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Abstract: In this In this paper a new estimate on degree of approximation of conjugate function f conjugate to a

function f belonging to Lipa class has been determined by (E,1) (C,1) summability of conjugate series of a Fourier
series..
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. INTRODUCTION

A function fe Lipa if|f(x+t)—f(x)|:o(|t|°‘j for0< a<l.

The degree of approximation E(f) of a function f: R— R by a trigonometric polynomial t, of degree n is defined by
(Zygmund (1959))

En() =tn = sup.{|tn (00— F(x)| :x e R
Let f be 2r periodic, integrable over (-w,m) in the sense of Lebesgue and belonging Lipa class, then its Fourier series
is given by

1 & . & . . L
f(t)==a5+ Z (ap cosnt+b, sinnt) = % ag+ z A, (t) and its conjugate series is
n=1 n=1

i (an sin nt—b, cosnt)=— i B, (t) Q
n=1 n=1

0 n
Let > up be the infinite series whose n" partial sum is given by S, = > uy.
n=0 k=0

n
The Cesaro means (C, 1) of sequence {S,} is o, = Ll ZSK .
k=0
If lim o,, =S then sequence {S,} or the infinite series z U, Iissaid to be summable by Cesaro means (C,1) to S.
n—o0 n=0
(Hardy (1913), p.96)

n
The Euler means (E, 1) of sequence {S,} is E® = in Z(njsk
k=0

If lim E,i,l) = Sthen sequence {S,} or infinite series z U, is said to be summable by Euler means method (E, 1) to S.
N—o0 n=0

The (E, 1) (C, 1) transformation of {S, }, denoted by tEC , is given by

k
EC 1 &(n 1
tr = — — > 5.
noogn k:o(kjkﬂz '

r=0

If lim tEC =S then sequence {S,} or infinite series Z U, is said to be summable by (E, 1) (C, 1) means method to S.
n—o0 n=0
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If a function f is Lebesgue integrable then

0= & fulgerc 20
0

T
— 14
_—2—ngll_rl10£\y(t)cot(t/2)dt

exist for all x (Zygmund (1959), p. 131).
We use following notations.

v(®) =f(x+1)-f(x-1),

IIIEC 1 & (nj sin(k + 1t
n = .
2M+? (k +1)sin?(t/2)

717k:0k
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There are several results, for example, Alexits (1965), Chandra (1975), Sahney & Goel (1973) and Alexits & Leindler
(1965) for the degree of approximation of functions f eLipa, but most of these results are not satisfied for n=0, 1 or
a = 1.Therefore, this deficiency has motivated to investigate degree of approximation of functions belonging to Lip
a considering cases 0< o <1 and a = 1 separately. Considering theses specific cases separately, we have obtained better

and sharper estimate of f(X), conjugate of Lip a than all previously known results as follows,

Theorem: If f: R — R is 2 periodic, Lebesgue integrable function in (—m,m) and belonging to Lip o,

0< o <1, then the degree of approximation of f(X), the conjugate of a function feLip a by (E,1) (C,1) means

~EC n k ~
tnh :iz n LZ Sr of the conjugate series of the Fourier series (1) satisfies, for n=0, 1, 2...,
2" K k+175
e} 1
~EC ~EC (n+1)*
th —f| = sup [th (X)-T(X)|=
—<X<T
log(+1)ne
@ O( (n+1)
1. LEMMAS

We need the following lemmas for the proof of the theorem.

-EC n .
Lemmal: Let Np (t) = Lz Z (HJM then
22 = \KJ (k+1)sin 5

_EC
No (=0 1] for 0<t <1
t n+1

_EC o .
Proof: Nn (t) = ; Z (an

2"2n (\K) (k+Dsin?
1 i(n) sint
S oM2n k=0 k sinZ%

n t
2n+175 k=0 K sin%
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< -
2n+1ﬂ:t kZ::O k
1
2mt

ofy

-~ n -
Lemma2: Let Np (t) = ;2 (EJM then
2" (2o \KJ (k+1)sin

t
2
_EC
Nnp (1)=0 12,forl <t <m.
(n+1)t n+1

_EC n

Proof: N (1) = 1 Z n) sin(k -+t
' n T oon+2 k 2t
21 k=0 (k +1)sin 5
- EC n sin(k +1) t
s L (o) e
2n+ T k0

k) (k +1)‘sin2%‘

1 (n] 1
22 WK (k +1)‘sin2%‘

I 1
il
2(n +1)t 2"

T
2(n +1)t?

1
0| ——|
[(n+1)t2]

V. PROOF OF THE THEOREM

<

The n" partial sum Sp (x) of conjugate series (1) is given by
- 1 cos(n +o)t
sn(x)—[——j y(t) cotd dtJ: j

2n 0 2

~EC
tn transform of the Sn (X) is given by

N v a
0
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1
n+l ~

j y(t) Nn (t) dt +

n ~EC
[ wONn (1) ot
0 1

n+l
=1ly+1,, say.
Using Lemma 1 and the fact that y € Lip o, we have,
1
n+l
I|=0] [t**dt
0

%
5 [t_J
o
0
ZOL 1 ]
(n+D*¢

Now, using Lemma 2, we have

[lz]:o(ij T %2 dt

n+1 1
n+l

a-1
[Ll {t 1 , forO<a<l

n+l

fora=1

1 o-1

O( ! j + , forO<a<1
1-a (n +]_)°‘ n+1
O(Lj [log(n+1)x], for a=1

n+1

°[<n+11>a] |

O{M} , for o=1.

(n+1)

for0<ax<l

Collecting (.4), (5), (6); we have

Copyright to IJIRSET Www.ijirset.com

(4)

®)

(6)

839


http://www.ijirset.com/

or

— ISSN: 2319-8753

LY International Journal of Innovative Research in Science, Engineering and Technology
I[JIESET - Vol 2, Issue 3, March 2013
1
O( “J , for0<a<1l
|80 -1p0 [ = L+
of L )sofloelnt)m) ey
n+1 (n+1)

O( ! a}, forO<a<l

n+1)me

(
(n+1)

J , fora=1

~EC ~EC
th —f | =supq|th X)-F(X)|:xeR

0

(@] ! , for O<a<l
] Un+2)

O(%J, fora=1.

This completes the proof of theorem.

V. CONCLUSION

In this paper a new theorem on degree of approximation of conjugate function f conjugate to a function f belonging to
Lipa class has been established by (E,1) (C,1) summability of conjugate series of a Fourier series.
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