
Volume 2, No. 3, March 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 5

APPLICATION BASED SEMANTIC WEB MINING TECHNIQUE

Mahindra Pratap Singh Dohare
*1

 and Sanjaydeep Singh Lodhi
*2

Department of C.S.E. (Software System)

Samrat Ashok Technological institute

Vidisha, M.P., India.

 {mps.mt32@gmail.com and sanjayeng.mt@rediffmail.com}

 Vinod Mahor*3

Department of IT

Samrat Ashok Technological institute

Vidisha, M.P., India.

{vinodengg.mt@rediffmail.com}

Abstract-The Web is a huge read-write information space where many items such as documents, images or other multimedia can be accessed. In

this context, several information technologies have been developed to help users to satisfy their searching needs on the Web, and the most used

are search engines. Search engines allow users to find Web resources formulating queries (a set of terms) and reviewing a list of answers. The

Semantic Web improves the Web infrastructure with formal semantics and interlinked data, enabling flexible, reusable, and open knowledge

management systems. The move towards open and interlinked data on the Web and the Semantic Web results in more open systems. In contrast

to traditional database-driven applications, open systems liberate the data that they operate on: sources are decentralized, data can be semi-

structured with arbitrary vocabulary and contributions can be published anywhere. This thesis offers algorithms and components that simplify

and support knowledge management based on Semantic Web technology. We address four areas of Semantic Web application development:

programmatic access: how to program against the flexible graph-based model; data navigation: how to navigate arbitrary information spaces;

data entry: how to guide users through collaborative recommendation; and data discovery: how to locate relevant data sources. Our hypothesis is

that the issues of programmatic access, data navigation, data entry, and data discovery can be addressed, with acceptable results, through the sole

introspection of instance data at runtime, without relying on fixed schema structures at design time. In all four areas we devise solutions that are

domain independent, rely only on instance data and dynamically adjust to the available data.
Keywords- Semantic Web, Data Mining, Ontology.

INTRODUCTION

World Wide Web search services have become the most

heavily used online services, with millions of searches

performed each day. The only purpose of these search

engines is to retrieve the exact inform action that the user

wants, or a close approximation of this, from the loosely

organized Internet. Inspired by the success of the Web and

determined to further improve its potential, advances have

been made towards a “Semantic Web”: a world-wide

network of simple statements, which, through its

interconnections and sheer size, could serve as global

knowledge management repository. The Semantic Web is

now moving from a vision to a reality. The fundamental

standards (RDF, RDFS, and OWL) have been developed,

data is becoming available, and infrastructure is emerging.

With these foundations given, we can start building

applications that move towards the original vision: to

improve the awareness, management and reuse of our

(scientific) knowledge. The Web has indeed grown from a

tool to improve scientific collaboration into an indispensable

form of communication. And beyond communication, the

Web is a means for information exchange and a global

knowledge repository. But the reuse of information on the

Web is limited since most data is hidden in databases

instead of published as online interlinked resources [1] and

[2].

Furthermore, most Web applications are not designed for

data reuse but strictly rely on their own relational database

with a fixed schema: application developers design a

database schema and then, on top of that schema, construct

the application logic which generates web-pages for user

interaction. Such a centralized schema-centric architecture

offers only limited possibilities for data integration and

reuse because of schema dependency, the lack of global

identifiers and the isolated nature of schemas. Changing this

situation, by opening up the applications and their data,

would improve knowledge management but raises several

challenges: how to manage and query the web of linked

data, how to align different data models and vocabularies

and how to visualize and navigate the connected graph of

information. The Semantic Web enables data reuse and

information exchange on the Web, and, compared to

traditional database-centric applications, simplifies

development of such mash-ups by accommodating simple

integration of data from various sources. But adopting the

open and decentralized view of the Semantic Web

complicates application development, since Web

applications are traditionally developed using application

frameworks that rely on closed systems with fixed relational

schemas and centralized points of access and control.

This thesis offers algorithms and components that simplify

and support knowledge management applications based on

Semantic Web technology. We address Semantic Web

application development in the four areas mentioned above:

programmatic access: how to program against the flexible

graph-based model; data navigation: how to navigate

arbitrary information spaces; data entry: how to provide

annotation support using collaborative recommendation; and

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 6

data discovery: how to locate In each area, the main obstacle

of existing solutions is their dependency on fixed, a-priori,

schema knowledge. Such dependency is unattainable in the

world of open, interlinked, Semantic Web systems. In open

systems, which acquire and integrate arbitrary data from

arbitrary data providers during runtime, which operate in the

decentralized environment of the Web without central

management or control, without centralized guidance on

data schemas and vocabularies, schema independence is

crucial. In an open system, the set of schemas that will be

encountered is not known at design time, and can therefore

not be accounted for: if the system would be customized for

a particular set of schemas, it would no longer be an open

system. Furthermore, data integration on the Web involves

integration of heterogeneous and widely varying schemas;

after integration, the combined data no longer conforms to

the original schemas, can often not be described by some

fixed schema at all, and becomes “semi-structured”.

Therefore, open systems that integrate data on the Web, and

techniques that manipulate such open data, should not rely

on fixed schemas. We therefore try to address application

development in these four areas through flexible, schema-

independent, solutions that rely only on instance data [3]

and [5].

BACKGROUND

The Semantic Web is an ongoing evolution of the Web into

a more powerful and more reusable infrastructure for

information sharing and knowledge management. The

current Web is a publishing platform and indeed allows us

to connect with arbitrary information sources across all

physical and technical boundaries. But the Web is merely a

publishing infrastructure of documents and links; very little

consideration is given to the content or meaning of the

documents or to the meaning of the links. As a consequence,

the Web serves as an excellent giant document repository

and, as a communication platform, enables the provision of

online services, but knowledge reuse is limited because no

uniform standard is available to express the meaning or

intended usage of pieces of online information.

The Semantic Web is a web of information that is more

understandable and more usable by machines than the

current Web. It can be regarded as an extension of the

existing Web, whose information is mostly human-readable.

Although the current Web also has some machine-usable

structure such as head and body of documents, levels of

heading elements, classes of div elements, this structure has

coarse granularity and little agreed-upon meaning. The

Semantic Web allows for finer granularity of machine-

readable information and offers mechanisms to reuse

agreed-upon meaning. The Semantic Web can also be

considered similar to a large online database, containing

structured information that can be queried. But in contrast to

traditional databases, the information can be heterogeneous:

it does not conform to one single schema; the information

can be contradicting: not all facts need to be consistent; the

information can be incomplete: not all facts need to be

known; and resources have global identifiers allowing

interlinked statements to form a global “Semantic Web”.

The fundamental data-model of the Semantic Web is the

Resource Description Framework (RDF). RDF is a language

for asserting statements about arbitrary identifiable

resources. The use of global identifiers (URIs) allows

statements from different sources to interlink, ultimately

forming a hyper-graph of statements. RDF is a formal

language in the sense that a syntax, grammar, and model-

theoretic semantics are defined. The semantics provide a

formal meaning to a set of statements through an

interpretation function into the domain of discourse. But this

interpretation function is relatively straightforward and

explicit: the semantics of RDF prescribe relatively few

inferences to be made from given statements; there is only

little implicit information in statements. RDF can thus be

seen as a language for statements without specifying the

meaning of these statements [2] and [3].

More poetically, RDF can be regarded as an alphabet,

allowing one to construct words and sentences, but not yet a

language, since the words and sentences have not yet been

given a meaning. Such computer-usable meaning can be

achieved by defining a vocabulary (a set of terms) for RDF

and by specifying what should be done when such a term is

encountered. Currently, two such vocabularies have been

agreed upon and standardized. The first is RDF Schema

(RDFS), which allows one to express schema-level

information such as class membership, sub-class hierarchies,

class attributes (properties), and sub-property hierarchies.

RDFS allows simple schema information, but its

expressiveness is limited. The Web Ontology Language

(OWL) therefore extends RDFS (although the two are

formally not completely layered) and provides terms with

additional expressiveness and meaning. Each statement in

RDF is a triple of subject, predicate, and object, which can

be read as “subject has a predicate with value object.” RDF

defines three types of elements: identified resources

(identified by their URI), unidentified resources (blank

nodes), and literals (data-values). Only resources (identified

or unidentified) can be the subject of a statement; only

identified resources can be the predicate of a statement; and

any element can be the object of a statement. RDF is an

abstract data-model and can be serialized in several formats

such as RDF/XML5, N-Triples6, Turtle7, or N38 (of which

only RDF/XML is officially endorsed by the W3C).

In terms of semantics, the only statements to be derived

from these two triples are these two triples themselves and a

set of axiomatic triples. Also note that in terms of

satisfiability (a graph is satisfiable if it has a model) every

RDF graph is satisfiable: every graph in RDF is true since it

is not possible to express any contradictions. A set of RDF

statements can be regarded as a (labelled) graph: subjects

and objects are nodes and predicates are edges. Since the

predicates can appear as subjects themselves, RDF

statements can more precisely be regarded as a hyper-graph.

But a set of RDF statements is not exactly a graph, since

RDF statements have additional semantics that a graph as

such does not have [1] and [4] and [15].

Data models and query languages-

The network and hierarchical models, initial representations

of large-scale data, had a low abstraction level and little

flexibility. The relational model, described by Codd and

implemented by all relational databases, introduced a higher

level of abstraction by separating the logical from the

physical data levels. In contrast to RDF, the relational model

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 7

assumes a fixed and a-priori defined data schema;

furthermore all data and schema elements use local

identifiers, which hampers data reuse, integration and

extensibility. Semantic models such as the entity-

relationship model, increase the level of abstraction and

allow data modelers to include richer schema semantics

such as aggregation, instantiation and inheritance.

The object-oriented data model aim to overcome limitations

of the relational model (type definitions limited to simple

data types, all tuples must conform to schema structure,

which cannot be modified during runtime, limited

expressive power in e.g. inheritance or aggregation) through

the principles of object-oriented design. Semi-structured

data is self-describing in the sense that the schema

information (if available) is contained in the data itself; the

data schema defines relatively loose constraints on the data

or is not defined at all. Semi-structured data can be generally

characterized as follows: it may have irregular structure, in

which data elements may be heterogeneous, incomplete, or

richly annotated; it may have implicit structure, in which

data elements may contain structures or even plain-text that

need to be post-processed; the structure may be used as a

posterior data guide instead of an a-priori constraining

schema; the structure may be rapidly evolving; and the

distinction between data and schema may not always be

clear, in the presence of evolving schemas, weak constraints,

and the meta-modeling capabilities of graphs and hyper-

graph models of semi-structured data.

RDF is based on semi-structured data models but differs in

the expressiveness of its schema language, in the existence

of blank nodes, and in the fact that edge labels (predicates)

can be resources themselves and thus form a hyper-graph.

XML, with its XSD schema language, can also be

considered as a semi-structured model. Important

differences between RDF and XML are, on the data level,

the universality of the hyper-graph structure of RDF versus

the tree structure of XML. On the schema level, the higher

expressiveness of RDFS versus XSD with respect to class

membership, class and property inheritance and conjunctive

classes [5] and [6] and [16].

Characterizing Semantic Web applications-

The relation between the Web and the Semantic Web has

changed, as the understanding and interpretation of the

Semantic Web has evolved over time: on the one hand, the

vision of the Semantic Web has been interpreted as an

enrichment of the current Web, employing for example

named-entity recognition or document classification,

resulting in semantically annotated Web documents on the

other hand, the Semantic Web has been interpreted as an

interlinked “Web of data”; enabling ubiquitous data access

and unexpected reuse and integration of online data sources.

We focus mostly on the latter interpretation and consider a

Semantic Web application to be an application that delivers

some functionality to its users while using Web standards

such as HTML, CSS, and JavaScript for its user interface,

using Web standards such as HTTP to deliver the

application to its users and using information from online

data sources, using Semantic Web standards such as

RDF(S), OWL, and SPARQL.

This Web of data has been referred to as “Web 3.0”: the

continuing evolution of the Web towards the usage of open,

interchangeable, data – even though little consensus exists

on the evolution from “Web 1.0” to “Web 2.0” which has

been characterized as the advent of social Web applications,

of rich user interfaces, of mashups and data exchange, of

harnessing the controversial wisdom of the crowds, of

business models that build extensible platforms rather than

closed applications and as combinations of all these

characteristics. Following the notion of “Web 3.0,” much of

the application infrastructure and development approach can

be shared between existing Web applications and Semantic

Web applications, since both are open architectures for

information sharing: the first oriented more towards

documents, the second more towards data. Both are

decentralized, heterogeneous, with freedom of publishing,

allowing anyone to create documents or assert statements at

any location, using any vocabulary or structure [7] and [8]

and [10].

The Web is not only a publishing infrastructure but also an

application platform for Web applications. But existing

applications use the Web primarily as a means to access

their application, generating HTML pages from their

database content and serving these pages over HTTP. These

database-driven applications result in a “deep” or “hidden

Web”, whose dynamically-generated pages do not conform

to traditional Web principles such as hyperlinks and are thus

hard to crawl and index.

Web Application Semantic Web Application

centralized Decentralized

one fixed schema semi-structured

one fixed vocabulary arbitrary vocabulary

centralized publishing publish anywhere

one data source many distributed data sources

closed systems open systems
Table1: Traditional vs. Semantic Web applications

More importantly, these database-driven applications are

closed systems that rely on a single centralized data source;

due to the inherent limitations of their relational databases,

these Web applications operate on fixed data structures and

schema, use one fixed vocabulary, and do not interlink their

data. In contrast, Semantic Web applications are more

aligned with the principles of the Web, such as

interoperability, universality, evolvability and

decentralization, hence the incremental version number of

“Web 3.0”. As shown in Table, Semantic Web applications

are decentralized and open, operate on distributed data that

can be published anywhere, may conform to arbitrary

vocabulary and follow semi-structured schemas.

Scenario: exploring interlinked online communities to

illustrate the relation between existing Web application and

Semantic Web applications and the notion of open systems

and decentralized data, we consider the development of an

application for browsing and collecting information from

online social communities.

Online communities are sites such as forums, weblogs,

mailing lists or IRC channels. Some of these sites are more

centralized, such as forums or bulletin boards, while others

such as weblogs or IRC channels are more decentralized and

disparate. But from an abstract perspective all such

communities are relatively similar: they allow users to group

themselves online and exchange and discuss about their

particular topics of interest. Often, discussions range over

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 8

several of these communication channels. For example, to

solve an installation problem of a wireless card in the

Ubuntu Linux distribution, a user should search the Ubuntu

community forums for some helpful advice but also look on

weblogs and the Ubuntu-users mailing list.

Currently, users have to browse these communication

channels manually and repeat their query in various

different systems: the forum software, the mailing list online

archives, a weblog search engine, etc. Search engines help

to find individual posts but do not allow browsing across

various online communities. For the end-user, it would be

convenient if all these community sites were collected in a

single place [11] and [12].

The Semantic Web enables such community sites and other

information publishers to act as open systems; it also

enables application developers to build open systems that

reuse the information published by the providers. Opening

up traditional database-driven Web applications without

Semantic Web technologies would be difficult, due to the

isolated nature of relational databases:

Strict schemas: since relational databases rely on strict

schema information and restrict their instances to the

schema, data integration without a predefined common

schema is complicated.

Local identifiers: since database is traditionally used as

self-contained sources, they use local identifiers instead of

global identifiers. The absence of global identifiers

complicates integration since shared concepts and instances

are harder to identify, well-known in the database

community as the “record linkage” problem.

Isolated vocabulary: since database vocabulary such as

table names and column names are self-contained and

cannot extend or reuse other vocabulary, schema elements

cannot be related to elements from other database schemas,

thus requiring intricate schema matching and schema

alignment techniques during data integration [1] and [13]

and [14].

PROPOSED TECHNIQUE

Programmatic Access to Semantic Web Data-

Any application needs to access data sources to retrieve,

manipulate, and display data to its users. In traditional

relational-database applications, various solutions have been

developed that offer programmatic access to relational data

sources.

But these existing mapping approaches do not suffice for

Semantic Web applications because: (i) the access and

manipulation patterns differ from the relational setting, and

(ii) the conceptual model of Semantic Web data and the

semantics of RDF Schema differ substantially from both the

object-oriented paradigm and the relational paradigm, on

which the existing mappings rely. To support application

developers new mappings need to be developed that provide

programmatic access to Semantic Web data and offer the

access patterns required by typical applications. Semantic

Web applications share large portions of functionality with

traditional Web applications, such as authentication

management, session management, caching, user interface

widgets, reusing these Web application frameworks is

desirable. But since these frameworks rely on an object–

relational mapping, a similar mapping from graph-based

Semantic Web data to programmatic objects would be

required. Having analysed the typical access patterns for a

mapping library and explained the suitability of

implementing such mappings in a dynamically-typed

programming language, we now present Active RDF, an

object-oriented API for Semantic Web data. Active RDF

maps RDF Schema classes to programming classes, RDF

resources to programming objects and RDF predicates to

methods on those objects, thus lifting data elements into

first-class citizens (objects of the language itself), the

general principle of ActiveRDF is to represent RDF

resources through transparent proxy objects. Each proxy

object represents one RDF resource but does not contain any

state. All methods on the proxy object are translated into

read or write queries related to the proxy’s RDF resource.

Our architecture consists of four layers which incrementally

abstract RDF data into objects, as shown in Figure. Such a

layered architecture supports (i) design based on increasing

levels of abstraction, allowing the implementation to

partition the problem into a set of incremental steps; (ii)

gradual enhancement because as each layer interacts only

with the layers directly above and below itself, the effects of

changes are limited; and (iii) reuse, since different

implementations of the same layer can be used

interchangeably. The layers incrementally abstract the RDF

statements from the data sources into objects: Adapters

provide access to a specific RDF data-store by translating

generic RDF operations to a store-specific API. Such RDF

data-store specific adapters are necessary, because of the

absence of a general standardized query language which

provides create, read, update,

Figure1: ActiveRDF architecture

and delete access. The adapter layer assures vendor-

independence in the rest of the architecture, as all store-

specific operations are encapsulated within the adapters. The

adapters translate and execute queries from the federation

manager into a query language supported by their data

source.

Extending faceted navigation for semantic web data-

The second element of Web application development is data

navigation in the user interface. Since open Semantic Web

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 9

systems integrate data from decentralized sources that are

not under their control, they cannot assume a single fixed

schema to apply for all encountered data. Application

developers should therefore not rely on predefined user

interfaces to browse that data, since a predefined user

interface would not be able to adjust to newly encountered

information.

Our formal model for faceted navigation of Semantic Web

data; we first add several operators to the ones described

above and show how we have implemented these in our

prototype interface. We then introduce an initial approach to

automatically ranking and selecting useful facets at runtime,

using metrics based on the available instance data.

Users can browse the dataset by constraining one or several

of these facets. At the top-centre of the screenshot we see

that the user constrained the dataset to all fugitives and in

the middle of the interface we see that three people have

been found conforming to that constraint.

Join selection Given that RDF data forms a graph, we often

want to select some resources based on the properties of the

nodes that they are connected to. For example, we are

looking for “all posts created by somebody, who in turn

knows somebody who works in DERI”, as shown in Figure

c. using the join-operator recursively, we can create a path

of arbitrary length, where joins can occur on arbitrary

predicates. In the interface, the user first selects a facet (on

the left- hand side), and then in turn restricts the facet of that

resource. In the given example, the user would first click on

“creator”, then click on “knows” and then click on

“workplace”, and only then select the value “DERI”.

Intersection As in the Flamenco interface, multiple selection

operators are automatically evaluated in conjunction, by

applying the intersection operator. For example, we can

combine the three previous examples to restrict the

resources to “all untitled posts about cars written by

somebody who knows somebody in DERI”, as shown in

Figure above. This operator is not explicitly available in the

interface since it is applied automatically on multiple

selections.

Inverse selection All operators have an inverse version that

selects resources by their inverse properties.

Algorithms for recommendation of Semantic Web

vocabulary-

The third challenge of Semantic Web application

development that we address arises during data entry: the

need to guide users when creating Semantic Web data into a

meaningful information space. For contributions to be

understood by others, existing vocabulary should be reused

where possible, which can be achieved by offering

vocabulary recommendations to users while they are

creating Semantic Web data.

In general, the Semantic Web supports user-generated

content, since the data model and semantics allow arbitrary

statements without the need to conform to predefined

schemas. But provided content is still only useful as far as

others understand it. A centralized policy prevents

terminology divergence but would restrict users needlessly.

We follow a similar approach towards a collaborative

recommendation system for Semantic Web vocabulary: our

“potentially overwhelming set of choices” is formed by the

vocabularies (ontologies or schemas) that are available to

users and that they need to decide upon while they are

creating Semantic Web data. More specifically, we do not

construct a complete recommender system but investigate

recommendation algorithms for suggesting relevant and

frequent terminology when creating annotations. We present

two domain-independent algorithms that recommend

vocabulary based on statistical dataset analysis.

The first algorithm is intuitive and precise, based on an

explicit measure of similarity between resources. However,

the similarity algorithm is not efficient (quadratic in the

number of resources) since it computes similarity between

all resources. The second algorithm uses an approximation

of resource similarity (namely pair wise predicate co-

occurrence) to achieve much improved runtime

performance. Our hypothesis is, that approximating resource

similarity through pair wise predicate co-occurrence yields

good results, which is indeed supported by the high quality

of the second algorithm compared to the first algorithm.

Algorithm 1: suggestions using resource similarity-

The task of the suggestion algorithm is to find, for a certain

resource in focus, predicates to further describe that

resource. The general idea of the classification-based

algorithm is to divide the knowledge base in two groups,

those similar to the current resource and those not similar,

and to suggest the frequently occurring predicates from the

similar group. For example, Figure below shows a simple

knowledge base with three resources: the person “John”,

with his name, some friends, and homepage, the book “The

Pelican Brief”, with its title and author, and the person

“Stefan”, with his name. We want to suggest relevant

predicates for “Stefan” based only on the given graph.

The algorithm consists of two steps, as shown figure below.

In the first step, we divide all existing resources in the

knowledge base into two sets, the similar and dissimilar

ones. In the second step, we look at all predicates from the

similar group and rank them using a ranking function. In the

remainder of this subsection, we explore each step in more

detail: how to define similarity between resources, and how

to rank the selected predicates.

However, in practice we cannot ignore lookup performance

on large datasets. To compute similarity, we need to look up

all predicates of each resource. Depending on the lookup

performance of the used data store, this could cause the

whole algorithm to run logarithmic or even quadratic to the

size of the dataset, rendering the algorithm impractical for

reasonably large datasets. A simple solution would be to

materialise the similarity between resources in memory,

obliterating the need for data lookup during suggestion time.

Direct materialisation however has two problems: the

required memory space would be quadratic in the size of the

dataset, and updating one resource would require

recalculation of all similarity values with respect to this

resource.

The next algorithm remedies exactly this problem and

allows materialization without large memory requirements.

Algorithm 2: approximate similarity-using co-

occurrence-

The general idea of the co-occurrence-based algorithm is to

reduce the data from which suggestions are made, by

approximating resource similarity through the co-occurrence

of predicates.

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 10

We then further reduce the required space by not

considering the complete power set over all predicates, but

instead approximate full co-occurrence through binary co-

occurrences. Most datasets contain far less unique predicates

than unique resources: trivially, since the set of predicates is

a subset of the set of resources, but also significantly, since

most datasets use only a small number of unique predicates.

As a result, materializing pair wise predicate co-occurrence

requires less space than pair wise resource similarity: O (p2)

< O (r2). We thus consider only pair wise occurrences of

predicates, suggest predicate candidates for each pair wise

occurrence, and combine these candidates through

intersection.

We therefore make two assumptions on the probabilistic

model of the dataset: (1) that predicate co-occurrence

correlates with resource similarity, and (2) that considering

binary predicate co-occurrences to be independent events

(which they are not) yields acceptable predictions. The latter

allows us to pair wise consider binary co-occurrences

instead of all permutations. Our algorithm is based on

association rule mining used for recommendations in e.g.

online stores: when buying one book, other books that are

often bought together with this book are recommended. In

our case, books are replaced by predicates and shopping

transactions by resources.

Discovery architecture for interlinked Semantic Web

data-

The final element of Semantic Web application development

that we address is the runtime discovery of relevant data

sources. To achieve a high information quality, applications

should typically integrate data from many decentralized

sources, but discovering those sources is not trivial. Due to

the required network bandwidth and data storage, a

Semantic Web discovery service should not be implemented

by each application individually, but should instead run as

an independent service and be integrated into client

applications.

Architecture design

The architecture consists of several independent components

that operate in several pipelines to

achieve crawling, indexing, and querying. The Web front-

end is the main entry point, divided in a user interface for

human access and an HTTP API for machine access.

Several components are responsible for crawling and

indexing RDF documents. A crawler autonomously harvests

RDF data from the Web and adds found documents to the

indexing queue; documents are also added to the queue

when pinged explicitly through the front-end. The

gatekeeper evaluates each entry in the queue and decides

whether, and with which priority, we want to index it, based

on whether we have seen the document before, its last

modification date, its content digest, etc. The indexer

extracts URIs, IFPs and keywords from each document

using the reasoner and adds these to their respective index.

During lookup, the interface components only need to pass

the queries to the relevant index, gather the results, and

generate the required output such as HTML pages with

appropriate layout. As mentioned before, the whole

execution pipeline and all its components, except the front-

end and the inverted index, are distributed over arbitrary

parallel nodes, a parallel architecture. The three indices store

occurrences of resource URIs, resource IFPs and literals in

RDF documents. The URI index contains an entry for each

resource URI that lists the document URLs where this

resource occurs. The IFP index is similar, except that instead

of explicit resource URIs, the uniquely identifying pair

(property; value) is used as index key, again pointing to a

list of document URLs where this pair occurs. This index

allows lookup of resources with different URIs that actually

identifies the same real-world thing. The literal index

contains an entry for each token (extracted from the literals

in the documents), again pointing to a list of document

URLs. In designing the index, we optimize for disk space

and lookup times. Since the only required access pattern is

from resource to mentioning sources, an inverted index of

URI occurrences in documents is a natural structure. In

general, lookup on such an index can be performed in

almost constant time over the size of the index. Lookups that

return a large list of documents cause longer query times,

especially ontology classes. The straightforward solution is

to either eliminate these occurrences as stop-words or to

return only a limited set of results. Technically these indices

have been implemented both as an on-disk persistent

hashtable, mapping from resource URIs to mentioning

documents, and in the Solr54 information retrieval engine.

The on-disk hashtable is conceptually simple but less

efficient in practice because it lacks standard information

retrieval optimisations such as distributed indexing, efficient

sort algorithms, index compression and caching. Before

detailing the internals of Sindice, we analyze its feasibility.

We analyze a representative sample of Semantic Web data

and analyze graph-theoretical properties that allow us to

predict the required index size using inverted index

structures. We can then cluster and replicate such index

structures to provide service in a round-robin fashion.

Figure2: Sindice architecture

To achieve scalability, the architecture is based on Hadoop,

an existing parallel processing infrastructure, allowing us to

efficiently distribute index construction over an arbitrary

number of nodes. The inverted index itself has been

implemented twice, once directly using persistent hash

tables, an off-the-shelf information retrieval index. Since the

storage requirements of both implementations rely on the

reuse of resource identifiers; we have experimentally

showed that this ratio of URIs/URLs follows a power law

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 11

and thus exhibits scale invariance, allowing us to

confidently estimate the required data storage as a function

of the number of indexed documents.

RESULTS

As any application needs to manipulate data, typical access

patterns should be abstracted into higher-level libraries and

embedded into the application-programming environment.

We have analysed which access patterns should be

supported in a programmatic manner, formally expressed

these as a subset of PathLog and explained why the

techniques used in traditional objectrelational mapping

approaches are not sufficient for Semantic Web data. We

have showed why dynamically-typed object-oriented

languages offer a suitable environment for our mapping

solution, given their dynamic typing of objects, which maps

well onto the RDF(S) class membership, their support for

full reflection, which allows us to implement the multi-

inheritance of RDF(S), and their relaxation of strict object

conformance to class definitions.

The figure of Querying Sesame in ActiveRDF shows the

average response time (including result parsing in Java and

ActiveRDF) of each query using curl, Java, and ActiveRDF

in a logarithmic scale. It can be seen that for most queries

ActiveRDF adds only little overhead. On some queries

ActiveRDF seems to perform faster than using curl HTTP,

which is probably due to random hardware variations and

measurement difficulties in those small response time

ranges.

Faceted browsing is a data exploration technique for large

datasets. Our technique can be employed for arbitrary semi-

structured content. We have presented a novel analysis of

existing interfaces and have extended their expressiveness;

we have also developed initial metrics for automatic facet

ranking, resulting in an automatically constructed faceted

interface for arbitrary semi-structured data. Our faceted

navigation has improved query expressiveness over existing

approaches and experimental evaluation shows better

usability than current interfaces.

Our evaluation combines both the information-retrieval and

the machine-learning approach: we show both precision and

recall ratings and evaluate our approach using

training/testing datasets through a commonly applied

technique of evaluating prediction of deleted values from

existing data.Our primary evaluation technique is prediction

of deleted values: we pick a random resource from the

dataset as a candidate for which further predicates should be

suggested. We then randomly remove one or more

statements about this candidate and analyse if and at which

rank position the removed predicates are re-suggested.

Repeated over n random resources this yields the average

resuggestion rate (how often was the deleted predicate

resuggested), the empty suggestion rate (how often were no

suggestions given), and the average rank of the resuggested

predicate. Since in practice not all suggestions can be

displayed or will be considered by the user, We also show

how many of the predicates were resuggested within the top-

k of suggestions. Secondly, we measure suggestion

precision (how many suggestions are valid) and recall (how

many valid suggestions have we missed) based on the

schema definition: we define “valid” predicates as those

predicates that, according to the schema, fall within the

domain of the selected candidate.

 Figure4: Querying Sesame in ActiveRDF

For recall computation, we consider only predicates that are

actually used in the dataset; since the algorithm considers

only instance data, unused predicates are unattainable.

To achieve scalability, the Sindice architecture is based on

Hadoop, an existing parallel processing infrastructure,

allowing us to efficiently distribute index construction over

an arbitrary number of nodes.

The inverted index itself has been implemented twice, once

directly using on disk persistent hash tables, an off-the-shelf

information retrieval index. Since the storage requirements

of both implementations rely on the reuse of resource

identifiers; we have experimentally showed that this ratio of

URIs/URLs follows a power law and thus exhibits scale

invariance, allowing us to confidently estimate the required

data storage as a function of the number of indexed

documents.

Figure3: Distribution of predicates over resources in different datasets

CONCLUSION

We have focused on four requirements in Semantic Web

application development and developed algorithms and

components that address these. The first requirement is to

provide programmatic access to Semantic Web data

embedded in the application programming language, while

considering the semantic mismatches between the prevalent

object-oriented paradigm and the graph-based, semi-

structured, RDF(S) data model. The second requirement is

the development of user interfaces, particularly for

navigation of a data set, considering that Semantic Web data

Mahindra Pratap Singh Dohare et al, Journal of Global Research in Computer Science,2 (3), March 2011, 5-12

© JGRCS 2010, All Rights Reserved 12

can have arbitrary structure and content. We have addressed

these problems subsequently in the core part of the thesis,

and presented algorithms, components and implementations

that support application developers. Contributions we have

presented ActiveRDF, an object-oriented library for RDF

data written in Ruby. We have analysed which common data

patterns should be supported, why the techniques used in

traditional object-relational mapping approaches are

insufficient for Semantic Web data, and why dynamically-

typed programming languages are well-suited to provide

such language embedded programmatic data access.

ActiveRDF provides a domain-specific manipulation

language based on the actual available instance data, is

embedded into the Ruby programming language, and is

vendor-independent with respect to data stores.

Additionally, ActiveRDF can serve as data layer in Ruby on

Rails, providing a solution for rapid development of

Semantic Web applications.

We have presented Suggest RDF, a suggestion system for

Semantic Web vocabulary. We introduced two algorithms

for suggesting possible predicates based on statistical data

analysis. The first algorithm is based on resource similarity,

achieving relatively good quality but with high

computational costs. The second algorithm approximates

resource similarity through pair wise predicate co-

occurrence. Treating predicate occurrences as independent

events simplifies computation and allows for memory-

efficient materialisation, while still resulting in high quality

suggestions. The materialisation scales linearly with the size

of the dataset and allows for incremental updates; after

materialisation, suggestion time is constant.

Finally, we have presented Sindice, an indexing and lookup

service for Semantic Web data sources. Sindice allows

application developers to easily discover relevant data

sources for their application. Lookups for data sources can

be performed directly using resource URIs, indirectly

through uniquely-identifying inverse functional properties,

and through a full-text search over the literals. We have

analyzed several design considerations for developing such

a lookup service and explained our choices in the Sindice

implementation.

REFERENCES

[1] WANG Yong-gui and JIA Zhen, “Research on Semantic Web

Mining”, IEEE 2010, International Conference On Computer

Design And Appliations (ICCDA 2010).

[2] MohammadReza Keyvanpour, Hamed Hassanzadeh and Babak

Mo hammadizadeh, “Comparative Classification of Semantic Web

Challenges and Data Mining Techniques”, IEEE 2009 International

Conference on Web Information Systems and Mining.

[3] Li Yu and Qiang Li, “A Novel Web Text Mining Method based

on Semantic Polarity Analysis”, IEEE2009.

[4] Huimin Wang, Guihua Nie and Kui Fu, “Distributed data

mining based on semantic web and grid”, IEEE 2009 International

Conference on Computational Intelligence and Natural Computing.

[5] Shahab Bayati, Ali Farahmand Nejad, Sadegh Kharazmi and

Ardeshir Bahreininejad, “Using Association Rule Mining to

Improve Semantic Web Services Composition Performance”, IEEE

2009.

[6] Shizhan Chen, Zhiyong Feng, Hui Wang and Tao Wang,

“Building the Semantic Relations-Based Web Services Registry

through Services Mining”, 2009 Eigth IEEE/ACIS International

Conference on Computer and Information Science.

[7] YANG Xiao-qin, JU Shiguang and CAO Qinghuang, “A Deep

Web Complex Matching Method based on Association Mining and

Semantic Clustering”, IEEE 2009 Sixth Web Information Systems

and Applications Conference.

[8] Nizar R. Mabroukeh and C. I. Ezeife, “Semantic-rich Markov

Models for Web Prefetching”, 2009 IEEE International Conference

on Data Mining Workshops.

[9] Suleyman Salin and Pinar Senkul, “Using Semantic

Information for Web Usage Mining Based Recommendation”,

IEEE2009.

[10] Yi Feng, “Towards Knowledge Discovery in Semantic Era”,

2010 Seventh International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD 2010).

[11] Elaheh Momeni, “Towards (Semi-)Automatic Moderation of

Social Web Annotations”, IEEE 2010 International Conference on

Social Computing / IEEE International Conference on Privacy,

Security, Risk and Trust.

[12] Julia Hoxha and Sudhir Agarwal, “Semi-automatic

Acquisition of Semantic Descriptions of Processes in theWeb”,

IEEE 2010 International Conference on Web Intelligence and

Intelligent Agent Technology.

[13] Guiguang Ding and NaXu, “Automatic semantic annotation of

images based on Web data”, 2010 Sixth International Conference

on Information Assurance and Security.

[14] Zhu Jiang, Jiang jun and Li san-ping, “A Semantic Adaptation

Method and System”, IEEE 2010, International Forum on

Information Technology and Applications.

[15] HongLiu and XiaoHongYu, “Application research of

Semantic Ontology technology in Content-Based Image Retrieval”,

201O International Conference On Computer Design And

Appliations.

[16] Lorand Dali and Dunja Mladenic, “Visualization of Web Page

Content Using Semantic Technologies”, IEEE 2010 14th

International Conference Information Visualisation.

