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INTRODUCTION
In almost every field of study, studying the distribution of a random curve can give needed information. In the field of in vitro 

fertilization, particular interest is given to modeling the temperature curves of women across their menstrual cycle. Fitting the curve 
can lead to categorizing cycles as healthy or unhealthy and can help identify the most fertile days of a cycle. A healthy menstrual cycle 
consists of three phases, the follicular phase, ovulation, and the luteal phase. During the follicular phase, the basal body temperature 
(the lowest temperature reached during rest, referred to as  bbt for the remainder of this paper) holds constant at a low plateau. During 
ovulation, the  bbt increases until it hits the high plateau. The  bbt then holds constant at this high plateau through the luteal phase. At the 
end of the cycle, the  bbt drops back down to the low plateau before menstruation and the cycle repeats [1]. Figure 1 gives a few examples 
of a healthy menstrual cycle’s  bbt levels [2]. Section 2 outlines the general hierarchical model, then gives a parametric modeling of 
the  bbt curves. The end of Section 2 completes the Bayesian specification and specifies the hyperparameters needed for the prior 
distributions. Section 3 briefly describes how the Gibbs sampling algorithm works and then applies it to model. Section 4 gives a short 
description of the change-point problem and defines the stopping rule needed in order to identify the two change-points in the model. 
Section 5 details a simulation of the data and then applies the Gibbs sampling algorithm with intentionally skewed hyperparameters. 
The results of the simulation are discussed at the end of Section 5. Finally, Section 6 provides a short discussion of the model and 
conclusions (Figure 1).    

THE HIERARCHICAL MODEL
First, we will define terms necessary to describing the model. A  prior distribution of an unknown quantity X is the probability 

distribution that would express one’s certainty about X before the data is taken into account. Similarly, a  posterior distribution of an 
unknown quantity X is the probability distribution of that quantity conditional on the  observed data. A  hyperparameter is parameter of 
a prior distribution that is not treated as random. For example, consider a random variable X that came from A ( )2 ,N µ Σ  distribution, 
where Σ is known and we can use a ( )2 0 0,N µ Σ  distribution to model µ. Then µ is a parameter, ( )2 0 0,N µ Σ is a prior distribution, and µ0 
and Σ0 are hyperparameters.
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Figure 1. Examples of bbt levels for healthy cycles[2].

The General Model
Let { }1,2, ,∈  ii n refer to woman { }, 1,2, ,∈  ii j n  refer to cycle j of woman i, and { }1,2, ,∈  ijt n  refer to day t in cycle j of woman 

i. These indices will retain these definitions throughout the remainder of the paper. We can establish the following model for  bbt curves 
[3]: 

( ) ( ) ( )= ,η ε+ij ij ijy t t t

where εij is the measurement error and ηij  is a smooth function from{ }1,2, , ijn  to . Since cycles of the same woman are expected 
to be correlated, we can establish a prior distribution for the distribution of functions for woman { }( )=1

η
ni

ij j
i  call it Gi . However, healthy 

menstrual cycles will follow a similar pattern among women, so we can establish a prior distribution for the collection of distributions 
for the different women { }( )=1

= n
i i

G , call it  P. Thus if we assume our error is normally distributed, we have the following model [3]: 
( ) ( ) ( )= ,η ε+ij ij ijy t t t

( ) ( ) { }2
=1

  0, ,   , =   .ε σ η n
ij ij i i i

t N G G P  

Basis representation

Now that we have our general model, there are a number of different representations that could be used for ηij. A common strategy 
is to consider a basis representation [3]: 

( ) ( )
=1

= ,η θ∑
k

ij ijh h
i

t b t

where ( ){ } =1

k
h h

b t  are pre-specified basis functions and ( )1, ,θ θ

'

ij ij ijkθ = are cycle-specific basis coefficients. Since ( ){ } =1

k
h h

b t  is pre-
specified, our major objective is to model the θijs. The approach we use is to give the θijs a hierarchical normal model [3]: 

( ) ( )1 1  , ,   , ,1
− −Ω ΩN Nij i ik k θ α α α

Where Nk(µ,Σ) is the multivariate normal distribution with mean vector µ and covariance matrix Σ. The woman-specific basis 
coefficients are given by αi, α  gives the global mean basis coefficients, and Ω and Ω1 are the precision matrices for the within and 
between woman variability respectively. So to complete the model, we need to specify the basis functions ( ){ } =1

k
h h

b t  and establish the 
components of ij. We’ll do this in the next section when we consider a parametric hierarchical structure. 

Parametric Hierarchical Model

As we discussed in Section 1,  bbt levels of a healthy cycle follow a biphasic pattern where the  bbt levels start at the low 
plateau in the follicular phase then quickly rise during ovulation to the high plateau in the luteal phase. Thus we can model ηij (t) 
as follows [3]: 
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where ,1 2θ θ 
 
 

=
'

ij ij ij θ  where θij1 and θij2 indicate the temperature during the follicular phase and the increase in  bbt during ovulation 
respectively for cycle  j of woman  i. We can further define  to be the last day of the follicular phase and rij to be the number of days the  
bbt rises during ovulation (Figure 2). Thus, if we consider yij (t) as Yij a vector of nij bbt values, we can represent our hierarchical model 
in matrix form [3]:

Figure 2. Graphical representation of parametric model. 
2 = ,       0,ε ε σ

 
  
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Thus Xij (t), the tth  row of  X, corresponds to tth day of cycle  j of woman  i. So we have defined our pre-specified basis function 
( ) ( )( ) ( )1 2  = ijb t b t tΧ  and our cycle-specific basis coefficients ,1 2θ θ 

 
 

=
'

ij ij ij θ .  

Bayesian Specification

 Now we have within (Ω) and between (Ω1) woman variability, the last day of the follicular phase (kij), the number of days during 
ovulation (rij), the global mean (α), and measurement error variance (σ2) left to model. We’ll use the following equations to model the 
within and between woman variability: 

1 11
1

2 12

0 0
 =   = 

0 0
ω ω

ω ω
   

Ω Ω   
   

We complete the Bayesian specification with the following priors [3]:
( ), 20+ij ij ijk m m

( )1,15ijr 

( )0 , αkNα α ∑

( )2  ,   σ − c d

( ), = 1,     
 

2  ωh h ha b for h

( )1 1 1, =1,2ω h h ha b for h

where ( ),a b  is the gamma distribution with shape parameter  a and inverse scale parameter  b, ( ),a b  is the discrete uniform 
distribution between a and b, and mij is the first day after menstruation. Thus, our pre-specified hyperparameters are α0, Σα, c, d, ah, bh, 
ah1, and  bh2 (for  h = 1, 2). A summary of the parameters, hyperparameters, their descriptions, and distributions is given in the appendix.  

GIBBS SAMPLING
Our goal is to find the parameters of our model given a set of observations. Since finding the joint distribution is a complicated 

process, we need to use a different method. A common method to do this is to use a Monte Carlo Markov Chain as an iterative procedure. 
The specific type of Monte Carlo Markov Chain that we’ll use is called a Gibbs sampler. 
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Definition

Suppose we have random variables X1, X 2,…, X n.

1. Initialization: Let ( ) ( ) ( )0 0 0
1 2, , , nx x x  be given some initial value. 

2. Iteration: For 1 ≤ I≤ K, sample xj
(i) from the conditional distribution of  Xj given ( ) ( )= , , =1 1 1  1   − −

i i
x xj jΧ Χ  and 1 1

= , , =1 1 
   
   
   

− −
+ + 

i i
x xn nj jΧ  

for 1 ≤ j ≤ n 

This Gibbs sampling procedure is a Markov chain, where the stationary distribution is joint distribution of X1, X2,…,Xn. Thus, 

for large k, the sample , ,1 ,2
     
     
     



k k k
x x xn  approximates the joint distribution of X1, X2,…, Xn. A blocked Gibbs sampler uses the same 

steps, except it groups some of the random variables together so that the variables in a block are sampled from their joint distribution 
conditioned on all other variabes. 

Gibbs Sampling Algorithm

Here is the blocked Gibbs sampling algorithm for our model after we’ve given the parameters some initial value [2]:

1.  Cycle-specific coefficients: ( )| , , ,2 1 1y  N b Vij ij θ

( ) ( )12 2 =   = 1 1 1σ σ
−− −Ω + Ω + y' 'V b Vij ij ij ijΧ Χ Χ

2.  Women-specific means: ( )2 2 2| , , ,y i ij N b Vα  

( ) 1
 =   = 2 1 2 2 1 =1

 
 
 
 

−
Ω + Ω Ω + Ω ∑

ni
V n b Vi ijj

 θ

3.  Global mean: ( )| , , ,2 3 3y  N b Vi ij α  

( ) 0

11 1 =   = 3 1 3 3 1 =1α α
 
 
 

−− −+ Ω + Ω ∑ i

n
V n b V

i
∑ ∑ αα

4.  Components of Ω  ( h = 1,2): ( )| , , ,1 1ω y  p qijh 

21 1 =   = 1 12 2 ==1 =1
θ α 

 
 

+ + −∑ ∑ ∑
nn n i

p a n q b ni ih h ijh ihi ji i

5. Components of Ω1 ( h = 1,2): ( )| , , ,2 21ω y  p qijh 

( )21 =   = 2 21 12 2 =1
α α+ + −∑

nnp a q bh h ih hi

6. Error variance: ( )2
3 3 | , , ,σ − y ij p q  

( ) ( )( )21 =   = 3 32 2=1 =1 =1 =1 =1
+ + −∑ ∑ ∑ ∑ ∑

nn n ijn ni inp c n q d y t tij ij ij iji j i j t
θ

7. Last day of follicular phase: Use the change-point stopping rule for kij (see Section 4). 

8. Ovulation period: Use the change-point stopping rule for rij (see Section 4).

So if we use the blocked Gibbs sampling steps to update the unknown parameters from their conditional distributions, then after a 
large number of iterations, we’ll be sampling from the joint distribution of all the unknown parameters. 

CHANGE-POINT PROBLEM
Now we need to consider kij and rij since these are specific points (called change-points) in the  bbt curve where the shape of 

the curve changes. The process for finding a change-point P is intuitive. Given a set of observations ( ) = , , ,1 2y y y ym m  we’ll find the 
probability that p ≤ m given ym . We want this probability to be higher than some high threshold Q. Thus we have a “stopping rule" [4]:

Terminate at m if and only if ( )| >≤ yPr P m Qm .

Starting with  m = 1, the first time that the probability is greater than Q is our change-point P.

Finding kij
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First we wish to find kij assuming that the other parameters are known. Let Xk be the first m rows of the matrix Xij established 
above but with kij = k. Thus  = ,, ε+y mij m ij ijkΧ θ . Let {πk} be the prior distribution for kij,π(.) be the density function of θij, and f(.) be the 

density function of the data yij,m.  We now need to find the posterior distribution of kij in order to find ( )|Pr k m m≤ y  for our stopping rule. 

Let ( ) = |  = ,L f k kij m ijk  be the change-point likelihood. Then implementing Bayes’ theorem, we get [4]

( ) ( )
( )

|  = ,=
| ,

π

π

y

y
d

f kij m ij ijLk kij ij m

θ θ

θ

Since Lk is not a function θij, we may replace θij with 0. Also ( ), | 0, y ij mf k  does not depend on k, so Lk is proportional in k  to

( )( ) 1

,= 0 | ,π
−

yk ij mW k

The posterior distribution of θij is N2(µk,Vk) where 
( ) 12= σ

−− + ΩV X X'
k k k

( )2
,= σ − + Ωµ V X y'

k k k ij m iα

Note that this is the same posterior distribution found for θij found in Section 3, but with the altered matrix Xk. Using this posterior 
distribution for θij, we find that 

( )
1
2

1= .
2

−  
 
 

µ V µ'
k k k k kW det exp

Since we need to find ( )|≤ y ,Pr k m mij  , we’ll first find ( ), = | yij ij mPr k k . From applying Bayes’ theorem to ( ), = | yij ij mPr k k , we get1

 = | = ., =1
π π

 
         

 

−

∑y
nij

Pr k k L Ls sij ij m k k s

Since Lk is proportional in k to Wk, then we can substitute Wk in for Lk , resulting in

( )
1

 = | = ., =1
π π

 
 
  
 

−

∑y
nij

Pr k k W Ws sij ij m k k s

These probabilities are easy to compute as the data becomes available. When k ≥ m, 
1 1 1

=
0 0 0

 
 
 

X




T

k

 So Xk does not depend on k (and hence Wk = Wm). Thus, our stopping rule is to terminate at m if and only if 

( )
=1 = 1

1 = >π π
+

∑ ∑
nijm

k k m k
k k m

Q W QW

 Once we hit our stopping rule [4], let kij =m. 

Finding rij

 We can apply the same approach to finding rij by using a transformation to examine the data “backwards", i.e. consider the last 
day first, and proceed through the cycle in reverse order. So our new reversed data is

( ) ( ) ( )( )* = , 1 , , 1 .−y 

'

ij ij ij ij ij ijy n y n y

Let 1 1
 = 

0 1
 
 − 

 be our transformation matrix. Then

1 2*

2
=  = 

θ θ
θ

 
 
 
 

+

−
A ij ij

ij ij
ij

θ θ

1 2

1 2 2*

1

1

(t) =

θ θ

θ θ θ

θ

+ ≤ ≤ −


 − + + − − ≤ ≤ −   −  


− ≤ ≤


ij ij ij

ij
ij ij ij ij ij ij

ij ij

ij ij ij ij

t n r

t n r
n r t n k

y r k

n k t n

Thus if we let Xr* correspond to the first m rows of the above system, then 
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* * * *=, ,ε+Xy rij m ij ij mθ

This transformation lets us use the same process that we used to find kij. Let {πr} be the prior distribution for r (the second change-
point). The new posterior distribution for θ*ij  is N2(µr,Vr), where 

( )( ) 1
2 * *= σ

−
− + ΩV X X A A

' '
r r r

( )( )2 * *
,= .σ − + Ωµ V X A A Ay' '

r r r ij m iα

Note that since ( )*
2= ,   , ΩA A A AT

ij ij ij N iθ θ θ α  thus giving a similar posterior distribution found in Section 3 for θij  . Using this 
posterior distribution for *ij  we find that

( )
1
2

1= .
2

−  
 
 

V µ V µ'
r r r r rW det exp

Thus, our stopping rule is to terminate at m if and only if 

( )1= >
=1 = 1

π π∑ ∑
+

nijm
Q W QWr r m rr r m

Once we hit our stopping rule, r =nij -m (since we transformed our data). Since rij  is the number of days between kij  and r, then rij = r –kij

SIMULATION
Data simulation

Now that the method has been described, we’ll introduce a simulation in order to illustrate the method. The simulated data 
consisted of 20 women, each with 10 cycles, so we had a total of 200 cycles. Each cycle had a length of 30 days [5]. We arbitrarily 
assigned the global mean and covariance matrices to be 

( ) 1 1
1

0.01 0
 = 36.5,0.4   =  = .

0 0.01
− −Ω Ω

 
  

'
α

Each woman specific mean was generated as per the model discussed in Section 2, so ( )2 1  ,i N Ωα α . We then generated kij 
and rij for each cycle according to ( )  1,14ijk   and ( )  1,15ijr  . Finally, we generated the cycle specific coefficients according to 

( )   ,2Nij i Ωθ α  and the measurement error terms according to ( )2  0,30ε σ INij   where 2σ  = 0.01. Now that we generated all the 

parameters needed for our model, we generated the  bbt values according to 
= ε+y Xij ij ij ijθ

Initialization

In order to run the algorithm, we need to specify the hyperparameters (our initial guesses). In order to account for error, we 
intentionally perturb the hyperparameters away from the actual parameters established in Section Data simulation So we set our 
hyperparameters to be

0 

1 2 1 2

11 12 11 12

36 0.25 0
=   = 

1 0 0.01
 =  = 1   =  = 1
 =  = 1   =  = 1

 = 1   = 1

α
   
   
   

a a b b
a a b b

c d

α ∑

These hyperparamters are used in the Gibbs sampling steps outlined in Section 4. But before we can implement the Gibbs sampling 
algorithm, we need to initialize our unknowns from their prior distributions using the hyperparameters, as seen below: 

2
36 0.25 0

,
1 0 0.01

    
         

Nα

( )1 2, 1,1ω ω 

( )11 12, 1,1ω ω 

( )2 1,1σ − 

We also need to initialize the αis from their prior distributions since the first Gibbs sampling step is finding the posterior distribution 
of θij conditional on αi . So we’ll generate αi values from the prior distribution 
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( )2= ,Ωi Nα α

The final step for initialization was to set the kij  and rij  values all to a fixed value of 7. 

Running the algorithm

Now that initialization is completed, we can run the algorithm. We ran the algorithm for a total of 6,000 iterations with a 1,000 
iteration burn-in. To make sure that the parameters were converging, we performed traceplots of a number of the variables. Figures 3 
and 4 show the traceplots for α11 and α12 respectively.  

Figure 3. Trace plot of α11. 

Figure 4. Trace plot of α12.

Tables 1 and 2 summarize the results from estimating the parameters in our model. The cycle specific parameters (kij, rij,θij1 and 
θij2) are summaries over all cycles, while the women specific parameters (αi1 and αi2) are summaries over all women. As evidenced by 
the tables, the distribution of these parameters was well estimated. Figures 5 and 6 show graphs of the true and estimated distributions 
for two example cycles. 

True distribution
Parameter Mean Standard Deviation First Quartile Median Third Quartile

ijk 7.07 4.00 4 7 11

ijr 8.60 4.60 4 9 13

1ijθ 36.49 0.13 36.40 36.50 36.58

2ijθ 0.40 0.13 0.31 0.41 0.47

1iα 36.49 0.08 36.43 36.51 36.55

1iα 0.41 0.09 0.35 0.38 0.48

Table 1. Posterior summaries of the true cycle and woman specific parameters.
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Table 2. Posterior summaries of the estimated cycle and woman specific parameters.

Estimates
Parameter Mean Standard Deviation First Quartile Median Third Quartile

ijk 7.91 4.04 4.5 8 12

ijr 7.83 4.87 3 8 12.5

1ijθ 36.49 0.13 36.39 36.50 36.57

2ijθ 0.40 0.13 0.30 0.40 0.47

1iα 36.50 0.08 36.44 36.50 36.54

2iα 0.40 0.10 0.34 0.39 0.47

Figure 5. Woman 2, cycle 2 .

Figure 6. Woman 6, cycle 4.

CONCLUSION
So, we can see that the blocked Gibbs sampling algorithm was an accurate method for estimating the various parameters of our hierarchical 

model. Most importantly, the change-point analysis gave accurate estimates for the last day of the follicular stage and the number of days that 
the temperature rises during ovulation (Appendix). These two figures are critical for determining the most fertile period of the menstrual 
cycle. A natural extension of this topic would be to model unhealthy cycles using a nonparametric approach. Combining the parametric and 
nonparametric models would allow for broader analysis and more unusual data sets. 
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