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INTRODUCTION
Mustard is an important oil seed crop which fulfills about nineteen percent oil requirement of the world [1]. Alternaria leaf 

spots caused by Alternaria brassicae is one of the most destructive disease of this crop which cause 47% yield loss [2]. A. brassicae 
infect foliage and pods of the brassica crop resulting in lesion formation on leaves along with shattering of pods [3].

The disease causing pathogens reduce yield of the edible agronomic and horticultural crops over 10% [4]. A. brassicae is 
a soil borne cosmopolitan fungal pathogen which causes brown spot or Alternaria leaf spot in different crops [5,6]. Most of the 
crop cultivars are susceptible to this pathogen due to which proper management becomes a tricky task [7]. On the other hand, 
fungicides cause environmental issues and become ineffective because fungus may develop acquired resistance against these 
chemicals. These facts necessitate application of long lasting, economical and eco-friendly techniques for disease management 
[8]. The research regarding use of root colonizing bacteria as bio-control agents has gained popularity in recent era. The non-
pathogenic rhizobacteria may be used as a substitute for chemicals to improve plant growth and resistance against different 
pathogens [9]. The metabolic activities of this plant growth promoting rhizobacteria (PGPR) including synthesis of growth hormones, 
siderophore production and phosphate solubilization improve growth and vigor [10-13]. Similarly, the PGPR with ACCD activity have 
an additional advantage of reducing production of ethylene and reactive oxygen species in plants under stress [14]. Hence, PGPR 
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with ACCD activity help plants to ameliorate the detrimental effect of biotic and abiotic stress [15,16]. These PGPR improve metabolic 
activities resulting in increased root growth and subsequent nutrients uptake in associated plants [17]. Some rhizobacteria also 
produce antimicrobial substances such as lactic acid, exotoxins, bacteriocins, antibiotics and lyso-zymes [18]. Researchers have 
found that non-pathogenic entities may stimulate defense system of plants prior to invasion of disease causing pathogen [19,20]. 
PGPR also generate antagonistic chemicals which decline injurious effects of pathogens and improve plant resistance against 
disease causing agents [21]. This plant defense mechanism is known as induced systemic resistance (ISR) and is very effective 
disease managing strategy [22]. PGPR may induce systemic resistance in associated plants by triggering pathogenesis related (PR) 
genes. PR genes are involved in activation of defense related enzymes such as peroxidase (PO), polyphenol oxidase (PPO) and 
phenylalanine-ammonia-lyase (PAL). The phenolic compounds which are synthesized by PPO also play a pivotal role in development 
of plant resistance.

The aim of present study was to screen rhizobacteria which may manage Alternaria leaf spot in pepper and to elucidate the 
disease managing strategy.

MATERIALS AND METHODS
Evaluation of Bio-Control Efficacy of Rhizobacteria 

The rhizobacteria and virulent strain of A. brassicae used during current research were obtained from University of the 
Punjab, Lahore, Pakistan (Table 1). The rhizobacteria inoculum (104 cfu/mL) was obtained by taking OD of 0.1 at 600 nm. 
Pathogen inoculum was prepared by harvesting both micro- and macro-conidia from seven days old cultures grown on sterile PDA 
media at concentration of 1 x 103 conidia/ml, by haemocytometer.

The pre-sterilized brassica seeds were sown in sterilized loamy soil placed in plastic pots. The soil of 30 days old seedlings 
was inoculated with 50 ml bacterial inoculum by soil drench method. Next day seedlings were sprayed with pathogen inoculum 
with the help of hand spray. The distilled sterilized water was used for control treatments. The effect of disease rating scale and 
subsequent disease index and control effects were analyzed after 25 days of inoculation [23,24]. 

Table 1. Potential of Bacterial spp. to control Alternaria leaf spot disease in Brassica campestris; Values are mean ± standard deviation (n=3). 
Different letters represent significant difference at (P ≤ 0.05) according to ANOVA and DNMRT. 

Bacterial spp. Disease Index (%) Control Effect (%)
Acinetobacter sp. 334 22.45 ± 1.58bc 13.53 ± 1.53f
Acinetobacter sp. CS9 18.01 ± 2.31c-e 24.73 ± 3.83e

Aminobacter aminovorans 374 23.17 ± 3.46bc 10.46 ± 2.93fg
Bacillus fortis 162 18.16 ± 2.86d-f 28.21 ± 2.10de

Bacillus megaterium ZMR-6 15.82 ± 2.26f 46.14 ± 3.37bc
Bacillus subtilis 170 16.41 ± 3.92ef 35.51 ± 3.62bc
Bacillus subtilis 189 17.00 ± 2.60ef 31.42 ± 2.91cd

Bacillus thuringiensis 199 17.26 ± 0.96ef 32.37 ± 2.73cd
Bordetella pertussis 263 20.74 ± 1.76bc 17.25 ± 1.16ef

Burkholderia capacia 337 21.87 ± 1.75b-d 12.32 ± 1.53f
Burkholderia cepacia CS8 18.34 ± 3.67d-f 29.15 ± 2.44de

Enterobacter sp. CS2 22.41 ± 2.26b-d 13.23 ± 2.72f
Microbacterium lacticum 261 25.30 ± 3.43b 03.71 ± 0.57h

Pseudomonas fluorescens 083 25.34 ± 1.08b 06.58 ± 1.05gh
Pseudomonas fluorescens RB4 13.83 ± 3.05g 49.36 ± 4.64a

Sterilized distilled water 56.64 ± 4.23a -

The bio-control effect (%) was determined as under:

 ( )            %
    

100Disease index of pathogen control diseased index of bacterial controlBio control effect
Disease index of pathogen control

= ×
−

−

Preparation of Plant Extract

The prewashed plant samples (2 g) were frozen by using liquid nitrogen and ground to powder form with the help of mortar 
and pestle. The ground samples were re-suspended in cold phosphate buffer (0.05 M) containing polyvinylpolypyrrolidone (0.5 g) 
at pH 7.0 (1:5 plant tissues to buffer ratio). After homogenizing this mixture by vortex mixture, the homogenate was centrifuged at 
14,000 × g at 4°C for 20 min [25]. Subsequently the supernatant were used for evaluation of PO, PPO and PAL activity. 

Analysis of PO Activity

PO activity was determined by measuring the guaiacol oxidation in the presence of hydrogen peroxide (H2O2) as described 
by Fecht-Christoffers et al. [26]. For evaluation of PO activity, 100 μl crude plant extract was mixd with 3 ml solution containing 1 
ml each of 0.25% guaiacol H2O2 (0.1 M) and phosphate buffer (0.01 M). The PO activity was measured colorometrically with the 
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help of spectrophotometer by taking absorbance at 470 nm at an interval of 2 min. The solution devoid of plant extract served as 
a blank [27].

Analysis of PPO Activity

Plant extract was mixed with 1.5 ml of sodium phosphate buffer (0.1 M) at 6.5 pH and 200 μl of catechol (0.1 M). The PPO 
activity was measured with the help of spectrophotometer by taking absorbance at 410 nm [27].

Analysis of PAL Activity

The plant extract (100 μl) was mixed with 0.1 M borate buffer (1.15 ml) at pH 8.8 and 10 mM L-phenylalanine (1 ml). The 
homogenate was placed in water bath at 40°C for 60 min. The reaction was stopped by adding 250 μl of hydrochloric acid (5 
N). The trans-cinnamic acid generated from L-phenylalanine was quantified spectrophotometerically at 290 nm to evaluate PAL 
activity [27].

Estimation of Total Phenolics

Total phenolics were quantified according to Zieslin and Ben-Zaken [28]. For this purpose, 1 g plant sample was extracted 
at 70°C with 80% methanol (10 ml) for 15 min. Then 1 ml of this extract was homogenized with 5 ml distilled water and 1 N 
Folin-Ciocalteau reagent (250 μL) at room temperature. By taking gallic acid as blank, the quantity of phenolics in mixture was 
estimated spectrophotometrically at 725 nm.

Evaluation of Growth Promoting Attributes of Screened Rhizobacteria

The ACCD activity of screened rhizobacteria was analyzed according to Penrose and Glick [29]. While, phosphate solubilization, 
siderophore production and auxin synthesis potential of screened bacteria was analyzed according to Mehta and Nautiyal, Schwyn 
and Neilands and Nautiyal [30-32] respectively.

Evaluation of Screened Rhizobacteria Under Field Conditions

For field trial, split plot design having 5 replicates for each treatment was used. The experimental plot was divided into beds 
having 3 x 2 m2 sizes. After priming brassica seeds with bacterial inoculum, these were sown and pathogen was applied after 25 
days of sowing. The data regarding plant growth attributes was evaluated after 90 days of sowing.

Preparation of Peat Moss Based Inoculum of Bacterial Inducers 

The peat moss was sterilized with the help of autoclave and inoculated with inoculum of screened rhizobacteris. For single 
bacterial inoculation, 100 g sterilized peat moss was inoculated with 50 ml of bacterial. For mixed bacterial formulation 100 gm 
sterilized peat moss was inoculated with 25 ml of both bacterial inoculums. 

Statistical Analysis

The differences between the values obtained were estimated by performing one-way analysis of ANOVA and DNMRT at a 
significance level of 0.05 in DSASTAT software. Each trial was conducted for 5 biological repeats and the values represented in 
table’s exhibit the average values of 5 replicates.

RESULTS
Potential of Bacterial Spp. against Alternaria Leaf Spot Disease of B. Campestris 

The aim of current study was to screen some native bacterial spp. having potential to induce systemic resistance in B. 
campestris against Alternaria leaf spot caused by A. brassicae. In case of greenhouse experiment, typical symptoms of Alternaria 
leaf spot were observed on pathogen challenged plants. In general, the rhizobacteria inoculated plants challenged with pathogen 
showed delay in leaf spot symptoms, to some extent, as compared with pathogen control plants. However, B. megaterium ZMR-
6 and P. fluorescens RB4 inoculated plants exhibited reduced disease index and better control effect (Table 1). Therefore, B. 
megaterium ZMR-6 and P. fluorescens RB4 were screened for downstream experimentation. 

Elucidation of Biochemical Basis of Induced Resistance 

During present study, inoculation of bacterial spp. helped B. campestris plants to synthesize significantly higher quantity of 
phenolics, PPO, PAL and PO in contrast to pathogen control (Table 2). It was observed that B. megaterium ZMR-6 and P. fluorescens 
RB4 enhanced phenolics level up to 62.28% and 49.16% respectively as compared with sterilized water control. Similarly, an 
improvement of 38.45%, 52.83% and 49.95% was observed in PPO, PAL and PO levels by inoculation of B. megaterium ZMR-6 as 
compared to sterilized water control. 
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Table 2. Effect of Bacterial spp. on elicitation of defense related biochemicals in Brassica campestris plants; Values are mean ± 
standard deviation (n=3). Different letters represent significant difference at (P ≤ 0.05) according to ANOVA and DNMRT, IOUC=Increase over 

untreated control.

Bacterial spp. Phenolics 
(µg/h/gfw) % IOUC PPO Activity

( µg/h/gfw) %IOUC PO Activity
( µg/h/gfw) %IOUC

PAL
Activity 

(µg/h/gfw)
% IOUC

Acinetobacter sp. 334 1.51 ± 
0.06f-h

16.51 ± 
2.67j

5.46 ± 
0.51e-g

25.67 ± 
1.52f

1.05 ± 
0.15e-g

19.61 ± 
1.19g

2.01 ± 
0.39bc

04.37 ± 
0.82fg

Acinetobacter sp. CS9 1.76 ± 
0.07d-f

32.76 ± 
2.25fg

5.92 ± 
0.59bc

32.48 ± 
2.07c-e

1.23 ± 
0.08cd

35.21 ± 
2.53d

2.09 ± 
0.64bc

16.04 ± 
2.46e

Aminobacter aminovorans 374 1.73 ± 
0.09d-f

30.87 ± 
1.91gh

5.54 ± 
0.62e-g

35.55 ± 
4.48e

1.21 ± 
0.18d

30.98 ± 
2.18e

2.05 ± 
0.42bc

07.29 ± 
1.04f

Bacillus fortis 162 1.82 ± 
0.10c-e

39.14 ± 
2.92e

5.42 ± 
0.37f-i

24.53 ± 
2.43f

1.22 ± 
0.13d

30.78 ± 
2.51e

2.14 ± 
0.08b

12.45 ± 
2.03e

Bacillus megaterium ZMR-6 2.14 ± 
0.09c

53.47 ± 
4.52c

6.89 ± 
0.72ab

39.56 ± 
3.55c-e

1.41 ± 
0.12a

52.70 ± 
3.44a

3.01 ± 
0.36a

54.87 ± 
4.63b

Bacillus subtilis 170 2.06 ± 
0.15cd

48.82 ± 
2.50cd

5.12 ± 
0.60i

17.54 ± 
2.07g

1.09 ± 
0.08e-g

18.58 ± 
3.49gh

2.04 ± 
0.74bc

06.92 ± 
1.14f

Bacillus subtilis 189 2.01 ± 
0.08cd

46.17 ± 
2.36ef

6.02 ± 
0.70d-f

42.83 ± 
2.30cd

1.24 ± 
0.67cd

39.43 ± 
2.43c

2.64 ± 
0.13ab

43.71 ± 
6.53d

Bacillus thuringiensis 199 1.67 ± 
0.11e-g

28.19 ± 
2.42h

5.78 ± 
0.82fg

38.46 ± 
3.69de

1.07 ± 
0.07e-g

18.68 ± 
1.08gh

1.94 ± 
0.71bc

01.46 ± 
0.13g

Bordetella pertussis 263 1.58 ± 
0.14gh

20.86 ± 
1.92ij

5.19 ± 
0.61gh

28.83 ± 
1.84ef

1.15 ± 
0.26de

22.82 ± 
1.65fg

2.090 ± 
0.28bc

4.53 ± 
0.56g

Burkholderia capacia 337 1.80 ± 
0.12c-e

37.68 ± 
3.82ef

5.85 ± 
0.32d-g

29.16 ± 
3.27f

1.18 ± 
0.07d-f

25.86 ± 
1.92f

2.79 ± 
0.76ab

48.72 ± 
3.58c

Burkholderia cepacia CS8 2.26 ± 
0.09b

69.26 ± 
3.53a

6.28 ± 
0.53cd

43.94 ± 
2.82c

1.06 ± 
0.13fg

16.52 ± 
1.50gh

2.87 ± 
0.11a

48.20 ± 
2.68c

Enterobacter sp. CS2 1.83 ± 
0.08c-e

39.87 ± 
2.24e

6.53 ± 
0.72bc

55.98 ± 
4.67b

1.17 ± 
0.06d-f

25.80 ± 
2.83f

2.64 ± 
0.28a

43.42 ± 
3.05d

Microbacterium lacticum 261 1.79 ± 
0.08d-f

36.95 ± 
2.63ef

5.04 ± 
0.61hi

18.01 ± 
2.27g

1.07 ± 
0.19g

14.76 ± 
1.47h

2.17 ± 
0.31b

13.14 ± 
2.21e

Pseudomonas fluorescens 083 1.60 ± 
1.05e-g

23.08 ± 
1.05i

6.05 ± 
0.95c-e

45.88 ± 
5.36c

1.28 ± 
1.05bc

40.26 ± 
1.05c

2.01 ± 
0.26bc

06.15 ± 
1.26f

Pseudomonas fluorescens RB4 2.19 ± 
0.09b

65.15 ± 
4.28b

7.05 ± 
0.88a

68.59 ± 
9.21a

1.34 ± 
0.09b

47.59 ± 
3.82b

3.18 ± 
0.51a

62.45 ± 
7.39a

Sterilized distilled water 1.49 ± 
1.05gh

11.40 ± 
1.05k

5.34 ± 
0.24g-i

28.34 ± 
2.75f

1.08 ± 
1.05fg

15.49 ± 
1.05gh

1.97 ± 
0.17bc

04.65 ± 
0.85fg

Growth Promoting Attributes of Screened Bacteria

Results for growth promoting attributes exhibited that B. megaterium ZMR-6 was positive for ACCD activity while P. fluorescens 
RB4 was negative for this property. The both screened rhizobacteria showed capability of phosphate solubilization, siderophore 
production and auxin synthesis. 

Field Experiment

Likewise greenhouse experiment, the screened bacterial spp. showed excellent results against Alternaria leaf spot disease 
under field trials. Co-inoculation of B. megaterium ZMR-6 and P. fluorescens RB4 proved more successful in management of 
Alternaria leaf spot disease as compared to individual application of bacterial sp. The screened rhizobacteria also improved growth 
and yield along with protecting B. campestris plants from leaf spot disorder during field experiments. Bacteria inoculated plants 
demonstrated significant improvement in plant height and total weight in contrast with un-inoculated control and pathogen treated 
plants. Co-inoculation of both bacterial spp. endorsed plant length up to 34% and 25% under I and II experiment, respectively. 
Similarly, B. campestris plants primed with bacterial spp. showed significantly higher number of pods. Thus current observations 
favor the use of PGPR to improve growth and mange disease of plants under field conditions.

DISCUSSION
Different beneficial bacteria and fungi may protect plants against biotic and a biotic stress [33-35] has reported that phenolic 

compounds protect plants from different pathogens. The screened bacterial inducers enhanced production of phenolic compounds 
(Table 3). Akram and Anjum [23] have demonstrated involvement of antioxidant enzymes (PAL, PPO, PO) in disease resistance. 
Some other researchers have also revealed role of these enzymes in plant disease resistance [36]. These defense related enzymes 
play a key role in phenylpropenoid pathway of plants which improve plant vitality and vigor. These enzymes also improve disease 
resistance in plants by degradation of pectolytic enzymes synthesized by disease causing fungi and bacteria [37,38]. Van Loon [39] 
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found that defense related enzymes increase the formation of lignin which acts as a barrier against pathogen infection. Ryals et al. 
[40] observed involvement of PAL in the phenylpropanoid pathway. PAL is also play a role in formation of lignin and flavonoids which 
restrict pathogen infection in plants [41]. PO helps in deposition of polysaccharide along with lignifications and suberization and 
lignification of plants which reduce the chances of disease development [42,43]. PPO helps in formation of antimicrobial compounds 
which enhance systemic resistance in plants against disease causing agents [44,45]. 

Table 3. Potential of selected bacterial spp. on Alternaria leaf spot management in Brassica campestris under field conditions; Values 
are mean ± standard deviation (n=3). Different letters represent significant difference at (P ≤ 0.05) according to ANOVA and DNMRT. BM=B. 

megaterium ZMR-6, PF=fluorescens RB4, PC=Pathogen Control, UC=Untreated Control.

Treatments Experiment-I Experiment -II
Disease index Control effect Disease index Control effect

(%) (%) (%) (%)
BM 35.72 ± 3.16c 56.14 ± 5.42b 26.75 ± 2.34bc 59.14 ± 4.32b
PF 43.51 ± 4.64b 45.52 ± 4.63c 30.26 ± 3.14b 61.16 ± 4.53b

BM ± PF 21.94 ± 3.92d 64.43 ± 8.61a 18.32 ± 1.23d 73.68 ± 6.24a
PC 79.38 ± 8.61a ND 74.65 ± 05.43a ND
UC ND ND ND ND

During current study screened bacteria induced improved activity of defense related biochemicals and enzymes in brassica 
plants resulting enhanced systemic resistance [46,47]. Since each bacterial isolate was obtained from different resource, therefore 
each bacterium showed difference in disease reduction [33,48]. Our results for improved disease resistance in case of combined 
application of screened bacteria are in accordance with the findings of [49]. Our results regarding higher production of defense 
related biochemicals and enzymes in combined bacterial application confirm findings of Raupach and Kloepper [50]. Jetiyanon and 
Kloepper [51] also reported improved production of defense related metabolites and reduced disease level in plants inoculated with 
PGPR consortium. 

Nihorimbere et al. [52] found enhanced growth in plants assisted with disease reducing microbes. Similarly, Bacon and 
Hinton (2002) [53] revealed improved plant growth under the influence of bacterial inducers. Our study also showed improved plant 
growth, biomass production and pod formation in plants assisted with bacterial inducers. PGPR synthesize growth promoting 
hormones which may improve plant growth [54]. Glick et al. [55] reported that ACCD producing PGPR lowers ethylene production 
resulting improved biomass production in plants under stress. On the other hand some other scientists observed that siderophore 
producing rhizobacteria improve iron availability to plants which in return improve growth of plants [56-58]. Our results are also in 
congruent with findings of Adhikari et al. [52]. Bacon and Hinton [47] also found role of bacterial inducer in improvement of growth 
in co cultivated plants (Table 4). 

Table 4. Effect of bacterial spp. on growth attributes of Brassica campestris under field conditions; Values are mean ± standard 
deviation (n=3). Different letters represent significant difference at (P ≤ 0.05) according to ANOVA and DNMRT. BM=B. megaterium ZMR-6, 

PF=fluorescens RB4, PC=Pathogen Control, UC=Untreated Control.

Treatments Experiment 1 Experiment 2
Plant height Total weight (g) Number of Plant Height Total weight (g) Number of

(cm) Fresh Dry pods (cm) Fresh Dry pods

BM 31.42 ± 
1.94b 108.34 ± 7.54bc 12.45 ± 

2.32ab
17.35 ± 
1.74bc

36.07 ± 
3.26b

123.54 ± 
7.82b

19.36 ± 
2.43b

16.45 ± 
2.35c
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PF 28.53 ± 
2.17bc 97.48 ± 6.46c-e 9.82 ± 1.68b-

d
19.63 ± 
2.04b

32.76 ± 
2.83bc 107.16 ± 6.43c 14.89 ± 1.96c 13.48 ± 

2.62cd

BM ± PF 36.86 ± 
3.24a 117.82 ± 8.63ab 14.25 ± 

1.53a
25.81 ± 
3.46a

39.45 ± 
4.05ab

148.94 ± 
8.76a 24.68 ± 3.14a 24.13 ± 

1.97a

PC 17.18 ± 1.72e 48.37 ± 4.25g 5.94 ± 
01.06de

08.16 ± 
0.82d

19.82 ± 
2.46e

63.56 ± 
06.42d 08.69 ± .93e 05.65 ± 

1.05e

UC 25.68 ± 
2.36cd 89.68 ± 06.96ef 7.92 ± 

01.36cd
18.73 ± 
2.81b

29.86 ± 
2.92cd

119.53 ± 
9.11b

12.82 ± 
1.34cd

18.94 ± 
1.58bc

CONCLUSION
The present study exhibited that B. megaterium ZMR-6 and P. fluorescens RB4 are capable to induce systemic resistance 

and reduce Alternaria leaf spot disease in brassica. This improved disease resistance may be attributed to enhance production of 
defense related biochemicals and enzymes in plants under the influence of these rhizobacteria. Moreover, the growth promoting 
characteristics of B. megaterium ZMR-6 and P. fluorescens RB4 improve growth, biomass production and yield of associated 
brassica plants in an environmentally safe way.
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