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Abstract: Quantum computing is the theory of quantum bits, or qubits, and their associated linear transformations. A quantum computer is more 

powerful than classical computers, with the problems being solvable.  Quantum  computing  is  expected  to  play  an increasingly  important  
role  in  building  more compact  and  less  power-consuming  computers. Quantum Computing has emerged to be a very effective field where 
numerous scientists are doing research in this area.  It is true that quantum computing system is now in its initial theoretical state, a lot of aspects 
of this logic has been proposed by scientists over the years. Quantum computing promises to compute a whole set of intractable problems easily 
and within a very small amount of time. From binary to multi-valued logic quantum computing systems have a lot of properties to be explored, 
but mainly theoretically and not in a form of some tangible hardware logic. In the present study the authors have made a thorough study of the 
properties of binary and multi-valued quantum logic along with the impact of Quantum Information Decision Diagram (QUIDD), Quantum 

Multi-Valued Decision Diagrams in quantum logic. 
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INTRODUCTION 

In the present study we have made a study on Binary and 

Multi-Valued Quantum Computing and impact of decision 

diagrams with Kronecker Multiplication operation on multi-

valued quantum computing. We have introduced initial 

concepts of quantum computing and its advantages. We 

have made a study on qubits and its different properties and 

aspects. We have also made study on few quantum gates, 

the concepts of multi-valued quantum computing, its 

advantages and properties of qudits and qutrits respectively. 

We have also made systematic study on the concepts of 

quantum decision diagrams, quantum information decision 
diagrams and the implications of kronecker products on it 

respectively. The details of quantum multiple-valued 

decision diagrams is discussed in detail. Finally we have 

also given the future scope in this area. 

What is a quantum computing?: 

The classical computing is the theory of classical bits and 
the functions acting on them, quantum computing is the 

theory of quantum bits, or qubits, and their associated linear 

transformations or conversions. Although a viable quantum 

computer still remains indefinable, quantum computing has 

emerged into a major area of research for numerous 

computer scientists all over the world[1]. Quantum 

computers go beyond the classical boundaries of 

complexity, which define the difference between tractable 

and intractable problems [2].  Theoretically intractable 

problems in classical domain may be easily solvable in 

quantum domain. One has to redefine the intractable 

problem in quantum domain. 

 

The advantages of quantum computing that are proposed to 

exist theoretically are: 

Quantum computing theoretically allows designers to build 

more efficient computers than the classical ones, that can  

 

 

very easily solve computationally intractable problems [6]. 

Very little or theoretically no power will be needed for these 

applications[6]. Quantum logic involves high speed parallel 

computations [6].Due to its high speed it is applicable on 

different aspects of technologies.   Quantum computing 

logic can be of Binary and Multi-valued types. 

Properties of qubits: 

What is Qubit and how is it denoted?: 

The unit of memory for binary logic quantum system is qu-

bit(quantum bit). Here a quantum system exists in a linear 

superposition of two basis states, labeled |0> and |1> [8]. |0> 

is represented by and |1>  is represented by . The 
equation to represent these 2 qubits in a superposition will 

be, |φ> = α0|0> + α1|1>, where, |αo|
2 + |α1|

2= 1. α0 and α1 are 

the complex probability amplitudes [2]. 

Superposition property of Qubits: 

Qubits exist in a linear superposition of states. Superposition 

is a property which, unlike of classical computing, is present 

in quantum computing and is of huge relevance. A classical 

bit can only be in one of the two states 0 or 1, but a qubit 
can exist simultaneously not only in |0> or |1> but also in 

any of the infinite range of combination of |0> and |1>. A 

measurement of a qubit will yield |0> with probability |α0|
2 

and |1> with probability |α1|
2. But when we measure a qubit 

it boils down to one of the 2 values |0> or |1> with a 

probability of α0 or α1 respectively, destroying the respective 

superposition [1]. Thus a qubit on measurement loses its 

quantum character and resembles its corresponding classical 

character, i.e, a bit [5].  

 

The combination of quantum state qubits can be represented 

in entangled states. By entanglement the quantum systems 
showcase correlations between the qubit states within a 

superposition. One cannot possibly determine the individual 
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quantum state as one depends on the measurement of the 

other [9]. 

Qubits and Parallelism: 

With more and more qubits there is a massive involvement 

of quantum parallelism. Parallelism is that property of 
quantum circuits by which, theoretically all the possible 

outcomes of the quantum circuit can be calculated at the 

same instant of time. So a number of quantum computations 

can result simultaneously. The quantum computations are 

high speed due to this parallelism property [6]. 

Kronecker Product (tensor product) of Qubits: 

Kronecker product (also known as tensor product)  can be 

used to depict superposition of qubits. Kronecker product is 

represented by a  sign. The Kronecker product of 2 
matrices (say A and B) is computed by multiplying each 

element of the 1st matrix(A) by the entire 2nd matrix(B):  
 

 
 

 
 

For example, in a 2-qubit system we can represent the 4 

basis states, |00>, |01>, |10> and |11> using Kronecker 

products [6]:             

|00>= |0>  |0>=  , |01>= |0>  |1>=  , 

|10>= |1>  |0>=  , |11>= |1>  |1>=  .  
 

For n qubits we have simultaneous and possible 2n different 

values as the output [5]. In a quantum circuit parallel 

connection and computation corresponds to Kronecker 

multiplication of their matrices [7].  

QUANTUM GATES 

A quantum circuit consists of quantum logic gates. Through 

a quantum gate one qubit state is mapped to the same or 

some other qubit state. These gates can be composed by 

taking tensor(Kronecker) products (if gates are applied in 

parallel to different parts of the register) and ordinary 

products (if gates are applied sequentially) [7]. Now we will 

be discussing few basic   quantum gates.  

NOT gate: 

Quantum NOT gate is a one qubit gate.Here the state |0  

maps to the state |1  and the state |1  maps to the state |0 . 
Quantum NOT gate can be represented by the matrix 

representation:  

  

Hadamard(also called square-root of NOT gate):    

Here the state |0  maps to the state and the state |1  

maps to the state .  The matrix representation        
of this gate is:  

 

Controlled-NOT (CN) Gate: 

This gate is a two-qubit gate. If the bit on the control register 

is 1, the target bit gets inverted.  This CNOT gate can be 
represented by the matrix representation [3], 

 

 
 

3*3 Toffoli gate(also called controlled-controlled (CCN) 

gate): 

This gate is important for three-qubit input. Here we have 2 

control registers and one target register. If both the controls 

bits are 1, then the target bit gets inverted. The Toffoli gate 
is can also self-sufficiently implement NOT and NAND 

gates[8]. The matrix representation of a 3*3 Toffoli gate is: 
 

 

MULTI-VALUED QUANTUM COMPUTING AND 

CONECEPT OF QUDITS AND QUTRITS: 

Multi-valued quantum logic circuits are a more improved 
and powerful option for quantum computing 

technology(although only in theory and not in a proper 

hardware form).  In multi-valued quantum domain the unit 

of memory is the qudit(quantum digit), and it is a multi-

dimensional(say n) quantum system with a number of basis 

states (say, |0>,|1> . . . , |n − 1>) [4]. If we limit the number 

of quantum basis states to 3, then these basis states {0,1,2} 

are referred to as qutrit (quantum ternary digit) [8]. Like 

qubits in binary quantum logic, qutrit states are represented 

by |0>, |1> , and |2> respectively. 

 
In  multi-valued  quantum  logic,  the  qutrit states  |0>, |1> , 

and |2>  are  represented  by  the  vector  that corresponds  

to  the  spin  of  atomic  particles. |0> is defined as   ,   

 |1> is defined as   and |2> is defined as . 

   

In case of multi-valued quantum logic circuit the 

superposition can be denoted as α|0> + β|1> + γ |2>, where 

, , and  are the respective complex probability 
amplitudes. Similar to binary logic the intermediate states 

cannot be distinguished, rather a measurement of a qudit 

will yield one of the basis states, |0>,|1> or |2>.  The 

probability that this measurement yields state |0> is |α|2, 

state |1> is |β|2 and |2> as |γ|2   where, |α|2+ |β|2 + |γ|2 =1 [8].  

  Like binary logic if we take 2 qutrit system we retrieve nine 

distinct states (for n qutrits we have 3n possible states), |00> 
, |01>, |02>, |10>, |11>, |12>, |20>, |21>, and |22>, which 

also can be shown using Kornecker products [6]: 
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       |00>= |0>  |0>=   ,  

       |01>= |0>  |1>=   ,  

       |02>= |0>  |2>=   , | 

       |10>= |1>  |0>=   ,  

       |11>= |1>  |1>=   , 

       |12>= |1>  |2>=   ,  

       |20>= |2>  |0>=   ,  

       |21>= |2>  |1>=    and  

        |22>= |2>  |2>=   . 

    
The Kronecker product of many such qutrits is essential for 

the efficient storage of information [4].  

Advantages of Multi-valued quantum logic over Binary 

quantum logic: 

This logic has some proposed advantages and efficiency 

over the binary quantum logic. This offers more flexibility 
in the storage and processing of quantum information and an 

alternate route to the scaling up of quantum computation. 

Multi-valued quantum systems can be theoretically used for 

quantum cryptography. Theoretically one more advantage of 

multi-valued logic is that the circuit becomes more compact 

if more and more large multi-valued quantum gates are 

used. Here the error-correction and fault-tolerance are 

advanced [4],[9].  

QUANTUM DECISION DIAGRAMS(QDD):    

Decision diagrams allow for efficient representation of large 

matrices representing and analyzing the logic circuits. 

Quantum decision diagrams (QDDs) were introduced as an 

attempt of developing and representing binary quantum 

logic in a compact format [6].The Quantum Information 

Decision Diagram (QUIDD) data structure allow for implicit 
parallelism when executing Kronecker multiplications on 

them.  

Properties of QuIDD: 

The values associated with terminal nodes are complex 

numbers. 

QuIDD terminal nodes contain integer indices which map 
into a separate array of complex numbers.  

The variable ordering of QuIDDs interleaves row and 

column variables, which favors compression of repeated 

sub-structure. 

The sizes of all vectors and matrices are a power of 2. 

The redundant nodes are removed (be it a row or a column 

index) in the QuIDD, to make it more compact [10]. 

Kronecker product in QuIDD:  

Kronecker products have an advantageous effect of 

representing QuIDD. This showcases redundancy and a 

block pattern which effectively makes the representation 

compact. Now we will show the effect of kronecker product 
in 2 one-qubit hadamard matrices. Here first 3 matrix blocks 

are the same leaving the bottom rightmost block different. 

Thus only one block from the former 3 and the last 

rightmost block can be shown in the QuiDD for a composite 

2 one-qubit hadamard matrix. This property is shown in the 

diagram below: 

 

 
For an n-qubit circuit, the transformation matrix is of size 

2n×2n and the vector representing the initial state of the set 

of qubits is of size 2n. So, the simulation of quantum logic 

circuits using a matrix-vector multiplication method is only 

useful with a very small number of qubits. This led to the 

devising of Quantum Multiple-valued Decision Diagram 

(QMDD).  

QUANTUM MULTIPLE-VALUED DECISION   

DIAGRAMS    

The decision diagram structure eliminates the problem of 

exponential growth of the size of representational matrices. 

QMDD is a decision diagram structure for the compact 

representation and manipulation of quantum logic circuits. 
The QMDD structure can be extended to manipulate multi-

valued quantum circuits in a small amount of time and that 

too with less complexity.  

Characteristics of a QMDD: 

QMDD is created for representing the matrices that can be 

built from an n-variable r-valued quantum circuit. There is 
only one terminal vertex with a value of “1” and has no 

outgoing edges. There are some number of non-terminal 

vertices each labeled by an r2-valued selection variable. The 

variable order, to be labeled for those edges, is x0, x1, …, xn-

1 from the terminal node to the start node. Each selection 

variable appears at most once on each path from the start 

vertex to the terminal vertex. Each non-terminal vertex has 

r2 outgoing edges. For example, for 2 qubit quantum system 

the number of edges will 4 . Each of these edges has a 

complex-valued weight associated with it.  An edge from a 

non-terminal vertex or node xi points to a non-terminal 
vertex or node xj( j < i), or to the terminal vertex. Every 

edge with a weight of 0 points to the terminal node. No non-

terminal vertex has all its outgoing edges all with the same 

weight and pointing to a common vertex. All non-terminal 

vertices are normalized. 
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QMDD Evaluation: 

During a QMDD traversal, from the initial node to the 

terminal node, each variable is traversed at most one time. 

For a particular selection variable, the path from the starting 

vertex to the terminal vertex determined by a particular 
assignment is followed (including the edge leading to the 

start vertex, which is represented just by an arrow). From a 

variable or node, say, xi one follows edge number j where j 

is the value that is assigned to xi. Some traversal paths will 

not include every variable. This particular variable does not 

affect the result for this particular valuation of xi. The 

skipped variables only occur when the exiting edge points 

directly to the terminal vertex of the QMDD and has a “0” 

edge multiplier value. The value associated with a path in a 

QMDD is the product of the edge multipliers on the path 

including the edge leading to the start vertex. 

Creating a QMDD Structure for a combination of gates: 

It is necessary to first build a QMDD structure for each 

individual gate. Each quantum logic gate is specified by the 

base transition matrix M. Since, for binary circuits, the 

dimensions of these matrices are always powers of 2, the 

matrices can always be partitioned into 4 quadrants. Each 
partition has the dimension 2n-1 × 2n-1 which are recursively 

further  partitioned and ultimately the sub-matrices boil 

down to single values representing the weights of the 4 

outgoing edges from a node of the decision diagram. In 

some quantum circuit, the QMDD structure may be a 

redundant node or vertex. If a certain QMDD has redundant 

nodes, then this means that, two or more separate vertices 

with the same weights in all its edges are pointing to the 

same node. The diagram is made a more compact one by 

removing all those vertices and replacing and representing it 

by just one vertex. Therefore the redundant vertex and all its 
information is stored once and no information is lost and yet 

the quantum logic becomes concise. All the QMDD 

structures developed for each gate of the quantum logic 

circuit are amalgamated with the help of a separate 

operation called QMDD multiplication [11]. 

CONCLUSION & FUTURE SCOPE: 

In the present  study we have concentrated on the initial 

concepts of quantum computing(binary and multi-valued 

logic), qubits, qutrits, quantum gates and decision diagrams 

for multi-valued quantum computing logic( 

QUIDD,QMDD).  

 

This study to be further extended to design more logic 

circuits, Quantum Logic Simulators using QUIDD,QMDD 

etc. Multi-valued quantum logic is still theoretical concept. 

There is a tremendous scope in both theoretical as well as 
hardware implementation to support multi valued quantum 

logic circuit. Many more aspects to be explored in Quantum 

computing especially designing quantum algorithm which 

may drastically change the present classical computer 

algorithm. Quantum computing may drastically reduce the 

real power consumption and which may help us to move 

towards green computing. Research area is still open in the 

hardware implementation area of quantum logic.  
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