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Abstract: Among all the important failure time distributions, Gamma distribution is the one which is flexible, widely 

understood and offers a good fit to continuous, skewed reliability data. But the non availability of simple and closed forms 

of reliability and hazard functions of gamma model had restricted its use. This paper provides a solution to these problems 

in R by employing Laplace approximation for asymptotic evaluation of integrals. However, the whole demonstration is in 

Bayesian framework. The asymptotic results have been cross-verified with the simulation results. Real-world problems 

have been used for illustrative purposes. 
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I.     INTRODUCTION 

 

The parametric inference procedures for reliability data often involves distributions like weibull and exponential that have 

been widely accepted as important failure-time distributions. There are several other statistical models that can be 

successfully utilised for some particular types of data. The two-parameter gamma distribution is one of these probability 

distributions  and is well suited for continuous, skewed responses. The gamma distribution fits a wide variety of failure-

time data quite efficiently. Its relationship with the exponential distribution also has enhanced its importance as the sum of 

iid exponential random variables also follows gamma distribution. The pdf of gamma distribution is of the form 
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where 0 determines the shape and 0 , the scale of the distribution. The reliability function of the gamma model is 

given as 

                                                  )t,(tR                                                                           (2) 

where, .),(.  is the incomplete gamma function and the corresponding hazard function is defined as 
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Although there is a vast literature available on estimation of the gamma parameters within the classical approach, we have 

worked here on the Bayesian inference of the gamma parameter(s). To evaluate characteristics of posterior such as 

densities, means and variances, is a very tedious task. When gamma model is used as a failure-time distribution, Bayesian 

computations become far more difficult as it involves incomplete gamma functions. Also, in the absence of conjugate prior-

likelihood pair, evaluation of posterior quantities cannot be performed in closed forms and thus requires some intensive 
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computational methods. As a solution to this, [1] proposed the use of Laplace's method to expectations and variances of 

non-positive functions. 

The main aim of this paper is to demonstrate the fitting of gamma model in reliability scenario by employing Laplace's 

method in R [2]. The whole work is in data analytic context. 

 

II.    LAPLACE’S APPROXIMATION 

 

The most remarkable method of evaluating integrals involved in the posterior density i.e 

         


dp|yp

p|yp
y|p  

has been pioneered by Laplace and is known as Laplace method. [3] applied this method to approximate the ratio of two 

integrals involved in the posterior density. Contrary to [4], this method of summarizing multivariate posterior distribution 

needs only upto second-order derivatives of the posterior. The whole method is based on the behaviour of the posterior 

about it mode. Let )(h  be any non-negative unimodal function with mode ̂ . We expand )(hlog  in a second-order 

Taylor series about      ̂ as below, 

2)(V)()(hlog)(hlog
   

where, 
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On taking exponential of both sides, we get, 
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Thus, if       p|yph , then equation (4) is the modal approximation of the posterior as 

)V,(N~y| 1   

 

Integration of (4) gives, 
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This approximate integration formula for unimodal sharp-peaked non-negative functions is known as Laplace's method. 

In this paper, the whole algorithm has been implemented in R language using LaplaceApproximation function. This 

function is available in LaplacesDemon package introduced by Byron Hall [5]. Here are its arguments: 

 
function (Model, parm, Data, Interval = 1e-06,Iterations = 100, Method = "LBFGS", 

Samples = 1000,sir = TRUE, Stop.Tolerance = 1e-05) 
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where Model receives the model from a user-defined function. The argument parm requires a vector of initial values for 

the parameters for optimization. Data accepts a listed data object on which the model is to be fitted. sir takes a logical 

value to specify whether sampling importance resampling is to be implemented or not. It is implemented via SIR function 

of this package to draw independent posterior samples. The function LaplaceApproximation calls optim to maximize 

the logarithm of unnormalized joint posterior density. The default optimization algorithm is LBFGS. This function returns 

two summaries as Summary 1 and Summary 2. Summary 1 is the laplace approximation of the joint posterior density and 

Summary 2 presents the posterior means, sd and quantiles of all the parameters based on monte carlo samples. 

 

III.    SIMULATION 

 

Another alternative to evaluate complex integrals is to resort to simulation technique. In the simplest cases, direct 

simulation and rejection sampling can be used. In complex situations, we apply Monte carlo and MCMC methods. Here, the 

function LaplacesDemon serves our purpose. The performance of the laplace approximation has been investigated 

through the simulation study. With the optimal initial values and estimated covariance matrix obtained from Laplace 

approximation, LaplacesDemon function maximizes the logarithm of unnormalised joint posterior density with MCMC. 

Arguments of this function are: 

 
function (Model, Data, Initial.Values, Covar = NULL, Iterations =1e+05, Status = 

1000, Thinning = 100, Algorithm = "RWM", Specs = NULL, ...) 

 

where Model receives the same user-defined model, Data stands for the listed data object. Initial.Values accepts a 

vector of initial values supplied by LaplaceApproximation. Covar receives a dd  proposal covariance matrix 

(where d  is the number of parameters) as returned by the function LaplaceApproximation. Iterations specifies 

the number of iterations that Laplace's Demon will update the parameters searching for target distribution. Algorithm 

reports the specific MCMC algorithm used for estimation and defaults to Random-Walk Metropolis algorithm. 

 

IV.    DATA ANALYSIS 

 

In this section, we analyse a data from [6] to illustrate our methodology. The data involves failure times (in minutes) for a 

sample of 15 electronic components in an accelerated life test. 

 

1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23.0, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2 

 

We now look for the posterior estimates of the parameters when the gamma model is fitted to the above data. The firstmost 

requirement for the Bayesian fitting is the definition of the likelihood. Here, we have likelihood as: 
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and thus our log-likelihood becomes  
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where, 

)Xexp(   

 

is the log link function. 

The Bayesian framework requires the specification of prior distributions for the parameters. Here, we stick to subjectivity 

and thus introduce weakly informative priors for the parameters. Priors for the  and  are taken to be normal and half 

Cauchy densities 

)10000,0(N~j ,        J,,2,1j   

)25(HC~  

 

A. Creation of Data 

Data y is entered into R using the concatenation function. Then intercept is introduced into the design matrix with a vector 

of 1's created with function matrix. The codes are as follows: 

 
X<-matrix(1,nrow=length(y)) 

N<-length(y) 

J<-ncol(X) 

mon.names<-c("LP","shape") 

parm.names<-as.parm.names(list(beta=rep(0,J),log.shape=0)) 

MyData<-list(J=J,N=N,X=X,mon.names=mon.names,parm.names=parm.names,y=y) 

MyData is a listed data object with all the specifications required for the analysis. 
 

B. Model Specification 

Positively restricted parameters of the gamma model is made to range over the entire real line with the logarithmic link 

function. The model with the gamma error is specified with the following set of code lines. 

 
Model<-function(parm,Data) 

{ 

###Parameters### 

beta<-parm[1:Data$J] 

shape<-exp(parm[Data$J+1]) 

###Log(Prior densities)### 

beta.prior<-sum(dnormv(beta,0,10000,log=T)) 

shape.prior<-dhalfcauchy(shape,25,log=T) 

scale<-exp(tcrossprod(Data$X,t(beta))) 

###Log-Likelihood### 

LL<-sum(dgamma(Data$y,shape,scale=scale,log=T)) 

###Log-Posterior### 

LP<-LL+sum(beta.prior)+shape.prior 

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,shape), 

yhat=rgamma(15,shape,scale=scale),parm=parm) 

return(Modelout) 

} 

 

Initial values for the parameters can be taken as zero if proper prior knowledge is not at hand. Another way of assigning 

initial values to all the parameters of the model is to use the function GIV of the same package. Here we have generated 

initial values with the GIV function. 

 
###Initial Values### 
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Initial.Values<-GIV(Model,MyData,n=1000) 

 

Finally, the fitting is done with the LaplaceApproximation function using the following commands 

 
###Fitting with LaplaceApproximation### 

set.seed(1) 

M1<-LaplaceApproximation(Model,Initial.Values,MyData,Iterations=15000) 

 

Output summary has been tabulated in Table 1 and Table 2. 

 
Table 1   Asymptotic estimates of mode and modal standard deviations for the 

parameters log and log  

 Mode SD LB UB 

beta 2.9507 0.39 2.16 3.74 

log.shape 0.3651 0.33 -0.29 1.03 

 
Table 2   Posterior mean values of the parameters along with the quantiles as obtained by sampling 

importance resampling technique 

 Mean SD LB Median UB 

beta 3.0376 0.39 2.35 3.05 4.16 

log.shape 0.2716 0.34 -0.37 0.28 0.87 

Deviance 130.539 2.045 128.40 129.85 135.51 

 

 

V.    SIMULATION STUDY 

 

We implement Random-Walk Metropolis algorithm to simulate from the joint posterior distribution. A proposed future 

estimate called proposal of the joint target density is calculated and then the ratio of proposed to the current joint posterior 

density called   is calculated. The proposed state is accepted over the current state if the proposed state is an improvement 

over the current state. If the proposed state is rejected, then current state is repeated so that another proposal may be 

estimated at the next iteration. Here, the proposal distribution is multivariate normal. The whole process has been 

implemented using LaplacesDemon function. This function is however assisted by the function 

LaplaceApproximation. The R codes are as follows: 

 
Initial.Values<-as.initial.values(M1) 

###Fitting with LaplacesDemon### 

M11<-LaplacesDemon(Model,MyData,Initial.Values) 

 

Output has been reported in Table 3. 

 
Table 3   Summarizes marginal posterior distributions of the parameters, deviance calculated only 

on the stationary samples 

 Mean SD LB Median UB 

beta 3.0623 0.42 2.31 3.03 3.95 

log.shape 0.2701 0.33 -0.41 0.28 0.91 

Deviance 130.449 2.05 128.41 129.85 136.06 
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With the simulated values of the parameters with SIR and those with the LaplacesDemon function, marginal posterior 

density plots are made by using plot function and are shown in Figure 1. Also, normal approximation of the parameter 

distributions have been graphed over it. 

 
Fig. 1:  Left panel of the figure depicts the marginal posterior density of scale parameter and that of the shape 

parameter is in the right panel of the figure. 

 

The reliability function and hazard function curves have been shown in Figure 2. The reliability of the electronic 

components are decreasing with the passage of time. The increasing hazard rate specifies the way in which the 

instantaneous probability of failure of the components is changing with the time. 

 

 
 

Fig. 2:  Reliability trend for the electronic components is being shown by the left panel of the figure while the right panel shows an 

increasing hazard functions. 
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VI.    FAILURE TIME REGRESSION MODELING 

 

A model with explanatory variables (covariates) can sometimes best describe the heterogeneity in a population. It explains 

or predicts why some units survive a long time whereas others fail quickly. The main objective behind regression modeling 

is to exploit the relationship between failure-time and the explanatory variables. One of the way to create a regression 

model is to allow the model parameter(s) to depend on covariates. We illustrate this with insulating fluid failure-time data 

discussed by [7]. The data consists of breakdown times (in minutes) of 76 specimens of type of an electrical insulating fluid 

which were tested at seven voltage levels, v 26, 28, 30, 32, 34, 36 kilovolts. The main objective of this study was to draw 

a relationship between time to breakdown and voltage stress. 

 

A. Data creation 

We create the data y in a vector form as below: 

 
y<-

c(5.79,1579.52,2323.7,68.85,426.07,110.29,108.29,1067.6,17.05,22.66,21.02,175.88, 

139.07,144.12,20.46,43.40,194.90,47.3,7.74,0.40,82.85,9.88,89.29,215.10,2.75,0.79,

15.93,3.91,0.27,0.69,100.58,27.80,13.95,53.24,0.96,4.15,0.19,0.78,8.01,31.75,7.35,

6.50, 

8.27,33.91,32.52,3.16,4.85,2.78,4.67,1.31,12.06,36.71,72.89,1.97,0.59,2.58,1.69,2.

71,25.50,0.35,0.99,3.99,3.67,2.07,0.96,5.35,2.90,13.77,0.47,0.73,1.40,0.74,0.39,1.

13, 

0.09,2.38) 

voltage<-

c(rep(26,3),rep(28,5),rep(30,11),rep(32,15),rep(34,19),rep(36,15),rep(38,8)) 

 

Engineering background suggests a power law model in this case with 

x)x(log 10   

where, 

)ariate(covlogx   

 

Thus, we make a logarithmic transformation of voltage levels. 

 
x<-log(voltage) 

J<-2 

N<-length(y) 

X<-cbind(1,x) 

mon.names<-c("LP","shape") 

parm.names<-as.parm.names(list(beta=rep(0,J),log.shape=0)) 

MyData<-list(J=J,N=N,X=X,mon.names=mon.names,parm.names=parm.names,y=y) 

 

 

B. Model Specification 

Within this subsection, we specify the weakly informative prior distributions for the regression coefficients and the shape 

parameter along with the log-likelihood and the log-posterior. 

 
Model<-function(parm,Data) 

{ 

###Parameters### 

beta<-parm[1:Data$J] 
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shape<-exp(parm[Data$J+1]) 

###Log(Prior-densities)### 

beta.prior<-dnormv(beta,0,10000,log=T) 

shape.prior<-dhalfcauchy(shape,25,log=T) 

scale<-exp(tcrossprod(Data$X,t(beta))) 

###Log-Likelihood### 

LL<-sum(dgamma(Data$y,shape,scale=scale,log=TRUE)) 

###Log-Posterior### 

LP<-LL+sum(beta.prior)+shape.prior 

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,shape), 

yhat=rgamma(76,shape,scale),parm=parm) 

return(Modelout) 

} 

 

With the specification of initial values for the parameters, we finally fit the model to the data with the 

LaplaceApproximation function. 

 
M2<-LaplaceApproximation(Model,Initial.Values,MyData,Iterations=40000) 

 

Results have been shown in Table 4 and Table 5. 

 
Table 4   Posterior modes and sd of the gamma parameters based on laplace approximation 

 Mean SD LB UB 

beta[1] 64.5446 5.35 53.83 75.25 

beta[2] -17.4938 1.53 -20.55 -14.43 

log.shape -0.3678 0.14 -0.643 -0.091 

 
Table 5   Posterior mean values obtained via SIR function 

 Mean SD LB Median UB 

beta[1] 65.4317 5.36 54.99 65.46 75.35 

beta[2] -17.7339 1.53 -20.58 -17.75 -14.77 

log.shape -0.3900 0.14 -0.67 -0.39 -0.12 

Deviance 606.2026 2.30 603.46 605.55 611.79 

 

The same data has been studied through simulations. Here, the algorithm used is Adaptive-Mixture Metropolis. First, AMM 

updates a scatter matrix which is based on the cumulative current parameters and the cumulative associated outer-products, 

and these are used to generate a multivariate normal proposal. However, the proposal is a mixture. The two mixture 

components are adaptive multivariate and static/symmetric univariate proposals. At each iteration, the mixture is 

determined with a mixture weight. The mixture weight must be in the interval (0, 1], and it defaults to 0.05, as in [8]. A 

lower weight is associated with more adaptive multivariate proposals and  a higher value of the mixture weight is associated 

with more static/symmetric univariate proposals. LaplacesDemon function has been used for this purpose. The R codes 

for it are as follows: 

 
Initial.Values <- as.initial.values(M2) 

M22<- LaplacesDemon(Model, Data=MyData, Initial.Values, 

Iterations=6e+05, Status=277777, Thinning=600, 

Algorithm="AMM", Specs=list(Adaptive=588, B=NULL, Periodicity=117647, 

w=0.05)) 

 

The parameter estimates are reported in Table 6. 
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Table 6   Posterior mean values along with the 0.025, 0.5, 0.975 quantiles based on stationary samples 

 Mean SD LB Median UB 

beta[1] 64.4673 5.20 55.27 63.70 75.46 

beta[2] -17.4600 1.48 -20.55 -17.23 -14.71 

log.shape -0.3942 0.14 -0.67 -0.39 -0.11 

Deviance 606.1653 2.44 603.40 605.54 612.39 

 

Based on the simulated values, marginal posterior densities of all the three parameters have been represented in Figure 3. 

The classical interpretation of density of parameter(s) estimates have been shown on the same plot. 

 
Fig. 3:  Marginal posterior densities of regression coefficients and shape parameter. 

 

However, the expected mean time until the first failure of insulating fluid under different voltage levels is decreasing at a 

steep rate and has been shown in Figure 4. 
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Fig. 4:  Trend of mean time to failure of electrical insulating fluid example 

under the gamma model. 

 

 

VII.    CONCLUDING REMARKS 

 

This paper introduces the contributed R package LaplacesDemon that facilitates high dimensional Bayesian inference. It 

has been written entirely in R and has a remarkable provision for user-defined probability models. The main body of the 

article comprises of written and distributed codes for gamma modeling of  real datasets with Laplace approximation. It has 

been found that Laplace approximation is a suitable alternative to the high-dimensional integrations and R provides a 

simple function namely LaplaceApproximation to implement it. Also, we have attempted to provide a true picture of 

the marginal posteriors in contrast to the one provided by the asymptotic theory of frequentist approach. It is evident from 

the results that Bayesian methods based on non-informative (or weakly-informative) priors are equally compatible to the 

classical methods of inference. 
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