Antiplatelet Therapy – Recent Advances

*Rahul Saini, Sunaina

1. Department of pharmacology, PGIMS, Rohtak, Haryana, India.
2. Department of Radiology, PGIMS, Rohtak, Haryana, India.

ABSTRACT
Haemostatic function of platelets is vital & their pathological role is potentially lethal. In pathological states there is over activation and aggregation of blood platelets resulting in atherothrombosis causes various states from angina to acute coronary syndromes, stroke and peripheral artery diseases. Platelets are anuclear subcellular fragments derived from megakaryocytes that circulate in blood as small anucleate ovoid discs. Under normal conditions they do not interact with the intact endothelial cell lining throughout the vasculature. Disruption of this well-regulated balance leads to pathologic conditions, such as thrombosis and bleeding. Although controlled plug formation is desired for the prevention of excessive blood loss and for promoting wound healing, several pathological conditions may result in the formation of occlusive thrombi leading to severe clinical complications, including myocardial infarction and ischemic stroke. The formation of a stable platelet plug occurs in three different stages: platelet adhesion, amplification of platelet activation and platelet aggregation. Many strategies have been pursued to lower the risk of pathological thrombus formation by interfering either with platelet adhesion, activation or aggregation. We here review clinically established antiplatelet targets and promising new antiplatelet strategies that are under investigation.

Keywords: antiplatelet, thrombus, aspirin, clopidogrel

INTRODUCTION
Haemostasis is maintain in healthy vasculature by various processes that include the platelet system, coagulants, anticoagulants and fibrinolytic pathways [1]. Such processes evolved to maintain the blood in a fluid state under physiological conditions and to arrest bleeding after vascular injury [2]. The ideal antiplatelet agent may depend on the clinical indication. In the acute setting of thrombosis, a powerful agent that has rapid onset of action and rapid offset of action may be most advantageous. To achieve these objectives, parenteral agents are most commonly used. Long-term therapy with oral agents means that a long half-life is required, in order that once- or twice-daily dosing is possible. A shorter half-life may be advantageous to allow earlier return of platelet function when hemostasis is necessary, but noncompliance with a short half-life agent could be dangerous, resulting in acute complications such as stent thrombosis [3]. The ultimate goal remains to prevent thrombosis while preserving hemostasis. Ongoing clinical trials will determine whether any agent currently being tested can achieve this goal. Currently available oral antiplatelet agents include aspirin, an irreversible inhibitor of cyclooxygenase1–mediated TXA2 synthesis, and the P2Y_{12} antagonist’s clopidogrel and prasugrel which selectively and irreversibly bind to the P2Y_{12} ADP receptor. Both aspirin and P2Y_{12} antagonists have demonstrated ischemic benefits in patients with atherothrombotic disease [4]. But as they inhibit only one agonistic pathway so limited efficacy. Specific inhibition of single agonistic pathway leaves alternative routes
to platelet activation unaffected, this further limit their effectiveness. Treatment with the combination of aspirin plus a P2Y$_{12}$ antagonist (dual antiplatelet therapy) has demonstrated greater efficacy versus monotherapy with either class of, but there is increase risk of bleeding [5]. And also, patients receiving dual antiplatelet therapy remain at substantial risk of ischemic events [6]. There is need for better side effect profile drugs with good efficacy.

Current oral antiplatelet agents: benefits and risks

Aspirin

It is currently the most famous & most widely used agent in antiplatelet therapy. The antiplatelet action of aspirin consists of blocking the TXA2 synthesis by the irreversible acetylation of Ser-529 and Ser-516 in human arachidonate cyclooxygenase (COX)1 and COX2 respectively. Human platelets only express COX1 although residual amounts of COX2 can be detected in newly formed platelets [7]. The efficacy of aspirin in the secondary prevention of ischemic stroke, MI, and vascular death in patients with known atherosclerosis is evident in the large meta-analysis by the Antithrombotic Trialists Collaboration (ATC) which incorporated over 100 trials with aspirin. They showed that 25% reduction in all vascular events, a 30% reduction in MI, and a 15% reduction in death were reported in high-risk patients treated with aspirin compared with placebo. The benefit across the full spectrum of events outweighed the bleeding risk substantially [8]. The optimal dose of aspirin for patients undergoing revascularization, or after an ACS event, remains debatable. Although observational studies and meta-analyses of previous trials have shown no incremental benefit of aspirin doses greater than 75 mg for secondary prevention and following ACS or PCI [9,10]. In the Clopidogrel and Aspirin Optimal Dose Usage to Reduce Recurrent Events-Seventh Organization to Assess Strategies in Ischemic Syndromes (CURRENT-OASIS 7) trial, 25,086 patients with ACS were randomly assigned to receive low-dose (75–100 mg per day) or high-dose (300–325 mg per day) aspirin for maintenance therapy after an initial loading dose. The data from this trial support no difference in the primary end point of cardiovascular death, MI, or stroke at 30 days between the two doses in either the medically managed or invasively managed (PCI) groups [11]. Although no major differences in efficacy and safety were reported between the two doses, observational analyses from previous trials have suggested an increase in major bleeding with chronic high-dose aspirin therapy [12].

GP IIb-IIIa inhibitors

The glycoprotein IIb/IIIa receptor is the most abundant receptor on the platelet surface [13]. Three parenteral inhibitors of this receptor are abciximab, tirofiban, and eptifibatide. They prevent the formation of interplatelet bridges and aggregates. Oral administration of GP IIb/IIIa inhibitors has failed to demonstrate any benefit [14]. Therefore, these drugs are only administered within the hospital setting and are indicated for use in high-risk ACS patients undergoing PCI [15]. Eptifibatide and tirofiban reversibly and competitively bind to the GP IIb/IIIa receptor, whereas abciximab irreversibly binds to the GP IIb/IIIa receptor and blocks the binding of fibrinogen and other adhesion molecules [16]. Although these agents have a role in certain clinical settings, their use has decreased with the advent and routine use of thienopyridines and newer anticoagulants. Broad use of glycoprotein IIb/IIIa inhibitors (GPIs) occurred in some practices before the administration of clopidogrel prior to PCI became common. Many evidences supported the use of intravenous GPIs in the setting of PCI for both stable and unstable coronary artery disease for the reduction of periprocedural MI [17]. A large meta-analysis of over 30,000 patients who received GPIs for the medical management of ACS demonstrated a relative risk reduction (RRR) of 9% (P = 0.015) for mortality and MI at 30 days compared with placebo, at the expense of a 1% absolute increase in bleeding risk (2.4% vs 1.4%, P <0.0001) [18]. Three sequential trials of GPIs in which 600 mg of clopidogrel was also administered at least 2 h before PCI in low-risk, moderate-risk, and high-risk patients, to reflect the current state of
practice. In low-risk, stable patients undergoing elective PCI, the Intracoronary Stenting and Antithrombotic Regimen-Rapid Early Action for Coronary Treatment (ISAR-REACT) trial demonstrated no additional benefit of abciximab over placebo in the reduction of ischemic complications or mortality [19]. Similar results were found in moderate-risk, stable patients with diabetes who were undergoing elective PCI, in the ISAR-Is Abciximab a Superior Way to Eliminate Elevated Thrombotic Risk in Diabetics? (ISAR-SWEET) trial [20]. Although ADP antagonism has remarkably influenced periprocedural ischemic outcomes; however, intravenous GPIs might still have an incremental benefit on a background of DAPT and heparin, particularly in high-risk patients with ACS. The incremental value of additional platelet inhibition through the use of GPIs will be further challenged in the era of more-potent ADP blockade with newer agents. Additionally, intracoronary administration of GPIs has demonstrated greater platelet inhibition with improved coronary flow and microvascular perfusion compared with the parenteral counterpart, and is a subject of current investigation [21]. In addition to efficacy, the appropriate timing of adjunctive intravenous GPI therapy in the setting of PCI in patients with non-ST-segment elevation (NSTE)-ACS has long been debated. Studies demonstrated benefit when these drugs were used up to 24 h before PCI immediately before revascularization, and even with thienopyridine loading [22,23]. In the Early Glycoprotein IIb/IIIa Inhibition in Non-ST-Segment Elevation Acute Coronary Syndrome (EARLYACS) trial, 9,492 patients with high risk NSTE-ACS were randomly assigned to receive routine early eptifibatide (12–96 h) before angiography or to placebo with a delayed provisional use of eptifibatide after angiography, but before intervention, for high-risk features or ‘bailout’ therapy for a thrombotic complication. No differences in mortality, MI, recurrent ischemic events, or thrombotic bailout at 96 h were seen between the two groups (9.3% versus 10.0%, P = 0.23). Bleeding, however, was increased in the group that received routine early use of eptifibatide [24]. The prior Acute Catheterization and Urgent Intervention Triage (ACUITY) timing study had broadly similar findings [25]. In the modern era of thienopyridine loading, routine GPI use before PCI in the setting of NSTE-ACS continues to decline. Moreover, this treatment accentuates bleeding risk.

Phosphodiesterase inhibitors

Elevation of the levels of cyclic nucleotides cAMP and cGMP in the platelet cytosol stimulates signalling pathways that inhibit platelet activation. Inhibitory effects of endothelium-derived nitric oxide and PGI2 on platelet function are mediated through stimulation of cGMP- and cAMP-dependent signalling mechanisms, respectively. The inhibition of phosphodiesterase enzymes, which metabolize these second messengers, therefore suppresses platelet function [26].

Cilostazol

It is a selective PDE type III (PDE III) inhibitor, increases cAMP levels in platelets, endothelial and smooth muscle cells, having vasodilatory and antiplatelet properties [27]. It was approved by the FDA in 1998 for the treatment of symptoms of intermittent claudication. Pharmacodynamic studies showed that adjunctive cilostazol therapy resulted in greater platelet inhibition than dual antiplatelet therapy [28]. A meta-analysis of 10 trials demonstrated reduction in angiographic restenosis associated with triple antiplatelet therapy in patients undergoing PCI, but no difference in stent thrombosis [29]. In a study of 960 patients who underwent drug-eluting stent implantation, triple antiplatelet therapy with cilostazol, aspirin, and clopidogrel reduced platelet reactivity when compared with standard DAPT; however, this reduction did not translate into improved clinical outcomes [30]. It has predominantly been studied in Koreans, a population with a high prevalence of clopidogrel loss-of-function alleles, which is likely to preclude the broad extrapolation of its benefits. Moreover, recent studies have shown that adjunctive cilostazol to dual antiplatelet therapy after PCI can achieve greater platelet inhibition than high maintenance-dose clopidogrel of 150 mg daily [31] even in patients with
the CYP2C19 mutant allele [28]. It has also been shown to prevent the recurrence of cerebral infarction and the progression of symptomatic intracranial arterial stenosis [32]. It has been shown to be particularly effective in diabetic patients [33]. Clinical trials in large and diverse populations are necessary to validate the potential benefits of it in patients with CAD or cerebrovascular disease. Its most common side effects include headache, tachycardia, palpitations, soft stools and diarrhea. It should be avoided in patients with congestive heart failure of any severity because of increased mortality risk [34].

Dipyridamole

It is a pyrimidopyrimidine derivative with antiplatelet and vasodilator properties. The antiplatelet effects of dipyridamole have been reported to be due to several mechanisms, including inhibition of the cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) type V enzyme [35]. A study, ESPS-2 (European Stroke Prevention Study), showed that aspirin plus dipyridamole was significantly more effective than aspirin alone in secondary prevention of stroke (relative risk reduction 23.1%; p = 0.006) and conveyed a similarly low risk of severe bleeding (1.6% vs 1.2%) [36]. Another study ESPRIT (European/Australasian Stroke Prevention in Reversible Ischemia Trial) demonstrated that the incidence rate of the composite primary outcome (nonfatal MI, nonfatal stroke, vascular death, or major bleeding complication) was significantly lower in patients receiving aspirin plus dipyridamole than in those using aspirin alone (12.7% vs 15.7%) [37]. However, aspirin plus dipyridamole was not superior to clopidogrel in the treatment of recurrent stroke in the recently completed PROFESS (Prevention Regimen for Effectively Avoiding Second Strokes) trial [38].

P2Y₁₂ADP receptor antagonists

ADP is a secondary messenger molecule released in response to platelet adhesion to the endothelium that occurs during vascular injury or plaque rupture. This molecule serves a pivotal role in the activation of platelets and in the amplification of this response by promoting the release of prothrombotic factors. These agents cause inhibition of ADP at the P2Y₁₂ receptor. P2Y₁₂Receptor antagonists include ticlopidine, clopidogrel, prasugrel, and ticagrelor and other compounds under late-stage development (cangrelor, elinogrel). Ticlopidine, clopidogrel, and prasugrel represent 3 generations of thienopyridines that selectively and irreversibly inhibit the P2Y₁₂ receptor.

Ticlopidine

Ticlopidine was the first thienopyridine to enter clinical usage in the early 1990s and demonstrated significant benefit over placebo and equal efficacy to aspirin, for the prevention of secondary cardiovascular events after ACS [39]. Thienopyridines are prodrugs that require metabolism to generate the active compound that selectively and irreversibly inhibits the P2Y₁₂ receptor [40]. Clinical trials demonstrated that, in patients undergoing coronary stenting, better clinical outcomes were achieved with the combined use of aspirin and ticlopidine than aspirin alone or aspirin plus warfarin [41]. In the TASS (Ticlopidine Aspirin Stroke Study), ticlopidine was superior to aspirin for prevention of the primary endpoint, nonfatal stroke or death. Two limitations with the use of ticlopidine are: its safety profile, such as neutropenia, thrombotic thrombocytopenic purpura, rash and its inability to induce platelet inhibition rapidly [42]. It has been largely replaced in clinical practice by clopidogrel, which has the same beneficial properties as ticlopidine but without its limitations.

Clopidogrel

Clopidogrel is a second-generation thienopyridine & binds irreversibly to the P2Y₁₂ receptor. Irreversible binding to the P2Y₁₂ receptor means that platelet turnover is required to restore platelet function. Complete platelet turnover requires 7–10 days. It also has advantage of being administered orally. When taken at 75 mg day per day, it is able to reduce ADP-induced aggregation by 40–60%. It is reported to be more effective than aspirin (325 mg days per day) in preventing vascular death, MI or ischemic stroke but with reduced gastric irritation. When used at higher doses, however, it increases bleeding time [43]. It has been extensively studied in large and diverse populations.
studied and variable pharmacodynamic effects have been associated with variation in absorption, variation in metabolism and genetic variation in the P2Y12 receptor [44]. It is converted to its active metabolite by the cytochrome P450 system. Only 15% of it becomes an active metabolite. It has a slow onset of action unless loading doses are used. Without a loading dose, steady state effects are not apparent until approximately 5 days. By contrast, steady state pharmacodynamic effects are apparent 18–24 h after a 300-mg loading dose and 2 h after a 600-mg loading dose [45]. Side effects such as cardiac events, gastrointestinal problems, neutropenia and thrombotic thrombocytopenic purpura have been reported [46].

Emerging antiplatelet agents

Novel P2Y12 inhibitors

Newer P2Y12 inhibiting antiplatelet therapies have a more favorable pharmacokinetic and pharmacodynamic profile than clopidogrel and do not appear to interact with the genetic polymorphisms

Prasugrel

It is a third-generation oral thienopyridine which is chemically different from clopidogrel. It is a prodrug that irreversibly binds to the platelet P2Y12 receptor. It is converted to its active metabolite more effectively than clopidogrel, allowing for greater bioavailability and faster onset of action [47]. It is more powerful antiplatelet agent with less interindividual variability and a more consistent antiplatelet effect [48]. After a loading dose of 60 mg maximal plasma concentration is achieved within approximately 30 min [47]. It was approved in 2009 in both the United States and Europe. It causes more potent inhibition of platelet aggregation and a more consistent platelet response than standard- and high-dose clopidogrel [49]. TRITON (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel) showed prasugrel to be superior to standard-dose clopidogrel in reducing ischemic events in patients with ACS scheduled for PCI, although prasugrel was associated with a significantly higher risk of major bleeding events [50]. However, patients with stroke or TIA had net clinical harm from prasugrel and those >75 years old or who weighed<60 kg had no net benefit. It demonstrated the greatest benefit among patients with DM and those presenting with STEMI undergoing primary PCI in whom there were no differences in major bleeding complications [51]. In patients who are at high risk of bleeding, particularly the elderly (age>75 years) or underweight (<60 kg), the risks and benefits of prasugrel use must be carefully weighed. Its use is contraindicated in patients who have had a prior stroke or transient ischemic attack. In spite of these limitations, the efficacy of prasugrel is not affected by concurrent PPI administration or genetic polymorphisms. It is only approved for use in patients with ACS undergoing PCI, switching patients from clopidogrel to prasugrel after ACS has demonstrated incremental platelet inhibition [52]. It appears to be better suited for selected patients such as those with diabetes mellitus and STEMI. The more powerful antiplatelet effect and irreversible binding poses additional risk for patients undergoing surgical procedures.

Ticagrelor

It is a cyclopentyltriazoloprimidine and a direct and reversible P2Y12 antagonist, has recently approved in the United States and Europe. Like prasugrel, ticagrelor acts more rapidly and is a more potent inhibitor of platelets than clopidogrel and did not significantly increase major bleeding compared with clopidogrel. However, the occurrence of dyspnea and ventricular pause were greater, in an apparently dose dependent manner, in patients receiving ticagrelor than in patients receiving clopidogrel [53]. The PLATO (Platelet Inhibition and Patient Outcomes) trial randomized 18,624 ACS patients to receive ticagrelor or clopidogrel. The overall trial demonstrated a significant reduction in the primary endpoint a composite of death from vascular causes, MI, or stroke at 12 months with ticagrelor, without an increase in overall major bleeding although non-surgical bleeding was significantly increased to a similar extent than that observed with prasugrel and there was a higher rate of drug discontinuation due to dyspnea [54]. Given its reversible affinity towards P2Y12, ticagrelor might redistribute...
itself to new platelets that enter the circulation before the administration of the next dose, which could account for the mortality benefit. Additionally, a potential off-target benefit of ticagrelor is its inhibition of adenosine uptake into red blood cells, which results in improved myocardial blood flow. Currently known genetic polymorphisms do not alter the efficacy of ticagrelor [55].

Cangrelor
It is a chemical modification of ticagrelor yielded, a reversible intravenousP2Y12 receptor antagonist with a half-life of 5–9 min. It achieves steady state concentration within minutes and platelet function recovers within 2 h after the infusion is discontinued. In CHAMPION PCI (Comparison of IV Cangrelor to Clopidogrel in coronary stenting), a phase III trial (8,820 pts) are randomized to cangrelor 30 mcg per kg IV & clopidogrel 600 mg orally followed by infusion administered before PCI [56]. Another CHAMPION PLATFORM trial, a double-blind, placebo-controlled trial that randomized more than 5000 patients with ACS undergoing PCI to either placebo or cangrelor given as an intravenous bolus of 30 mcg/kg followed by infusion administered before PCI [57]. Neither trial demonstrated a significant difference in the primary end point of death, MI, or revascularization at 48 h. Stent thrombosis and mortality, however, were reduced with cangrelor at 48 h in the CHAMPION PLATFORM study.

Elinogrel
It is a potent oral and intravenous (IV) third-generationP2Y12 antagonist that has potential advantages over clopidogrel and prasugrel. One of these is a direct mode of action that does not require conversion into an active drug; this direct action can result in reduced variability in patient response. The reversible and competitive nature of P2Y12 receptor binding with it could result in its displacement by ADP at sites of bleeding, which are characterized by low flow, low shear rate, and higher ADP concentrations. For this reason, it may provide a more favorable safety profile as compared with irreversibly acting agents such as prasugrel and clopidogrel [58].

The INNOVATE-PCI study was a phase 2b study with 652 patients undergoing elective PCI randomized to clopidogrel or to IV elinogrel followed by oral elinogrel. Although treatment with elinogrel was associated with a more rapid and more potent inhibition of ex vivo ADP-induced platelet activation, there were no significant differences in the rates of ischemic events between the clopidogrel and elinogrel treatment arms at 24 hours or 120 days [58].

PAR-1 Inhibitors
Selective inhibition of the principal protease activated receptor (PAR)-1 for thrombin, the most potent platelet activator, represents a promising novel strategy to reduce ischemic events without increasing the risk of bleeding. Two PAR-1 receptor antagonists are currently being tested in clinical trials, vorapaxar (SCH 530348) and atopaxar (E5555).

Vorapaxar
It is an orally active PAR-1 antagonist that blocks thrombin-mediated platelet activation without interfering with the thrombin mediated cleavage of fibrinogen [59]. A single dose of vorapaxar inhibits platelet function within 1 h after administration and an effect was still evident after 72 h. The drug has a rather long half-life of 126–296 h. [60]. Platelet function returns to normal within 2–3 weeks after cessation of the drug. The safety and efficacy of vorapaxar have already been tested in various Phase II trials, including the TRAPCI (Thrombin Receptor Antagonist for Cardiovascular Event Reduction in Percutaneous Coronary Interventions) in which vorapaxar when used in combination with the standard of care therapy in patients scheduled to undergo non-urgent PCI. In it patients (n = 1030) were randomized to oral vorapaxar or placebo in a 3:1 ratio on top of standard antithrombotic therapy, including aspirin, clopidogrel, and the anticoagulant of choice. No significant increase was observed in TIMI major and minor bleeding (primary endpoint) with vorapaxar vs standard of care (2.8% vs 3.3%; p = 0.58). There was a trend toward a lower rate of death and major adverse cardiac events (MACE), including MI in the vorapaxar treated group.

Rahul Saini et.al, JPRCP 2013; 3(4)
compared with the placebo-treated group [61].

Atopaxar

It is another member of the thrombin receptor antagonist group & was evaluated in two phase II trials-LANCELOT (Japanese lessons from antagonizing the Cellular Effects of Thrombin) and LANCELOT. These trials were designed to evaluate the safety and tolerability of atopaxar in ACS and CAD patients as their primary objective. The results of these trials have been recently reported and overall show that atopaxar was not associated with any increase in serious bleeding events in both ACS and CAD patients, although there was a significant dose-dependent increase in liver function abnormalities [62].

CONCLUSION

Atherothrombotic disease is a major health burden with significant economic impact. Patients with prior ACS or stroke are at significant risk of experiencing a recurrent event or an atherothrombotic event in another vascular bed. Patients with PAD are also at increased risk of acute atherothrombotic events. Antiplatelet therapy with aspirin, clopidogrel, the combination of aspirin plus clopidogrel, and the combination of aspirin plus ER dipyriramol have been shown in numerous clinical trials to be both effective and safe in the secondary prevention. However, recurrent event rates remain considerably high with currently available antiplatelet treatment regimens. With a strong clinical need to improve the efficacy and safety of current anti-platelet therapies in various clinical scenarios, a small number of characterized platelet receptors, which include proven anti-platelet drug targets, are currently the focus of drug discovery and clinical trials for the prevention and treatment of thrombosis. These include ADP receptor (P2Y12) antagonists and molecules that inhibit activation of PARs for thrombin. A more understanding of the platelet regulatory systems is, however, likely to result in the development of more refined, safer and more efficacious approaches to prevent thrombosis. So no doubt there is always need of better antiplatelet drugs with balance of safety, efficacy & cost.

REFERENCES

49. Payne CD, Li YG, Small DS, Ernest CS 2nd, Farid NA, Jakubowski JA et al. Increased

