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Theory
ABSTRACT

In 1961, Chandrasekharan and Narasimhan showed that for a large
class of Dirichlet series the functional equation and two types of
arithmetical identities are equivalent. In 1992, Hawkins and Knopp
proved a Hecke correspondence theorem for modular integrals with
rational period function on theta group. Analogous to Chandrasekharan
and Narasimhan, in 2015 Sister Ann M. Heath has shown that the
functional equation in Hawkins and Knopp context and two type of
arithmetical identities are equivalent. She considered the functional
equation and showed its equivalence to two arithmetical identities
associated with entire modular cusp integrals involving rational period
functions for the full modular group. In this paper we extend the results
of Sister Ann M. Heath to entire automorphic integrals involving
rational period functions on discrete Hecke group.
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INTRODUCTION

Let {An} and {un} be two strictly increasing sequences of positive real numbers diverging to «, as n — « and let {an} and
{bn} be two sequences of complex numbers not identically zero. Consider the Dirichlet series ¢ and y defined by

oo
QAp

[e’e) bn
o(s) = o and Y(s) = Z lTS
n n=1"mn

n=1

with finite abscissas of absolute convergence 0g and op, respectively. Suppose that ¢ and y satisfy the functional

equation

L(s)p(s) =T(6 — s)(0 — s), (1.1)
where 0 > 0. Chandrasekharan and Narasimhan [1] showed that the functional equation (1.1) is equivalent to the
following arithmetical identities (1.2) and (1.3).

S+p

1 ’ 1)’ z\ 2
_— anz)\np<> by, () Js+pldmy/unzt + Qp(x), 1.2
i 2 o = (5r) b () eelinvmm) + Qo (12)
where >0, p>28—6—1 | J,(z) denotes the usual Bessel function of the first kind of order v,

1 O(s)(2m)sws TP — B
Qp(z) = M}{stv Z | b |

m\»—‘

n=1
-+ R,(s). 1.3
Z + 16772,” )5+P+§ P( ) ( )

n:l

d\’ |1
(250) [ V] n s o
S das S

n=1

where Re s > 0, p is non-negative integer satisfying p > 5 — § — %and

1 O(2)(2m)*I'(2z + 2 1)2=°
RF(S) _ 7\% (Z)( 7T) ( Z+ p+ ) S_QZ_Zp_le.

2mi T(z+p+1)

Note that if B > O, then identity (1.3) holds for p satisfyingp > -0 — 21 pEZ=0.

In [3], Hawkins and Knopp proved a Hecke correspondence theorem for modular integrals with rational period functions
on g, (generated by Sz =z + 2 and Tz = —1/z), a subgroup of the full modular group I(1). In their work, the functional
equation takes the form

®(2k — 5) — i?*®(s) = Ry(s), (1.4)

o) = () 1 i

where

is associated with a modular relation involving rational period function q(z) of the form

F(z+)\) =F(z) and 2z %F (j) = F(z) +q(»), (1.5)

where A =\, =2cos(Z) ,with3<neN [J{oo} and 2k e Z.
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Analogous to Chandrasekharan and Narasimhan, Sister Ann M. Heath [4] showed that the functional equation in the
Hawkins and Knopp context (1.4) and the arithmetical identities are equivalent. To prove her results, she used the
fact that the correspondence theorem between the functional equational (1.4) and the associated entire integrals
form with rational period function for the full modular group (1). We [9] also used techniques of Chandrasekharan
and Narasimhan to prove results analogous to those of Sister Ann M. Heath and established equivalence of two
arithmetical identities with functional equation associated with automorphic integrals involving log-polynomial-period
functions on the discrete Hecke group.

In this paper we use the techniques of Chandrasekharan and Narasimhan [1] and extend the results of Sister Ann M.
Heath [4] to entire automorphic integrals involving rational period functions on discrete Hecke group G(A).
This paper is organized as follows: In section two we review some results concerning, Heck groups, automorphic
integrals with rational period function and present some preliminary results. In section three we present our main
results with their proofs.

Preliminaries

In this section we review some terms and results that are useful in the coming sections.
Recall that the Hecke group G(\), where A & R*, is defined as the subgroup of SL,(R) given by

aor-{(5 )-( 1))

Equivalently G(A) is generated by the linear fractional transformations S(z) =z + A and T'(z) = — i . The element of G(A)
act on the Riemann sphere as linear fractional transformation, that is Mz = %fdé for
m- (@ b
“\e d)eG(N),and z € C {0},

thus M and —M can be identified with the same linear fractional transformations. Hecke [6] showed the group G(A) is
discrete (operates discontinuously) as a set of linear fractional transformations on the upper half plane

H = f=ztiy:y> 0} if and only if either A > 2 or A = )\, := 2608(%), with 3<peN|J{oo}.For A> 2 and A=),

we have the following relations respectively,

T?=—1,T*=(S,,T)"=—1.
Itis clear that G(A3) = G(1) =T'(1) is the full modular group, and G(A.,) = I'yis the familiar theta group.

Suppose F'(z) is a meromorphic function in the upper half plane H that satisfies (1.5). Further assume that F has Fourier
series expansion of the form

oo

F(2) =) ame™™m/, (2.1)

where §z =y > y, > 0and v € Z. The function F is called an automorphic integral of weight 2k for the Hecke group
G(\), with rational period function (RP F ), g(z). If g = O then F is an automorphic form of weight 2k on G(A).
If Fis an automorphic integral and holomorphic in H (that is, v > 0) and satisfies the growth condition
| F(2)[<C (121" +y77) ,S(2) =y >0,
for some constants C, o, 8> 0, and z € H , one can show that the coefficients an, in (2.1) satisfy
A = (9(m5)7 m — 00.
In this case, F is called an entire automorphic integral of weight 2k on G(A) with rational period function g.

* *
For M = (C d) € G(A) the stroke or slash operatoris defined by
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FIM = Fly, = (cz +d) > F(M?2).

Thus the second automorphic relation (1.5) can be expressed as F' |T'= F + ¢. In general, for any M in G(A) there is a
corresponding period function gy such that F'|M = F + qas . The slash operator satisfies F' |M;Ms = (F'|M;)| M, for
M, M, € G()\) and hence the family of periodic functions {qa;: M € G(\} are related by

v = O | Ma + qa,, My, Ma € G(N). (2.2)
Using the relation T2 = —|,(2.2 imposes a relation on the (RPF) q,
q|T +q=0. (2.3)

And using the relation  (Sx, T)" = —I for th = A, = 2cos (%) ,p €Z, p>3,imposes another condition on (RPF) g,

g| (S\,T) " +q| (S,T) 2+ +q| (5\,T) +q=0. (2.4)

Marvin Knopp [7] proved that the finite poles of a rational period function on (1) are only at O or real quadratic
irrationals. He also showed that if q is a RPF of weight 2k > O with poles in Q, then for some constants aQ, a1 € C,

Jao (1= 2%) if k>1,
q(z)_{ao(1;)+0‘; it k=1

Observe that if F'(z) = —ag, then (F|T)(z) = F(z) + q(z) implies that z=2*F  (=}) — F(2)

- q(z) and hence
q(z) = ap (1 —272F)

Thus we consider q(z) = ag (1—272 ) as the trivial period function of weight 2k € R.

The following lemma is stated in the work of Hawkins and Knopp [3], where their underlying group is ', and generalized
to the general Hecke group and multiplier system by Hassen [2].

Lemma 2.1. Nontrivial rational period function on the Hecke groups satisfying (2.3) and (2.4) exists only if the
weight 2k is an integer.

Wendell-Culp-Ressler in ([8], Lemma 3) showed that the poles of any rational periodic function g of weight 2k, k & Z+ on
With appropriate modifications to fit for the current context of functions on G(A), the work of Hawkins and Knopp [3] can
be used to state a special form of RP F for the solution of (2.3). This form is given by the following lemma.

Lemma 2.2. Forr € Z, aj€ R\ {0}, C,,C; € C forj=1,2---,p,let f,(z,0)=2z""— (=1)"2~2**" and
fr(z,05) =(z— ;)" — (—l)rozj_rz’%“”(z + ai)ir . Then

J

p M
q(z) = Z Cyfr(2,0) + Z Z Crjfr(z,05) and satisfies q | T+ q = 0. (2.5)
k<r<L j=1r=1

Theorem 2.1. Suppose F is an entire automorphic integral function of weight 2k, k ¢ Z* for G(A) with (RPF ) q(z), where q
has the form described by Lemma 2.2. Suppose further that F has a Fourier series expansion of the form

F(z) = Z A €2, with — apm = O(mP) B>0, m = occ. (2.6)
m=0
o(s) = Z amm™°  and ®O(s) = <2;r) L(s)e(s), s =0 +it. (2.7)

m=1

Then ®(s) has a meromorphic continuation to the whole complex plane and can be expressed in the form of ®(s) = D(s
+ D%s) 4+ E°(s) + Ef(s) + EB(s),

where
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D(s) = [ (Flig) - ao {y +y}dyy (2.8)
D(s) = —ao{i - - f;k} (2.9)
Z'Qk
Eozkg;LCT(—i)’” [Tis +T_(2k_8)], (2.10)
u P H (- [1 1
E (S) = —;;CTjW{SQFl |:1,’I“7 1+ S5 M]
—|—L2Fl {1,7‘;1—!—(21@—5);,1] } (2.11)
(2k — s) (icj +1)
p k r
EP(s) =i "N "y (j) B (2k — s;1 — (2k — s)) (i) 7°. (2.12)
j=1r=1 J

Moreover, ®(s) satisfies the functional equation
® (2k — s) —i%*® (s) = R(s), where (2.13)
R(s) = EB(2k — s) — i**EB (s)

and >F4 [a, b, ¢; z] is the hypergeometric function and B(a, b) is the Beta function.
The proof of Theorem 2.1 is similar to that of Hawkins and Knopp [3], with appropriate modifications for the more general

group
Ap=2cos > 0. (;E))

Corollary 2.1. Suppose ®(s), D°(s), D(s), E°(s), E"(s) and EB(s) are given as in Theorem 2.1. Then (a) ®(s) is
bounded uniformly in ¢ in lacunary vertical strips of the form
S={s=0+it:2k—5<o<4;|t| >t,> 0}.

(b) & in (a) can be chosen so that the poles of ®(s) lying with in the lines s = (2k — 8) + itand s = 0 + it are listed below in
the sets;

So=1{0,2k}, Sp,= {2k — L, 2k — L+ 1, ... k— 1,k k+1, ..., 2k, ..., L},
Sy={[2k ], ...,0}, Sp={[2k — 4], ..., 2k — L, ..., 2k — 1}.

The poles of ®(s) in each set arise from DO(s), E9(s), EM(s) and EB(s) respectively.

(c) The residues of ®(s) are given by the formula:

Slzesi [D°(s)] = ao (i** — 1), (2.14)
L

Bes [E°(s)] = > Co {— (=)™ + %™}, (2.15)

B0 m=k
P [6]—2k N\

Bes[BT ()] == > Crj{ . F(;(t)m) ( ni,) ima; T (2.16)
j=1r=1 m=0 ’
- I F(’I“ + m) (_1)7'+m m~+r—2k _m

sleigi[EB(s)] = ;;CM 2 T e + kaj . (2.17)
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Before we state and prove our main results, we state Perron’s formula as Lemma 2.3 below (see [1] for details.)
We shall also use the convention of writing

b+4oc0
f(b) for [, i -

o0

Lemma 2.3. Let 00 be the abscissa of absolute convergence for ¢(s) = Z amA,,” and {\,,} be a sequence
m=1
of positive real numbers tending to o as m — oo. Then fork >0, 0 > 0 and ¢ > 00,
1 , w1 L'(s)p(s)zstk
m (=) = — — (s, 2.18
F(1<:+1)Z tm (2 = Am) 2771/(0) Ts+kt1) (2.18)

Am <z

where the prime "on the summation sign indicates that if k = 0 and x = A, for some positive integer m, then we count
only *am.
2

The evaluation of the integral in (2.18) of Lemma 2.3, we consider a positively oriented rectangular contour formed by
[(2k —0) —iT, 0 —iT], [0 —iT, 0 +iT], [0 +iT, (2k — o) + iT], [(2k — o) +iT, (2k — o) —iT],

use Stirling’s approximation formula for the gamma function, Phragmen-Lindel6f theorem [5] and apply Cauchy
Residue theorem where in all cases the parameters are choosen appropriately to satisfy the conditions. Note that we
use this in several places and cite it as [5]

RESULTS

In this section, we shall use the techniques of Chandrasekharan and Narasimhan in [1] to extend the first result in [4] to
entire automorphic integrals on discrete Hecke groups G(A).

Theorem 3.1. (F irstEquivalence) . Let ®(s) and R(s) be as in Theorem 2.1. Then the functional equation

(2k = 5) = *2(s) = R(s) (3.1)
is equivalent to the identity
1 /
- o
F(p+1)0<%:<I (3 — M) = Ay (2) + Aa(z) + As(x) + A () + As(z), where (3.2)
B 2\’ 5 T\ E 4m\/mx
Male) = " <)\> Z am, (E) Jot2k <\<7)
m=1
A (I) — ,L‘Qk 21 . Lka‘i’P
i A) T@Rk+p+1)
p M o, oA T '
—1 (laj)r (Tﬂ-) ITJFP ( ZO[jZT(;E)
AK B - CT- o F ) 1,7
3(7) 7:21; J(aj) T(r+p+1) 1 \rr+p+ 3
p M, ok (2m\ 2k ot
_ (6) 7 () atr -2nx
A = == 5 . ) | oo
4(x) ;;CJ(O”) I(2k+p+1) 1Fi(r2k+p+ ’z'aj/\
L \m \™M m Ok—m - 2k—m o
As(z) = =Y (i)™ (Zm)" gmbe ko (2m) JRT— |
m=k F'm+p+1) T(2%k—m+p+1)
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oo

. . |am|
0,p>28—-2k—1 E — <
x>0,p>28 5, and gis a number for which 2 00
Proof. We use [5] to arrive at
1 r stp r stp
N RRCEOESC { (s)p(s)x } |
2m (o) F(S + p + 1) s€ Pole Set F(S + p + 1)

Hence by using again [5] (3.3) can now be written as

() et

— ds= A A h
2mi Jioy T(s+p+1) 1(@) + As(), where

1 (27”)8<I>(s)x5+”
271 (2k—0o) F(S+p+1)

As(z) = ZReS{W}.

I'(s+p+1)

A1 (l‘) =

We now show that the functions A{(x) and A,(x) can be expressed respectively as

,_ o\ P & x N\ e dmy/mx
) =i () T an () e ()

j - 2mio; \ "
+ZP:M.7 C.. <_1)T[JZ%] (=)™ T(m+r) ( /\;J) P
j=1r=1 " \ay m=0 m! L(r) T(=m+p+1)
p M T —2mwi\T
-1 ( ) a” -2
- C7"<> AL <7“7P+7“+1; ! >
;r:l "Naj ) T(r+p+1) A
J -r . — m—+r (2nx\2k—m—r
i MJ C ' <1>T [5 ] (71)771 F(m + 'l") Zm-‘r?“ 2kaj + (QTH’J) xp
j=1r=1 Y J m=0 m! L'(r) F2k—m-—-r+p+1)
p_ M T 2mx | 2k
-1 ( 5 ) x -21Xx
Cri\ o> = Fy\rp+2k+1——|. 3.7
+jz::1r=1 ]<Oéj> T(2k+p+1)" 1<Tp+ * z/\aj> (3.7)
a0i2k$2k+p(2%)2k aox P

N i o 7(72‘ m(%r)mmerp N (i)Qkfm(QTﬂ)Qkfmecferp
" I'm+p+1) IF'2k—m+p+1)

i [6]—2k m T —m
Sy S e,y M) U7 e () M
j=1r=1 Y m=0 F(T) m! J F(fm +p+ 1)
p M ol—r m+r 2m\2k—m—r , .2k—m—r+
Cim+7r) (=)™ o m (50) T P
+;;Cm{m_o (r) ml Y T@k—m—rtp+l) 38)
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Observe that using the functional equation ®(2k — s) — i?*®(s) = R(s), we have

M) =5 | R) ek —garr, 1 (2)" i 2 R(s)a
270 ) (2 —o) I(s+p+1) 270 ) (2k—o) T(s+p+1)

Since ®(s) = (%) "I'(s)¢(s), and denoting the first integral by I(x) we see that

o\25—2k ._ s
PR T B G o s\ CURD TG L
21 (2k—0) F(S + P + 1)
o | (3) 7 T ()
2mi J (o) Ik —s+p+1)

ds

471' zm -
27 )

—;72k (20 2k+p

! (A) 27722_; / 2k—s+p+1)d8’

where we have used change of variable from s to 2k — s, in the first integral. Letting ¥ =s, v = 2k + p, and simplifying
expressions, we obtain

I(x) =i~ (27T>Vp Piging i ami_/ - 2w =1y,
)\ el 27TZ (20) F(l/ -9 + 1)

o (2 TP S x N\ 2 4m/mx
S () e () e ().

provided that p > 0 — 2k and 0 > 2k, k € Z. Note also that we have used the definition of the Bessel J-function here. Now
we evaluate the second integral denoting by H(x) and using the expression for R(x) as follows

= ZZC” () { (io;)* B(s,r — s) =i *a3* "°B(2k — s,7 — (2k — s))}7
j=1r=1
1 (50) i R(s)at
271 (2k—0) F(S + 14 + 1)

2mic; \ °
M; (1 ( 5 ’) B(s,r — s)ztP
ZZCM( > {27”/(%—0) TGrptD) ds

j=1lr=1

ks L/ (5%)° B(2k — s,r — (2k — et |
210 J ok—o) L(s+p+1)

H(z)=

Using the properties of the beta function and after some algebraic manipulations, we have

RRJSMS | Volume 10 | Issue 3 | April, 2024 8
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i (35%) Blsr—spaete L (0 (35) e m 4 )
_— ds = —
2mi J 2k-o) I(s+p+1) ’ Z mil(=m + p+1)0(r)

m [ 2micy T m—+r+p
) (T T P(m+r)

> m!T(m +r +p+ 1)T(r)

m=0

otk (- (352) e 1)
- Z mIT(—=m+ p+ DT(r)

m=0

. T
2 .
( WZ;JI> xp
1

Flp+r+1)

2micy;
m)(\)z]x>’ and

(T,p—l—r—l—l;—

s o—r —m-—r m+r
1 (32)" B(2k — s,r — (2k — 5))a" P s — — [Z] 2 2k aj + (=)™ T(m+r) p2h—m—rp
2mi _ T'(s+p+1 iA Fr2k—m—-r+p+1) m! T'(r
(2k—0) P

m=0

0o 2k+m -—m m
B Z 2m * Q (-D)™"L(m+r) p2ktmp
— i\ F(2k+m+p+1) m! F(T) '

Using the properties of hypergeometric series and simplifying, we get

p M r [6-2k] 2mia; \ ™" o
-1 (=)™ T(m+7) ( Py ) x
H(z)=- Crj | —
0=-33 0o (g) 2 S
p M T —2mai\T
—1\" (L) 2r —2mox
Crj | — | =—2——1F 1; !
+§§ J(aj) Dir+p+1) 1(’"”’”*’ A )
+ZI):§J:C ‘<_1)7~[6r] (—l)m F(m+r) im+r72ka;n+r (%Tw)zkfmfrxp
it 7\ oy = ml I'(r) F2k—m-—r—+p+1)
p M; T 2ra | 2F
-1 ( ) xP —2rx
- Coi| —) =22 " _ R (rp+2k+1;,——).
;; ]<aj> T(2k+p+1)" 1<rp+ * Maj>

Since A1(x) = I(x) — H(x), we have proved (3.7) and proceed to computing A2(x) as follows.

As(z) = Z Res{W}.
)

s€polset of P(s F(S Tt 1)

From theorem 2.1, ®(s) has been expressed in terms of Do(s), Eo(s), EH(s), and EB(s). Thus A2 can be expressed as
follows

2m\S s

(%) astr

As(x) = {Res[DO(s)] + Res[E%(s)] + Res[E™ (s)] + Res[EB(s)]}W.

Using formula (2.14), (2.15), (2.16)and (2.17) we obtain the following and hence (3.8) is proved.

RRJSMS | Volume 10 | Issue 3 | April, 2024 9
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aoiZkIQker(zTﬂ—)mc a()Xp
A = _
2 F2k+p+1)  T(p+1)
L _(_s\m(2m\m .m+p N 2k—m (27 \2k—m . 2k—m+p
_|_ Z Cm ( Z) ( hY ) X + (Z) ( Y ) €T
m=k Lim+p+1) F2k—m+p+1)
M; [6]—2k . . .
_XP:ZC M(_l) Z-ma‘—r—mM
j=1r=1 " m=0 F(T) m! J ].—‘( m—+p+ 1)
M; [6]—r i b o
+izjc ) F(m+r) (—]_) + Z‘mJFT*Qkam(QT)Qk m—r p2k—m—r+4p
j=1r=1 N T m! T TR2k—m—r+p+1)

Finally, we now express the integral in the right-hand side of (3.4) as

1 L(s)p(s)zstr

57 Jy To s p 1) ds = Ay (2) + As(2) = (I(z) — H(x)) + As(2),

and using the expressions for Ay(x) and Ax(x). [See (3.7) and (3.8) respectively] we obtain

1 [(s)p(s)xstr ok (27 x\ 4m\/mx
S B 2k i e P “n a(E 7 Jryma
omi iy Ts+p+1) y) 20 (m) P2k \ TN

m=1
2k
4 i <27r) 9 2t aoz”
A I'(2k+p+1) T(p+1)
T (s 2w \" -
(ic)" (BF)" a"tP —i0; 27X
_ _ F 1. ——2=77
S5 ey (S ) Gl B (s
j=1r=1
p M; T (Z-)—2k (Qi)2k r2k+p _Onx
C.i | — A Fy(r 2k 1, ——
+;; ]< > T2k+p+1) 1(T ot z‘aj/\>
s M . m (2m)2k—m —m
- Z (2 ) +p - 2k (QT) p2k—m+p | (39)
= m+p+1) I'2k—m+p+1)

Therefore, for p > 0, and ”T% > § we get the identity (3.2).

Now we prove the converse of the theorem. To this end suppose F (z) is an entire automorphic integral with a Fourier
series expansion for z € H and satisfies the relation

oo
Z) — § am627”m2//\,

m=0

i (j) — F(2) + q(2), (3.10)

where q(z) is the rational period function given by Lemma (2.2). Then by (3.10) and the Fourier expansion of F
we have

S o0
Z—Zk § :ame—27rzm/)\z — § :ameQﬂ'zmz//\ +q(z)
m=0

m=0
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Letting z =3 | y > 0, then we get

o0 2k oo CanZm ) . Zy)\
<zyA> D ame 2 :mgoame y+q<2ﬁ>. (3.11)

m=0

To prove the converse it suffices to show that (3.2) implies (3.11). To this end we consider six integrals defining L1(y) ---,
Le(y), corresponding to the six expressions occurring in (3.9). We evaluate all the integrals by interchanging integration
and summation which can be justified.

Li(y) = /000 {F(pl+1) Z am (2 — m)f’}y9+le—wydw,

0<m<zx
1 1
aoyp+ yp+

=0 e Valde + ———
F(P‘i‘l)A L(p+1)

oo
=aqq + Z ame”"™ p > 0.
m=1

oo
am/ (x —m)Pe”Ydx,
0

1<m<z

Similarly Ly (y) for “% < pand applying formula (??) we get

< 21\ TP = x\ 25 4v/mx _
LQ(y):/O i 2k ()\) Zam (E) ’ J2k+p( h\ )yp“e “Ydx,

m=0

e () 3 {2(4%/»%@ _(nymy }
m=0

X @y Ty

Thus with simple algebraic manipulations we obtain

Y 2£ 2k _4/772?,
Ly(y) =i 3 Z e v32 .
Y

m=0

> om\ 2 a apx?
L _ —xy, p+1) 2k [ < 0 2k+p 0 d
3(y) /O ey {Z Ny) T@k+p+1) Tp+1) [

Using integration by substitution and the standard integral representation of I'(s) we get

2%k
. 2
Li(y) = agi®® ()\y> — ap.

~ L \mn m _m ) . . -
4 R m F'm+p+1) T2k—m+p+1)

After evaluating and simplifying we obtain

- G o (3

m=k

dx.

e 2miox \ xPTryrtlemmy
L = F; 1; S
*) /o ' 1(T’p+r+ X ) T(r+p+1)
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Using the series representation of the hypergeometric function for Ay > 2mq(;, we obtain

2 T(mA4r) (=)™ [fia2n\™ _,
= 32 S S ()

This series converges absolutely for Ay > 2mq;. In a Similar way, we compute Lg as follows

> —omg | aPtyrtlemey S L(m+r) (=1)™ 2r \" g
Liy)= | 1R 2% +1; dz = .
6(y) /O (’“ Y ) T2k+p+1) " by ) m \iva; ) ”

m=0

This series converges absolutely for y > m Combining the results of the integrals for L1(y), La(y), -+, Ls(y)
)\a]’

respectively we have

L) = La) + La(o) — Lay) — 303 (;1) (i) (T)Tm(y)

j=1r=1
p M; r 20t 2k
—_— .72]6 E—
Q;ZC( ) o (X)) w

Thus after simple algebraic manipulations, we see that the identity in (3.9) implies

[ o 2k oo CanZm 2k
Z ame” "™ = (zyA) Z ame ¥ + ag ik ()\) — ao,
m=0

S (@) e (®) )

m=k

p M;

_ZZQ«J <m>r{ <2m>r i I'( m+r (— 1?m (27;\i;j>m

j=1r=1 m=0

() B (z-ciiy)m }, 62

0

1<;<p A aj/\
Recall that the rational periodic function in Lemma 2.1.

2oy 2
provided that p + 2k +1, > 26 and y > max { méj,ﬂ}-

M

ST Cofe(z0)+ YN Coifrlzay),

k<r<L J=1r=1

J
Hr » @5 ) after simplifying some steps we obtain

where f,.(2,0) = 27" — (=1)"z7 2 "and f,.(2, o) = (z —a) T (1) T (z + (71])_ . Letting

z = y—* and applying the binomial expansion to fr(

iy = 2r \" om \ 2k
q<z)—20{<m) r (5) }

Z

() SRS )
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Since F(z) has a Fourier expansion of the form Z ame?™M# /A and q(%) is represented (3.13), (3.12) may
m=0

be written as
. . —2k .
Ty YA -1 iy
Fl\l—|=|+— Fl—]—-qlZ]).
(271') (271') (%’:) q<27r

Hence by the identity theorem the automorphic transformation

ctr () = o )

follows for z & H. This concludes the proof of the equivalence of the functional equation to the identity (3.9).

Theorem 3.2. (Second Equivalence) Let ®(s) and R(s) as in Theorem 2.1 then the functional equation
2k — s) — i?*®(s) = R(s) (3.1)

is equivalent to the identity

“1d\’ (1 & 20 1
v - —yvm | . “ -
( y dy) <y 2, anc ) =TVt <p+ 2)

m=1
n i\_/j:24k+21)+1f (2kz+p+ ;) (2;)% i an; 2ktpti
m=0 <y2+4(2§) m)
- \/;;Wiicﬁ (;j)rr (r+p+;) v <r,p+ %; 82?;)
e () (400) e (o)
><\Il<r,r—2k—p+;;mgiy2>
_\/%;W;{<i7;>2kmr(2km+p+1)(;j;i)mr<m+p+;> } (3.2)

0o |am]|

Provided that Re(y) >0, p € Z, p > 0 and p + 2k > B+ L2, where >~ 1% < oo,

Proof. By theorem 3.1 the identity (3.2) is equivalent to the functional equation (3.1). Hence to prove this theorem it
suffices to show that (3.1) implies (3.2) and (3.2) in turn implies (3.1).

oo

) . . . an . S |an|
Now we first show (3.1) implies (3.2). To this end let ¢(s) = Z v with Z <00 Then by Lemma 2.3, for
n=1 n=1

p>0,6>0,0> 5 we have

1 ! 1 [OH° D(s)p(s)aste
- —m)P = — )P T
T+ 1) Z am (z —m) 57 /671_00 TGtptl) ds. (3.3)

0<m<z

As in Chandrasekharan and Narasimhan ([1] page 9), we multiply (3.3) by e~¥Vrr=3and integrating with respect to
the variable x from x = 0 to «; and further assuming & > 2k, where Res = 0 is the vertical path of integration. Now

choose 6 = B + P, whereP € Z, and P is large enough to guarantee 0 > 2k and 0 £ Z to have

o _1 1 < _1) 1 o(s)T(s)zsTr
PRCAAT R G— am(z —m)? dx :/ e VI3 —/ ——————ds pdz, (3.4
/0 {P(p+ 1) O<zm:§m ( ) } 0 {27TZ () F(8+p+ 1) (34)
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with p+2k > § +1, | and y € R*. Chandrasekharan and Narasimhanin [1] for p+ 2k + 12 > B and A, sequence of
positive real numbers; \,, — 0o, showed the identity

P A CERY LR <1d>"'1 S eV
an, ~— L e WPrT2dy = 2(-2)° | —— - ape YVAin |, 3.5
2 /)\n L(p+1) =2) y; (3.5)

Q| =

(oo}
g ame IV,
m=1

s) ()7 where Res > Band Y o°_, %=l « « the right-hand side of (3.3) becomes

m=1 mB

< )1 2m\*  ®(s)zstr
Uy :/ e UVILS —/ () ———ds pdz,
( ) 0 271 (6) A P(S+p+1)

for & > f3. Interchanging the order of integration for p > O we obtain
S (oo}
Uly) = L - (271-) __2) ds/ e IVELSTP =3 g
271 (8) A F(S+p+l) 0

2 O fop® ()F(2s+2p+1) 1
A [(s+p+1) y2st2etl

Since ®(s) =T'(s

5

ds.

2mi d—ioco

Using the properties of I function we have

s T 1 25+2p+1
v =5 [ (5) eI
(9)

= ori 2 I y2st2pr1
Using [5] we evaluate U(y) and have

U - 1 2 S(I) F(s+p+ %) 92s+2p+1
( 7 (S) \/77- y2s+2p+1

27\°  T(s+p+4)22+20H1
+ Z Res (A) D(s) NG ST (3.6)

= ds
2mi J(2k—s5)

s€polsetP(s)

Denote the first and second integrals as T1(y) and Tx(y)respectively so that U(y) = T1(y) + To(y). Using the identity, ®(s)
=i72k(®(2k — 5) — R(s)), and substituting in to the integrand of T(y), we can write as

Ti(y) = Vily) — Va(y),
where V41(y) and Vy(y) are given as

1 2 s I'(s 4+ p+ L) 92s+2p+1
Vily) = — (77) i~ (o — 5) L8P F2) s,
210 Jiag—s) \ A Voo oyt
1 2m\* _ I(s+p+ 5) 22 +20+1
Va(y) = 5— =) i**R(s) 2 521 45
210 Jiag—s) \ A Voo oyt

Using the substitution ¢ = 2k — s and ®(¥9) = (27”)719 L(9)p(d), where p(9) =3~ 95 replacing ¥ by -9, we have

—2k

1 1 21\ 2 & a
_ Y 9dk+2p+1 e am m
Vl(y)—ﬁZ ’ F(2k+p+2)<)\> 21(2 (4 )2 pT——
=yt (R m)
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The series converges for y > 0, provided 2k + p — % > (.Since § > [ the series converges absolutely for

p>0—2k+ 3.

Replacing the beta function by its equivalent I' function and replacing R(s) by its equivalent representation we have
)= 22N (Y ) — i u) (37)
= 255 0 (2 {auw -

YR == AN :

where s (5)T( )

1 8miay I'(s)I'(r —s 1
@1(y) i /(zk_5)< e ) () <s+p+ 2) s
and

- o) P s

2mi iAy2a;

Using [5] we evaluate Q4(y) and obtain

i (87rzaj) I(—s)I'(r + S)F (p N 1 5) s
270 J(ok—s) \ AY? T'(r) 2
1 8mic;\ " T(—=s)T(r+s) 1
2mi (N'hl;)( Ay? ) I'(r) p+2 )

2 e () e () )

s€Pole set of @

It can be easily shown that the integral on the right-hand side tends to zero as N tends to o. Thus evaluating the
residue of the poles we have

Ou) = i (8:;24]' ) - (—lem F(?(:; T)r <p —m+ ;)

(6] —2k+1
0 . —m—p—l 1
8mic (=" ITm+p+r+3) 1
r(—p-—m—--]).
+ Z ( Ay? ) m! I(r) pmm=y

Again using properties of the I function and simplifying we obtain
WL (p+3)T(=p+3)

_ - 87Ti0[j -m (_l)m F(m+r)
e ’; < s > m o) VT (m—p+3)
[6—2K] 87Ti04j —-m (_1)m, F(m N r) )
_mz—:o()‘yz) m! I'(r) F(p—m+2>
o 8micy —m—p—3 (=)™ mF(_P—l)F(p+ §) F(m+p+r+%)
’ Z ( Ay ) mr Y F(mi/ﬂr 3) 2 I'(r) :

Using series representation of the confluent hypergeometric function we get
1 1 Ay?
= F — F — —
Ql(y) (p+ 2)1 1 (Ta /0“‘ 2’87TZOZJ>

T Np(_,_1L 2 \PT3 1 2
+ (p+r+2))( P 2)</\y ) 1F1<P+7‘+,P+3' s )

(r 8mia; 2 2" 8ricy;
62K 0w i
B Z (8#;04]) (-1) F(m—’_T)F(p—m—i—l).
=0\ YA m! T'(r) 2

Using the the confluent hypergeometric function of the second kind we have
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2
Qi(y) =T (P+7’+;>\I’(r,p+1; )‘?{ >

2" 8mia;
[0]—2k —m
8mia (=)™ T(m+r) 1
— r — — . .
Z ( ) m! I(r) pomt 2 (3:8)
B 1 i Ay? i 1 zaj)\y
[0]—r 2k—m—r
8 (=)™ T (m+r) 1
- T (—m-— 2. .
mz—:o (i)\y2aj> m! I'(r) mortety (39)

Thus forp >0, p € Z, p+ 2k > 6 + 12,6 > 2k and y € R* the functional equation in (3.1) implies

22p+1

=Ti(y) +To(y) = Vi(y) — Va(y) + Ta(y)

2 kr2pa 1Y (2m\* 50: 4m
m=1 (yz 4 (g)Zm) >
X

Equating the left-hand and right-hand side expression we obtain

2k oo
1\ /2 -
o) [ o) B e
— Am 2
22p+1
vyt

where Ty(y) and Vs(y) are given by (3.6) and (3.7) respectively. We can also get an explicit formula for V(y)
from (3.6) and (3.8).

1
aol'(p+ 5

= Va(y) + Ta(y) — 2),

(3.10)

Using the expression for T, from (3.6) and the residue of ®(s) from theorem 2.1 we have
92p+1 87\ 2* 1 1
T = — — T2k — | —aoll —
=) ﬁyzpﬂ{ (Azﬂ) ( +p+2) 0 (p+2)
L 2k—m N m
81 1 811 1
el () e () (o)

M, [6—r] 2k—m—r
m+r)(—=1)"™ [ 87 mtr—2k
* ZZC“ [ Z (F(r) s m? (x\y2> it %aj X

j=1r=1

F(Qk—m—r+p+2>

oy Fm+r m?m (’;‘f)mimr( m+p+;> ;™" r” (3.11)

Now substituting(3.11) into (3.10) for T(y) and by substituting the respective expressions (3.8), (3.9) into Va(y),
we obtain the identity (3.2) and this completes the proof of implication part.

To prove the converse we only show (3.2) implies (3.1). Multiply (3.2) by €%, with Rey > 0 and x > O and integrate the
expression along vertical path Res = ¢, where ¢ > 0. The left hand side (3.2) can be
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evaluated using the formula ([1], page 9)

o0

1 — 1d 1 / _
il ves yvm dy = —m)PoP 12
Zam%i (19)6 ( ydy) [ye } F(p+1)zam(x me, (3.12)

m=1 m<zx
For the right-hand side of (3.2) we compute the integral of each term one by one. So put the first term

i—2k 1\ /27\* & 1 e
P(z) = —=2%+rp <2k+ +> <> Ay —— dy.
(z) NG P 2 A mz::l Mo @) [y? +(Tﬂ) m]2k+p+% Y

Using Sterling formula and simplifying we obtain

Ar\ 77 & x\ 2 47t\/mx
_ 2k
P(a) =i (A ) ;L:lam (m) okt p ( . ) . (3.13)
Put the second term
1 eYvE 1 Ay?
Lz)=— | £ _w - d
(@) 2mi J 9y y?P Tt ( Y 87rzozj>

Using the integral in (??) we have

Il(«r):i, M{l-/(e) L(r+7)0(=n)T(p+3—1) ( )\92 >Td7}dy

2mi J gy y?0 | 2mi D(r)L(r+p+ 1) 8mic

_ L F(T +7')F( )F(P + l - ) ( A )T L/ eyﬁy%ﬁp*ldy dr
271 (6) F(’I")F(T’ =+ 1% + 2) 871'20[] 271 (9)

O LNt 1Nt Tt WA WA U S
= T
2mi J (o) L(r)T(r+p+ 3) 8mia; ) T(2p—2r +1)

Using properties of the I function we obtain

- N 1 L(r+7)I'(-71) AN -
e P [2” /w) Plo+1=m7) (mo‘) ’ ] |

Using [5] we obtain

R
! 22T (r + 1 + p)T" — m! T(p+m+r+1) A '

Therefore, we conclude that

1 P 1 1 M2
27”/( 2er12 ZZ;CM () D(p+ 7+ 5)¥ <r,p+2;8m,aj>dy
j=1r

M ;
1 " omia;\" aPtT 2miaX
§ C, 1 F(r 1, —— ). 3.14
J< ) < A ) T(p+r+1)" 1(M+p+ A > 3.14)
j=1r=1
Next put
1 eV [ agidg?\ Tk 1 do; A2
I = — J 1 — 2k — J d
Q(x) i ) y2p+1< 87 ) (7"7" P+2 oy ) Y

; 2
Forfixedr, -r < < —r+3 and—% < arg (104877:\
function of the second kind we get

I(x) = L eV (aging?\ T L/ Lr+r)0(-7) (2k+p—7—1+1)
2 T omi (9) y2p+1 8w 27 ®) ()T (2k + % )

o I\ T
x <O‘J’)‘y ) dT}dy.
8w
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By interchanging the order of integration which can be justified we obtain

1()—L/ D+ 7D~ (2k+p—7—r+ 1) fazix"" 2
T

L(rT(2k+ L+ p) 87
1
- YV 27'+27'—4k—2p—1d dr.
X o ” e¥V=ry y] T

Computing the last integral and simplifying we obtain

Ly(z) = L/ I(r+7)I'(-7)T (Zk +p—T—1+ %) (aji)\>‘r+r2k
270w S L(r)L(2k + 5 +p) 8

2k+p—r—T
x )] dr.

I'(4k+2p+1—2r — 27

Using properties of the I function we obtain

L(z) = VT (iaj)\ =2k (E)Qlﬁp—r y 1 L(r+7)T(-7) jo; A TdT
UTTE (2k+p+ 5) \ st 4 21i Jiy D2k +p+1—7—7) \ 27z ‘

Using [5]) we obtain

I(z) = VT i A\ @t ST Dmr)  (2ma\"
VT 2k +p+ 1) \ s 24k +20=2r mt T2k +p+m+1) \iaA

m=0
Thus using this result for I5(x) we find that
M; . r—2k
1 2reuVE P " 1. [ ajidy?
Cri [ — | a2 T(2k (-
i [ T 22O (1) o3tk ) (U

j=1r=1
1 2
><\Il< —2k—p+ - , fg )dy

2" 8w
! —1\" [2m\*  aPte I Yoo
= _ Coil — — _— I 2k 1; . 3.15
2p;; <aj> (m) T(2k+p+1) 1(7" ot zozjx\> (3.15)
Put the third term as I3(x) which is given by

eyve 8mi\ 2k 1
Chm — | | — T'(2k— -
Z {2m /(19) y2p+1[(>\y2) < m+P+2)
_ ( Ayg”) r <m+p+ 2) dy}.
Evaluating each integrals in I3(x) and simplifying, we get

2k—m k+
_ o0 Z . 8772 ghTm
24k+20=2m(2k 4+ p — m + 1)

m=k
—8mi\ " g2krp—m
( A ) 22K F2mT(p + m + 1)
B O A e i M ) e SRS
20 = A F'2k+p—m+1) A Flp+m+1)

Finally we evaluate the last term in (3.2) which we denote by I4(x) as

2r+1 1\ 1 eyveE aox?
14(.'17) = —7a0F (p+ 2) % /(19) szJrl dy = —m. (317)
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Thus combining the results in (3.13), (3.14), (3.15), (3.16), and (3.17) we obtain

1 / 21\ 7 2kte 4
2, e = () e () e ()

0<m<x m=1
+ 2%k 2m e
N) T@k+p+1)
+ic 21 2k—m iQk—’mek-&-p—m B 21 m (_,L')mmp-i-m
— " A F'2k+p—m+1) A L(p+m+1)
p ]\/Ij T . r .
-1 2mic; Pt -2mio X
- Crj [ — ! Fi(rr4+p+1;—— )
2y al5) (5%) mrmrm (o =5
p M r 2k 2k-+
-1 2 x P Qrx
(=) (ZZ) —2 —  _p(r2% 1; = .
+;; (aj> (z/\) F(2k—|—p—|—1)1 1<r tot zozj/\)

This completes the proof of the converse and therefore, the proof of theorem is completed.
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