
Volume 5, No. 12, December 2014

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 17

Nilesh Jain
1
, Priyanka Mangal

2
 and Deepak Mehta

3

MCA, Lecturer
1, 3

Mandsaur Institue of Technology
1,2, 3

CSE,Lecturer
2

Email: nilesh.jain@mitmandsaur.info
1

 AngularJS: A Modern MVC Framework in JavaScript

Abstract: AngularJS is a JavaScript MVC Framework created by Google to build properly architecture and maintainable web application.

AngularJS is built around the philosophy that declarative code is better than imperative code while building UIs and wiring different components

of web applications together. In this article we have shown the features of AngularJS.

INTRODUCTION

AngularJS is not a library rather AngularJS is a

JavaScript framework that embraces extending

HTML into a more expressive and readable

format. It allows you to decorate your HTML with

special markup that synchronizes with your

JavaScript leaving you to write your application

logic instead of manually updating views.

Whether you're looking to augment existing

JavaScript applications or harness the full power

of the framework to create rich and interactive

SPA's, Angular can help you write cleaner and

more efficient code.

This one may seem obvious, but it's important to

remember that many (not all) frameworks are

made by hobbyists in the open source community.

While passion and drive have forged frameworks,

like Cappucino and Knockout, Angular is built

and maintained by dedicated (and highly talented)

Google engineers. This means you not only have a

large open community to learn from, but you also

have skilled, highly-available engineers tasked to

help you get your Angular questions answered.

This isn't Google's first attempt at a JavaScript

framework; they first developed their

comprehensive Web Toolkit, which compiles Java

down to JavaScript, and was used by the Google

Wave team extensively. With the rise of HTML5,

CSS3, and JavaScript, as both a front-end and

back-end language, Google realized that the web

was not meant to be written purely in Java.

Why Choose AngularJS?

1. DOM has markup [Angular markup lives in

the DOM]

2. Data is POJO [Angular uses plain old

JavaScript objects]

3. DI for modules [Angular heavily leverages

Dependency Injection]

1. DOM has markup:

Templates in most client-side JavaScript

frameworks work like something like this:

 template with markup -> framework

template engine -> HTML -> DOM

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 18

Angular, on the other hand puts markup directly

into the HTML document and the flow looks like

this:

 HTML with Angular markup -> DOM ->

Angular template engine

Angular evaluates the markup only after HTML

has been loaded into the DOM.

This approach has three major benefits.

1. Integration with Existing Apps - Since

Angular only starts evaluating the page at

the end of the loading process (i.e. once

HTML is in the DOM), it is very easy to

sprinkle small bits of Angular "magic" on

top of existing applications.

2. Simplicity - You can work with Angular

in a basic HTML document from you local

file system. Just open the HTML

document in your browser. No need for

any web server or template build process. I

have found this very useful for creating

quick mockups of a new website or piece

of functionality.

3. Extensibility - Using Directives, Angular

allows you to create custom elements and

attributes that extend the standard HTML

vocabulary. For example, in this slide

there is a my-custom-tag element. Using

Angular you can define how that element

is rendered and assign behaviors to it. This

allows you to create a library of your own

reusable components.

Data is POJO:

Angular is one of the only major front end

frameworks that utilize plain old Javascript

objects (POJOs) for the model layer. This makes it

extremely easy to integrate with existing data

sources and play with basic data.

Let's say you make an AJAX call to get some data

from an API. Before you can bind that data to the

DOM, most frameworks require you to wrap the

data in Model objects that have getters and setters.

The getters/setters are how non-Angular

frameworks propagate data change events.

Angular gets around this by using a process called

dirty checking where snapshots of data over time

are compared to see if anything has changed.

While there are certainly some downsides to this

approach (ex. $scope.$apply, data binding limits,

etc.)

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 19

3. DI for modules:

There are some people that love dependency

injection and there are some people that hate it. If

you are going to work with Angular, you sort of

need to be in the former camp. I personally love it

because it promotes better modularization of code

and enables strong unit testing.

Unit testing front end code is usually hard because

there are so many sticky dependencies. Angular's

DI allows you to mock out many of these

dependencies and isolate individual components.

FEATURES OF ANGULARJS

FEATURE 1: TWO WAY DATA-BINDING

Think of your model as the single-source-of-truth

for your application. Your model is where you go

to to read or update anything in your application.

Data-binding is probably the coolest and most

useful feature in AngularJS. It will save you from

writing a considerable amount of boilerplate code.

A typical web application may contain up to 80%

of its code base, dedicated to traversing,

manipulating, and listening to the DOM. Data-

binding makes this code disappear, so you can

focus on your application.

Think of your model as the single-source-of-truth

for your application. Your model is where you go

to to read or update anything in your application.

The data-binding directives provide a projection

of your model to the application view. This

projection is seamless, and occurs without any

effort from you.

Traditionally, when the model changes, the

developer are responsible for manually

manipulating the DOM elements and attributes to

reflect these changes. This is a two-way street. In

one direction, the model changes drive change in

DOM elements. In the other, DOM element

changes necessitate changes in the model. This is

further complicated by user interaction, since the

developer is then responsible for interpreting the

interactions, merging them into a model, and

updating the view. This is a very manual and

cumbersome process, which becomes difficult to

control, as an application grows in size and

complexity.

There must be a better way! AngularJS' two-way

data-binding handles the synchronization between

the DOM and the model, and vice versa.

Here is a simple example, which demonstrates

how to bind an input value to an <h1> element.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

<!doctype html>
<html ng-app>
 <head>
 <script src="http://code.angularjs.org/angular-

1.0.0rc10.min.js"></script>
 </head>
 <body>
 <div>
 <label>Name:</label>
 <input type="text" ng-model="yourName"
placeholder="Enter a name here">
 <hr>
 <h1>Hello, {{yourName}}!</h1>
 </div>
 </body>
</html>

This is extremely simple to set up, and almost

magical…

http://code.angularjs.org/angular-1.0.0rc10.min.js
http://code.angularjs.org/angular-1.0.0rc10.min.js

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 20

FEATURE 2: TEMPLATES

It's important to realize that at no point does

AngularJS manipulate the template as strings. It's

all the browser DOM.

In AngularJS, a template is just plain-old-HTML.

The HTML vocabulary is extended, to contain

instructions on how the model should be projected

into the view.

The HTML templates are parsed by the browser

into the DOM. The DOM then becomes the input

to the AngularJS compiler. AngularJS traverses

the DOM template for rendering instructions,

which are called directives. Collectively, the

directives are responsible for setting up the data-

binding for your application view.

It is important to realize that at no point does

AngularJS manipulate the template as strings. The

input to AngularJS is browser DOM and not an

HTML string. The data-bindings are DOM

transformations, not string concatenations or

innerHTML changes. Using the DOM as the input,

rather than strings, is the biggest differentiation

AngularJS has from its sibling frameworks. Using

the DOM is what allows you to extend the

directive vocabulary and build your own

directives, or even abstract them into reusable

components!

One of the greatest advantages to this approach is

that it creates a tight workflow between designers

and developers. Designers can mark up their

HTML as they normally would, and then

developers take the baton and hook in

functionality, via bindings with very little effort.

Here is an example where I am using the ng-repeat

directive to loop over the images array and

populate what is essentially an img template.

function AlbumCtrl($scope) {

 scope.images = [

 {"thumbnail":"img/image_01.png",

"description":"Image 01 description"},

 {"thumbnail":"img/image_02.png",

"description":"Image 02 description"},

 {"thumbnail":"img/image_03.png",

"description":"Image 03 description"},

 {"thumbnail":"img/image_04.png",

"description":"Image 04 description"},

 {"thumbnail":"img/image_05.png",

"description":"Image 05 description"}

];

}

1

2

3

4

5

6

7

<div ng-controller="AlbumCtrl">

 <li ng-repeat="image in images">
 <img ng-src="{{image.thumbnail}}"
alt="{{image.description}}">

</div>

It is also worth mentioning, as a side note, that

AngularJS does not force you to learn a new

syntax or extract your templates from your

application.

FEATURE 3: MVC

AngularJS incorporates the basic principles

behind the original MVC software design pattern

into how it builds client-side web applications.

The MVC or Model-View-Controller pattern

means a lot of different things to different people.

AngularJS does not implement MVC in the

traditional sense, but rather something closer to

MVVM (Model-View-ViewModel).

The Model

The model is simply the data in the application.

The model is just plain old JavaScript objects.

There is no need to inherit from framework

classes, wrap it in proxy objects, or use special

getter/setter methods to access it. The fact that we

are dealing with vanilla JavaScript is a really nice

feature, which cuts down on the application

boilerplate.

The ViewModel

A viewmodel is an object that provides specific

data and methods to maintain specific views.

The viewmodel is the $scope object that lives

within the AngularJS application. $scope is just a

simple JavaScript object with a small API

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 21

designed to detect and broadcast changes to its

state.

The Controller

The controller is responsible for setting initial

state and augmenting $scope with methods to

control behavior. It is worth noting that the

controller does not store state and does not

interact with remote services.

The View

The view is the HTML that exists after AngularJS

has parsed and compiled the HTML to include

rendered markup and bindings.

This division creates a solid foundation to

architect your application. The $scope has a

reference to the data, the controller defines

behavior, and the view handles the layout and

handing off interaction to the controller to

respond accordingly.

FEATURE 4: DEPENDENCY INJECTION

AngularJS has a built-in dependency injection

subsystem that helps the developer by making the

application easier to develop, understand, and test.

Dependency Injection (DI) allows you to ask for

your dependencies, rather than having to go look

for them or make them yourself. Think of it as a

way of saying "Hey I need X', and the DI is

responsible for creating and providing it for you.

To gain access to core AngularJS services, it is

simply a matter of adding that service as a

parameter; AngularJS will detect that you need

that service and provide an instance for you.

 function EditCtrl($scope, $location, $routeParams) {

 // Something clever here...

 }

You are also able to define your own custom

services and make those available for injection as

well.

 angular.

 module('MyServiceModule', []).

 factory('notify', ['$window', function (win) {

 return function (msg) {

 win.alert(msg);

 };

 }]);

 function myController(scope, notifyService) {

 scope.callNotify = function (msg) {

 notifyService(msg);

 };

 }

 myController.$inject = ['$scope', 'notify'];

FEATURE 5: DIRECTIVES

Directives are my personal favorite feature of

AngularJS. Have you ever wished that your

browser would do new tricks for you? Well, now

it can! This is one of my favorite parts of

AngularJS. It is also probably the most

challenging aspect of AngularJS.

Directives can be used to create custom HTML

tags that serve as new, custom widgets. They can

also be used to "decorate" elements with behavior

and manipulate DOM attributes in interesting

ways.

Here is a simple example of a directive that listens

for an event and updates its $scope, accordingly.

 myModule.directive('myComponent',

function(mySharedService) {

 return {

 restrict: 'E',

 controller: function($scope, $attrs, mySharedService)

{

 $scope.$on('handleBroadcast', function() {

 $scope.message = 'Directive: ' +

mySharedService.message;

 });

 },

 replace: true,

 template: '<input>'

 };

 });

Then, you can use this custom directive, like so.

1 <my-component ng-model="message"></my-component>

Creating your application as a composition of

discrete components makes it incredibly easy to

add, update or delete functionality as needed.

BONUS FEATURE: TESTING

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 22

The AngularJS team feels very strongly that any

code written in JavaScript needs to come with a

strong set of tests. They have designed AngularJS

with testability in mind, so that it makes testing

your AngularJS applications as easy as possible.

So there's no excuse for not doing it.

Given the fact that JavaScript is dynamic and

interpreted, rather than compiled, it is extremely

important for developers to adopt a disciplined

mindset for writing tests.

AngularJS is written entirely from the ground up

to be testable. It even comes with an end-to-end

and unit test runner setup. If you would like to see

this in action, go check out the angular-seed

project at https://github.com/angular/angular-seed.

Once you have the seed project, it's a cinch to run

the tests against it. Here is what the output looks

like:

The API documentation is full of end-to-end tests

that do an incredible job of illustrating how a

certain part of the framework should work. After a

while, I found myself going straight to the tests to

see how something worked, and then maybe

reading the rest of the documentation to figure

something out.

Comparisons in Community:

Community is one of the most important factors to

consider when choosing a framework. A large

community means more questions answered, more

third-party modules, more YouTube tutorials…you get

the point. I have put together a table with the numbers,

as of August 16, 2014. Angular is definitely the winner

here, being the 6th most-starred project on GitHub and

having more questions on StackOverflow than Ember

and Backbone combined, as you can see below:

Metric
AngularJ

S

Backbone.j

s
Ember.js

Stars on

Github
27.2k 18.8k 11k

Third-Party

Modules

800

ngmodules

236

backplugs

21

emberaddon

s

StackOverflo

w Questions
49.5k 15.9k 11.2k

YouTube

Results
~75k ~16k ~6k

GitHub

Contributors
928 230 393

Chrome

Extension

Users

150k 7k 38.3k

All those metrics, however, merely show the current

state of each framework. It is also interesting to see

which framework has a faster-growing popularity.

Fortunately, using Google Trends (Till 18/4/2015) we

can get an answer for that too:

https://github.com/angular/angular-seed
https://ngmodules.org/
https://backplug.io/
https://emberaddons.com/
https://emberaddons.com/

Nilesh Jain et al, Journal of Global Research in Computer Science, 5 (12), December 2014, 17-23

© JGRCS 2010, All Rights Reserved 23

CONCLUSION:

Angular's innovative approach for extending HTML

will make a lot of sense for people who are web

developers in soul. With a large community and

Google behind it, it is here to stay and grow, and it

works well both for quick prototyping projects and

large-scale production applications.

REFERENCES:

[1] AngularJS vs. Backbone.js vs. Ember.js

(https://www.airpair.com/js/javascript-framework-

comparison)

[2] https://www.airpair.com/angularjs/posts/jquery-

angularjs-comparison-migration-walkthrough

[3] http://code.tutsplus.com/tutorials/3-reasons-to-

choose-a

ngularjs-for-your-next-project--net-28457

