10 runs. The results 

can be summarized as follows:  

 
a. The average transform encoding time using new 

transform is only about 23.7% of that using LIPT. 

b. The average transform decoding time using new 

transform is only about 15.1% of that using LIPT. 

c. Especially, the speed of transform encoding phase 

and decoding phase of the transform algorithm is 

asymmetric. The decoding module runs faster than 

encoding module by 39.3% averagely. The main 

reason is that the simple address calculating 

function used in the transform decoding module is 

more efficient than the ternary search tree used in 
the transform encoding module. 

Table 5: Comparison of Transform Time 

 

Table 6: Comparison of Encoding Speed 

 

 

Table 7: Comparison of Decoding Speed 

 
 

Now the compression ratio of bzip2+StarNT, bzip2+LIPT 
along with the results of bzip2 alone is illustrated in Table 

V. The average compression ratio using only bzip2 

algorithm is 2.36 and using the bzip2 algorithm along with 

the LIPT technique is 2.06 which emphasizes better 

compression improvement. StarNT compressor shows better 

compression results when compared with LIPT which gives 

compression ratio of 1.94%. 

Table 8: Comparative Compression Results of Starnt with Lipt 

 

CONCLUSIONS 

This paper presents important results in preprocessing for 

lossless compression algorithms using a set of transforms 

for different text files. Bzip2 with LIPT shows an 

improvement of 5.24% over the original Bzip2 –9. Also 

another important result is that Bzip2 with LIPT is much 

faster in time performance. When focusing attention over 
ILPT, NIT and LIT, all three transforms present significant 

improvements over the original files in terms of 
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compression rate. There is not a distinction to be seen 

between transforms, ie., no one can say that one is better 

than the other. Again it is very remarkable that bzip2 + 

StarNT could provide a better compression performance that 

maintains a convincing compression and decompression 

speed while it is compared with LIPT. StarNT preprocessing 

skill uses temary search tree to accelerate changes in 

encoding operation and hashing method in decoding 

execution to hurry up the transformation. The StarNT works 

better than LIPT when is applied with backend compressor. 
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