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Abstract: Ridge regression, first proposed by Horel and Kennard [1], is one of the most popular estimation procedures 
for combating multicollinearity in regression analysis. Although controversial, it is a widely used method to estimate 
the regression parameters to an ill-conditioned model. Ridge estimates seem to be motivated by a belief that, least 
square estimates tend to be too large, particularly when there exists any kind of multicollinearity. It gives us a smaller 
mean square error than OLS estimates for ill- conditioned data. In this paper the ridge procedure has been tried with an 
interval of shrinkage parameter which has been constructed through bootstrapping approach. Here the intention was to 
find such an interval for the shrinkage parameter for which the stability of the estimates could be visualized as well as 
expected change of sign of the parameter values could also be obtained. With this interval another important thing 
might roughly be obtained that for which value of the ridge parameter, the minimum GCV [2] occurs, could be found. 
For bootstrapping a random sample from the data matrix has been obtained for each repetition and for the stabilization 
of the coefficients the method of degrees of freedom trace (DF- trace), which was first proposed by Tripp [3], [14] in 
his doctoral dissertation, was followed. 
 
Keywords: Regression, Multicollinearity, Ridge Estimates, Shrinkage Parameter, DF- Trace, Bootstrapping, 
Generalized Cross Validation (GCV) 

I. INTRODUCTION 
Regression analysis is mainly concerned with relations among variables. These relations are, at times, described in 
mathematical forms. However, theories need to be checked against data obtained from the real world. If empirical data 
verify the relationship proposed by the theory, we may accept it; otherwise we must reject the relationship. That means, 
we obtain quantitative measurements from the data taken from the real world. If the theory is compatible with the 
actual data, we accept the theory as valid. If the theory is incompatible with the behavior, we either reject the theory or, 
in the light of the empirical evidence of the data, modify it. A very simple linear regression model of two variables can 
be given as 0 1Y X      where, Y is the response variable, X is the explanatory variable, 0  is the intercept part of 
the regression line, 

1  is the coefficient of the explanatory variable and ‘ε’ is called the random error term. In practice 
several variables are used to explain the response variable in a perfect manner. In this case we use a generalized model 
called multiple regression model. To estimate the coefficients of a multiple regression model we use a very popular 
method named ordinary least square (OLS). We can use this approach, if the basic assumptions of regression model are 
satisfied. But with the violation of any one of the assumptions the estimates of the coefficients are not found in a 
suitable manner with which we could go for further analysis. Multicollinearity is one of the violations of classical linear 
regression analysis. If the regression variables are collinear, it is discomfort to estimates the coefficients. Many of 
volumes had been written on this topic for the solution to multicollinearity. Ridge regression is one of them, first 
introduced in 1970 by Hoerl and Kennard [1], is a very useful tool to handle collinear data. Multicollinearity refers to 
the existence of more than one exact linear relationship, and collinearity refers to the existence of a single linear 
relationship. But this distinction is rarely maintained in practice, and multicollinearity refers to both cases. For example: 
for k+1 variable regression model involving explanatory variables

k21 Χ,......,Χ,Χ , an exact linear relationship is said to 
exist if the following condition is satisfied: 

0 1 1 2 2 0 1 2...... 0 ; where, , , ,.....,k k kc c c c c c c c        are constants. 
The consequences of multicollinearity are: (a) The estimates of the coefficients are indeterminate. Although, OLS 
estimators might be best linear unbiased estimator (BLUE) but have large variances and co-variances making precise 
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estimation difficult, (b) Because of the 1st consequence, the confidence interval tends to be much wider leading to the 
acceptance of the “zero null hypothesis” more readily as the standard errors of these estimates become infinitely large, 
(c) Also because of the 1st consequence, the t-ratio of one or more coefficients tends to be statistically insignificant, (d) 
Although the t-ratio of one or more coefficients is statistically insignificant, R2, the overall measure of goodness of fit, 
can be very high, (e) The OLS estimators and their standard errors can be sensitive to small changes in the data. That is, 
estimates of coefficients become very sensitive to particular set of data and the addition of a few more observations can 
sometimes produce dramatic shifts in some of the coefficients. If the assumptions of classical linear regression are 
satisfied, the OLS procedure can be done for estimating the coefficients of the explanatory variables. When the 
violation of multicollinearity arises it is difficult to go with OLS method. Among several procedures of the remedy 
measures Ridge Regression is one of them, if all the regressor variables are on account i.e., they are required to be 
included in the model. Objectives of the study were: (i) At first to detect the existence of multicollinearity among the 
explanatory variables, (ii) To find a pseudorandom interval for the shrinkage parameter of ridge regression by 
bootstrapping (data points) approach. 

II. DATA SOURCE AND TYPES 
The data used for this study obtained from the surveya done on 1282 households by Pk. M. Rahman (I.S.R.T., 
University of Dhaka) for poverty situation analysis. It was not obvious that, all the entries of the data were in a well 
manner. Because social data contain so many ambiguous information, which might make the study a little bit 
unrealistic. Numerical and categorical data both were available in this data frame. All the variables were related to 
poverty indicator. Household expenditure, food expenditure, non-food expenditure, land holding size, economic class, 
etc. were the variables of this data. But some selected variables had been used for the analysis. These pre-selected 
variables were – Household expenditure, Income, Household size, Number of male adult in a household, Years of 
schooling, Landholding size, Durable assets, Monthly food expenditure, Monthly non-food expenditure and Monthly 
household calorie intake. 

III. METHODOLOGY 
 
Methodology for this analysis was consisted of two phases.  First one was to detect if there was any multiocollinearity 
and the second phase, which was the main goal, was to find the interval for the best ridge parameters of regression. 

A. Detection of Multicollinearity 

There are several procedures have been employed for detecting multicollinearity in the data. According to Kmenta [4]- 
multicollinearity is a question of degree not of kind. The meaningful distinction is not between the presence and 
absence of multicollinearity, but between its various degrees. Since multicollinearity refers to the condition of the 
explanatory variables that are assumed to be non-stochastic, it is a feature of the sample and not of the population. It is 
not a problem of misspecification. Now we are going to describe the methods of detecting collinearity among the 
regressors of models. 

Informal Methods: Indication of the presence of multicollinearity are given by the following diagnostics: 
(a) Large changes in the estimated regression coefficients when a variable is added or deleted, (b) Non-significant 
results in individual tests on the regression coefficients for important independent variables, (c) Hypothesized signs of 
the coefficients are incorrect as they are expected from the prior context, (d) Important explanatory variables have low 
t-statistics, (e) Wide confidence intervals for the regression coefficients representing important independent variables, 
(f) Large coefficients of correlation between pairs of independent variables in the correlation matrix  rxx. 

The following represent formal diagnostic tools (Gujarati [5]): 

High 2R but Few Significant ‘t’ Ratios: This is the classic symptom of multicollinearity. If 2R is high, say, in excess of 
0.8, the F-test in most cases will reject the null hypothesis that the partial slope coefficients are simultaneously equal to 
zero, but the individual t-tests will show that none or very few of the partial slope coefficients are statistically different 
from zero. 

Tolerance and Variance Inflation Factor: The variance inflation factor is given by, 21/(1 )iiVIF R  where iR2  is the 
coefficient of determination in the regression of regressor Xi on the remaining regressors in the model.  

And tolerance is  1/i iTOL VIF . 
If iR2  increases towards unity, that is, as the collinearity of Xi with other regressors increases, VIF also increases and it 
can be infinite. Hence, TOL  closes to zero and the greater the degree of multicollinearity and TOLi =1, Xi is not 
correlated with the other regressors. As a rule of thumb, if the VIF of a variable exceeds 10 (this will happen if iR 2  
exceeds 0.90), that variable is said to be highly collinear. On the other hand, the variance of partial regression 

coefficient can be expressed as    
2 2

2 22

1ˆvar( ) . ,
1 ( )( )i i

i ii

VIF
R x

 


 
       

  where  i ix             

 

a Household survey conducted by Pk. M. M. Rahman, I.S.R.T., University of Dhaka, Email: pkmotiur@yahoo.com 
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This shows that, VIF (or TOL) as a measure of collinearity is not free of criticism. As the equation given above shows,  

ˆvar( )i depends on three factors: 2 2, andi ix VIF   
A high VIF can be counterbalanced by a low 2 2or a high ix  . To put it differently, a high VIF is neither 
necessary nor sufficient to get high variances and high standard errors. Therefore, high multicollinearity, as measured 
by a high VIF, may not necessarily cause high standard errors. In all this discussion, the term ‘high’ and ‘low’ are used 
in relative sense. 

Condition Number and Condition Index: According to Belsley et al [6] suggested the combined use of two diagnostic 
tools to detect the coefficients which are most likely to be affected by the collinearity. Their examination of the 
eigenvalues and eigenvectors of the correlation matrix yield most of the required information when investigating 
multicollinearities. The first statistic is the ‘condition number’ and associated ‘condition index’ of the X -matrix. The 
condition number is   

min

max


   

And the condition index is 

min

max




 
 

This condition index of the correlation matrix XX   is the set of ‘k’  values, where i  is an eigenvalue of XX  . The 
number of large values of i indicates the number of multicollinearities. According to Lawson and Hanson [7], this can 
be justified as following: 
The thj largest value of i  is an approximate upper bound to the condition number for the correlation matrix formed by 
deleting j  columns of . Thus there are as many multicollinearities in   as there are large values of i . A rule of 
thumb is, if i  is between 10 and 30, there is moderate to strong multicollinearity and if it exceeds 30 there is severe 
multicollinearity. A more reliable for diagnosing the impact of a dependency than the eigenvalue i  itself is,  

ki
i

i ,....,2,1,max 



  

B. Finding an Interval for the Ridge Estimates 

Among several well known procedures Ridge Regression, as proposed by Hoerl and Kennard [1], is one of the popular, 
albeit controversial, estimation procedures for combating multicollinearity. Though it is biased estimation procedure, it 
attempts to overcome the problems of multicollinearity in the data by adding a small positive constant,  to the 
diagonal terms of the matrix XX  . The estimators produced are biased, but tend to have smaller mean square error than 
OLS estimators. The ridge estimators are stable in the sense that they are not affected by slight variations in the data. 
The ridge trace is a very pragmatic procedure for choosing the shrinkage parameter (Hoerl and Kennard [1]). The 
analyst simply allows   to increase until stability in all coefficients. Quite often a plot of the coefficients against   
pictorially displays the trace and helps the analyst make a decision regarding the appropriate value of  . It should be 
emphasized that stability does not imply that the regression coefficients have converged. For values of   close to zero, 
multicollinearity will cause rapid changes in the coefficients. These quick changes occur in an interval of   in which 
one expects coefficient’s variances to be inflated. As   grows, variances reduce, and coefficients become more stable. 
A value for   is chosen at the point for which the coefficients are no longer changing rapidly. Quite often the analyst’s 
use of the ridge trace procedure involves viewing plots of coefficients of standardized, i.e., centered and scaled 
regressors. However, at times the analyst has a better notion of stability or interpretability of coefficients by observing 
the coefficients of the natural variables. Hoerl and Kennard [1] said that, at a certain value of  , the system will 
stabilized and have the generalized characteristics of an orthogonal system and coefficients with apparently incorrect 
signs at 0  would have changed to have proper signs. 
Another suggested automatic way of choosing   is given by Hoerl et al. [8]. They argued that a reasonable choice 
might be 

2 ˆ ˆˆ /( )z zks    

Where, z̂  are the least square estimates of the parameters for the centered and scaled regressors, ‘k’ is the number of 

parameters in the model but not containing 0 , s2 is the residual mean square in the analysis of variance table obtained 
from the standard least squares fit and for centered but not scaled Y. Now 

1 2 11 1 22 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , ,......, } { , ,......, }z z z kz kk kS S S          

Here, Sii are the sum of squares of the regressors. There are other ways of choosing . One, for example is to use an 
iterative procedure. The basic idea is this: In the choice of   above, a denominator of zz ˆˆ  was used. For that reason 

let us call that value 0 . Consider the iterative formula )}](ˆ{})(ˆ[{2
1 izizi ks    
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Here, )(ˆ
iz   are the estimates in case of standardized regressors for the value of i . Use of 0  on the right hand 

side of this formula will enable us to obtain a revised value i , which can be then be substituted into the right hand 

side of the formula to update to 2 , and so on. Updating continues until  




i

ii


 1 , 

where,  is appropriately chosen. For more on this procedure one can see Hoerl et al. [8]. The authors note that 
ii  1  always so that 0  and suggest 

3.11** }/)({20 
 kXXtr  

as a suitable practical value, for reasons they described on their research paper (Hoerl et al. [8]). It is often more 
important to base the selection of   on a criterion that is more directly descriptive of prediction performance. Several 
criteria will be discussed and illustrated here. A very much analogous to Mallows Cp- like statistic [9], [10] is 

][22
ˆ 2

,



 

Htrn
SS

C res   

where,  ,
*1*** and)( resSSXXXXH 

   is the residual sum of squares using ridge regression. In this equation of 

H , *** and,anis XXknX 
  is the correlation matrix among the k regressor variables. Procedurally, the use of the 

C -statistic may involve a simple plotting of 
C  against   with the use of the  -value for which 

C  is minimized. A 
little has to be said about the H , called ‘HAT’ matrix. The quantity H is defined as the matrix where diagonal 
elements are the quadratic forms 

iiii xXXxh 1)(   

where, xi reflects the model and location for the ith data point. The off-diagonal elements are 
1( )ij i jh x X X x for i j    

Thus the matrix H can be written as 
XXXXH  1)(  

This quantity is commonly called “HAT” matrix. It is a symmetric and idempotent (n x n) matrix. Here, ‘n’ is the 
sample size. It has a very important property as the following: 
tr(H) = k, the number of model parameters and for a model containing a constant term, 0.11  iihn  is contained. Thus, 
in the case of estimating  HC ;  plays the same role in ridge regression. 
Since prediction can be an extremely important criterion for a choice of , it seems only natural to consider cross 
validation in some sense. A ‘PRESS’-like statistic, introduced by Allen [11], of the type 

2

,

,

11
)Ridge(PR 






















i
ii

i

h
n

e



  

may be considered. Here, 
,ie  is merely the ith residual for a specific value of  , and ,iih  is the ith diagonal element of 

H . Again, the value of   is chosen so as to minimize PR(Ridge). A plot of PR(Ridge) against   will be sufficient 
and informative. This statistic cannot always be used. When we center and scale the data, the setting aside of a data 
point changes the centering and scaling constants and thus changes all the regressor observations. As a result, this 
formula is only an approximation to the true PRESS that would be obtained if we delete observations one at a time, 
with ridge regression recomputed from scratch each time. There are situations in which we can feel very comfortable 
about using PR(Ridge). Yet, in other situations, misleading results can occur. In fact, as one would suspect, the use of 
PR(Ridge) is quite good where: (a) Sample size is not small, and (b) Sample data contains no high leverage 
observations, i.e., no large HAT diagonals. 
Here, it is needed to introduce ‘PRESS’ for the ease of the reader. An interesting and vary important criterion, which 
can be used as a form of validation is the PRESS statistic. Consider a set of data in which we withhold or set aside the 
first observation from the sample, and we use the remaining ‘n-1’ observations (out of ‘n’) to estimate the coefficients 
for a particular candidate model. The first observation is then replaced and second observation withheld with 
coefficients estimated again. We remove each observation one at a time, and thus the candidate is fit ‘n’ times. The 
deleted response is estimated each time, resulting in n prediction errors or PRESS residuals 

),......,2,1(ˆ ,, nieyy iiiii    
These PRESS residuals are true prediction errors with iiy ,ˆ  being independent of iy . Thus in this way, the observation 

iy  was not simultaneously used for fit and model assessment, this being the true test of validation. The prediction iiy ,ˆ  
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is the regression function evaluated at x = xi, but iy  was set aside and not used in obtaining the coefficients. 

Notationally, we have iiii xy   ̂ˆ , ,where, i̂  is the set of coefficients computed without the use of the ith observation. 
Thus each candidate model will have ‘n’ PRESS residuals associated with it, and PRESS (Prediction Sum of Squares) 
is defined as:   

2 2
, ,ˆPRESS ( ) ( )

n n

i i i i i
i i

y y e    
 

So for choice of best model, one might favor the model with the smallest PRESS. 
Another criterion, which represents a prediction approach, or rather a cross validation approach, is the ‘generalized 
cross validation’ (GCV) given by 

2
,

,
2 2GCV

{ [1 ( )]} { [1 ( )]}

n

i
resi

e SS
n tr H n tr H




 

 
   

  

The value ‘1’ in )(1 Htr  accounts for the fact that the role of the constant term is not involved in
H . For further 

details regarding the philosophy behind GCV, the reader is referred to Wahba et al [2]. This statistic is a norm that is in 
the same spirit of prediction as PRESS.  It is easy to observe the resemblance between the GCV and the PR(Ridge). 
Again, the appropriate procedure is to choose   so as to minimize GCV. Simple plotting against   will suffice and 
can be very enlightening. There are certain advantages to using a value of the shrinkage parameter that is not a function 
of the response data. The methods for choosing   have all exploited the y-data. As a result, the ridge trace, the use of

C , PR(Ridge), and GCV are termed ‘stochastic methods’ for choosing  , with the choice of   being a random 
variable. There are cases for choosing   as a function of only the regressor data; therefore the choice of   is 
determined by the nature of the collinearity itself. In this case,   is not a random variable. Among these types of 
methods, where interpretation of the coefficients are important, a more appealing method is called the “DF-trace" 
(Tripp [3]). This criterion centers around the matrix H . The criterion suggested here is based on  

)( HtrDF   

The ‘DF’ implies degrees of freedom, namely, the effective regression degrees of freedom. The procedure involves 
plotting DF against   with a view toward choosing   where DF stabilizes. This methodology is much like the ridge 
trace in which   is chosen where all coefficients stabilize. The DF-trace criterion is a sound approach in which   is 
allowed to grow until there is a stabilizing or a ‘settling’ in the effective regression degrees of freedom or the effective 
rank of the data matrix. It should be kept in mind that DF is a non-stochastic procedure for choosing   based only on 
the structure of the collinearity. In this study, the goal is to find, if exists, a pseudorandom interval of   on the basis of 
an arbitrarily given interval of   using DF-trace method. If the interval could be found, it is also the vision to check 
the stability of the estimated coefficients. Let us now clarify the algorithm. 

In the presence of multicollinearity the determinant of XX   may be near singular or exactly singular. Then the 
estimates of as usual OLS are questionable. Consequently, the hypothesis testing parts of the coefficients are also 
useless. Their variances do not look like a good one and their standard errors, as a result, also not. Combating against 
this type of problem ridge regression is a very useful tool for having the estimates of the coefficients. Though the 
estimates are biased, they have less mean square errors than the usual OLS estimates. The ridge estimate is obtained by 
using the following formula –  

0anyfor)(ˆ 1    YXIXXR  

For stabilized R̂  we will choose  . If we take different values of  , say j , the ridge estimate will be as following  

YXIXX jR j
 1)(ˆ   

Here, ‘j’ ranges according to the analyst’s choice and obviously for stabilized 
jR̂  we will choose j . 

Algorithm : 
Step 1.  Let us choose a non-stochastic interval of  . For example, (0, 0.2). For the convenience of the computation 

an arbitrary increment will be given to the programming language, say 0.01, 0.05, 0.001 and so on. This increment may 
vary due to the analyst’s choices. But it should be reminded that, the increment wouldn’t be changes from step to step. 
A fixed increment has to be chosen first. Here we denote these  ’s as j . 

Step 2.  For a large sample size choose a number of levels i.e., data points (say 20, 30, 50, 100 and so on, if the 
sample size is very large like 500, 1000 etc.) from the original X -matrix and it should be reminded that the number of 
levels must not be less than the number of regressors. It is flexible to prefer the number of levels of the X matrix for 
conveniences keeping the condition in mind. Here a new matrix will be obtained randomly. Let us name this new X -
matrix 1*X . This new matrix should be stored safely for the next step. 

Step 3.  Calculate the HAT-matrices for different j ’s and 1*X . Say, these HAT-matrices are 
j

H . It is given by 





  1*11*1*1* )( XIXXXH jj

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Step 4.  Now we will find the traces of these HAT-matrices separately. For the jth  j  the trace of the HAT-matrix 
is 

jDFHtr
j
)( 

 

The changes of the calculated traces will lead us to take decision about the values of j . A rapid fall of DF or 
decrease of the effective regression degrees of freedom would help us to find the cut point of the interval, i.e., where we 
would stop for a modest taper of the DF. As normal eye-sight is used here for choosing the stabilizing point, it may 
arise some errors. It also may vary from person to person. The newly constructed interval will now be sliced with a new 
and sharper increment. Again jDF ’s will be calculated for the new interval of   with that same data matrix. By using 
these new  , DF’s i.e., )( Htr  should be calculated again and a simple plot of these DF’s against   will lead us to 
take the decision that, which value of   would be preferred. The point where near stability of the DF’s occur will be 
observed very carefully for the value of  . If the DF’s do not fall rapidly for the first choice of the non-stochastic 
interval of  , we will just plot the DF’s against j  and the choice of  -value should come out automatically by 
observing the stability of the DF’s. 

Step 5.  Plotting these jDF ’s against the j ’s, according to Tripp [3], [14] we will prefer a j , where jDF  
stabilizes (A subjective choice). 

Step 6.  Again a new non-stochastic interval will be chosen (previous interval can also be used) and a new 2*X  will 
be selected randomly. With this 2*X  third, fourth and fifth steps will be repeated. Until we get a sufficient number of 
 , to have a suitable decision for constructing an interval of the shrinkage parameter, all these steps, mentioned above, 
will be repeated. If it is difficult to take decision on the stability of the DF-trace, the method of GCV (Generalized 
Cross Validation, Wahba et al. [2]) can be applied to choose the value of  . 

Step 7. A large number of  ’s will be found and by sorting these  -values in ascending order will construct our 
required ‘pseudorandom’ interval of  ’s. Any value of   within this interval will produce stabilized ridge estimates 
of the coefficients with tolerable loss of degrees of freedom. 
About bootstrapping some idea needs to state here briefly for the clear concept of sampling procedure. 

Bootstrapping: Bootstrapping (Robert [12]) is a re-sampling procedure to get more precise estimate of a parameter. 
If we run a much bigger experiment, with the samples drawn from the sampling frame the estimates will give us more 
reliable result which are more close to the true value. It is a data based simulation method for statistical inference. In 
this method we draw, with replacement, a large number of observations from the whole data set and repeat this 
sampling procedure for as many as possible times. Each of these samples called bootstrap sample. These replicates 
contain information that can be used to make inference from the data with more reliability. 

It is needed to be mentioned that, if the interpretation of the coefficients is important, the ridge trace or DF-trace 
approach is important. But if prediction is important, GCV, C  statistic and PRESS statistic should be attempted. The 
mean square error of the ridge estimates can be calculated by  

2 2
2

2 2
1 1

ˆ ˆ ˆ ˆ( ) [( ) ( )]
( ) ( )

k k
i i

R R R
i ii i

MSE E        
    

    
    

2Where, Estimated mean error sum of square for OLS
Eigenvalues of matrix
Shrinkage parameter value

ˆ Estimated coefficients of ridge regression
and is such that, for a suitable value of with

i

R

i

X X

k






 







matrix of eigenvectors , we put

so that

Here, is a diagonal matrix of the eigenvalues of matrix and

k V c V

c X Xc V X XV
X X c c I



   

 

       
  

 

If   is zero, then the first part of the MSE is nothing but the sum of the variances of the ordinary least square estimates 
(OLS) of the coefficients, while the second term vanishes. The second term is known as the ridge ‘squared bias’ due to 
the given value of  . 

IV. EMPIRICAL ANALYSIS TOWARDS INTERVAL FINDING 

A. Data Naming and Coding 

The data used for this analysis is the House-hold data. In general, it is very natural that, for household data the variables 
are collinear in low or higher degree. For instance, household food expenditure and household calorie intake are highly 
correlated. We also know that, household expenditure depends on various factors. For analysis purpose some 
influencing factors of expenditure were selected. From that data source we had selected ten variables including the 
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dependent variables. The sample size was quite large having 1282 (twelve hundred and eighty two) observations for 
each variables. 
Y :  Household Expenditure (HHEXP), X1 :  Monthly Household Income (INCOME), X2 :  Household Size (HHSIZE), 
X3 :  Number of Adult Male (MADULT), X4 :  Years of Schooling (SCHYEAR), X5 :  Size of Land Holdings 
(LANDSIZE), X6 :  Durable Assets (DURABLE), X7 :  Monthly Food Expenditure (MFEXP), X8 :  Monthly Non-food 
Expenditure (MNFEXP), X9 :  Monthly Household Calorie Intake (HHCALORI). 
The model can be written as following: 

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9Y X X X X X X X X X e                     
Or equivalently,
HHEXP INCOME HHSIZE MADULT SCHYEAR LANDSIZE DURABLE50 1 2 3 4 6

MFEXP MNFEXP HHCALORI7 8 9 e

      

  

      

   
 

B. Detection of Multicollinearity 

For the sample data the ordinary least square (OLS) estimates of the coefficients are given in the following table. 
Table 1: Regression Analysis for Household Expenditure Data 

Estimated Regression Coefficients  t Significance Estimated Regression Coefficients t Significance 
β0  (Constant) 
β1  (for X1) 
β2  (for X2) 
β3  (for X3) 
β4  (for X4) 

-257.910 
0.301 
60.001 
-11.818 
-73.704 

-2.354 
15.903 
1.743 
-0.222 
-2.868 

0.019 
0.000 
0.082* 

0.824* 

0.004 

β5  (for X5) 
β6  (for X6) 
β7  (for X7) 
β8  (for X8) 
β9  (for X9) 

0.299 
0.004455 

1.28 
.00124 
-0.0017 

1.413 
3.587 
16.885 
0.873 
-2.186 

0.158* 

0.0001 
0.000 
0.383* 

0.029 
 
Level of significance is, α = 0.05, and * stands for insignificant t-ratios. And the analysis of variance table is 
 

Table 2: ANOVA Table 

Source Sum of Squares d.f. Mean Square F Significance 

Regression 
 
Residual 

6755073620 
 

1422981610 

9 
 

1272 

750563735.629 
 

1118696.234 

 
670.927 

 
0.000 

 
Significance level is 5% i.e., α = 0.05, Here, R2 = 0.826 and Adjusted-R2 = 0.8247 

From Table-1 and Table-2 it is clear that, R2 is high but the number of significant t-ratios is not satisfactory. If we took 
the level of significance as α = 0.01, the number of significant t-ratios could have been more poor. Again from the 
ANOVA table it can be concluded that, the explanatory variables are significantly explaining the dependent variable 
through the calculated F-value. Though R2 is high but all individual t-ratios are not significant and thus, 
multicollinearity exists among the explanatory variables.Tolerances (TOL) and variance inflation factors (VIF) are 
given below for different regressors. 

Table 3: Tolerance and Variance Inflation Factors for Different Explanatory Variables 

Names of the Variables 
(Coded) 

Tolerance 

i
i VIF

TOL 1


 Variance 
Inflation Factor 

i
i R

VIF
21

1



 

Names of the Variables 
(Coded) 

Tolerance 

i
i VIF

TOL 1


 Variance 
Inflation Factor 

i
i R

VIF
21

1



 

INCOME  (X1) 
HHSIZE  (X2) 
MADULT  (X3) 
SCHYEAR  (X4) 
LANDSIZE  (X5) 

0.254 
0.318 
0.597 
0.220 
0.576 

4.000 
3.148 
1.674 
4.536 
1.738 

DURABLE  (X6) 
MFEXP  (X7) 
MNFEXP  (X8) 
HHCALORI  (X9) 

0.529 
0.188 
0.994 
0.139 

1.892 
5.329 
1.006 
7.178 

2
iR  is the coefficient of determination in the regression of the regressor Xi on the remaining regressors of the model. 

From the Table-3, decision on the existence of multicollinearity can also be taken. According to Kleinbaum et al. [13], 
the variable X7 and X9 are collinear with other or with each other at a higher degree comparing to the other variables. 
Consequently their tolerances are also small comparing to the others. The variables X1, X2 and X4 are also collinear to 
the other variables but not at a high degree. Thus multicollinearity is containing in the model variables. 
Though the variance inflation factors are not showing sufficient information on multicollinearity, as the values are not 
exceeding a rule of thumb value 10, it can be concluded that, there do exist a moderate multicollinearity. Another 
approach to detect multicollinearity the Table-4 for eigenvalues, condition index and condition number is also given 
here. 
With the argument of Lawson and Hanson [7], if the value of condition index is between10 to 30, there is an indication 
of moderate to strong multicollinearity. On the other hand if it exceeds 30, there is severe multicollinearity. Obviously 
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the last three eigenvalues are small and hence, corresponding condition indices and condition numbers are showing the 
presence of strong multicollinearity. 

Table 4: Multicollinearity Diagnostic Table by Eigenvalues, Condition Index and Condition Number 
 
 
 
 
 
 
 
 
 
C. Finding Interval for the Ridge Parameter 

There are various procedures for choosing the value for the Ridge parameter  . Whatever the value of this parameter, 
the mean square error should have to be smaller than the sum of variances of the OLS estimates of the coefficients. The 
choice of   belongs to the analysts, of course, and a parameter value should be chosen where results show strong 
evidence that improvements in the estimates are being experienced. These improvements often take the form of 
evidence that the estimates are more stable or that prediction is improved. 

At first, a non-stochastic interval has been taken arbitrarily. Say, it is: (0, 0.1) and the arbitrary increment used here is: 
0.001 for the non-stochastic interval. Now, from the methodology as described before, suppose fifty levels (data points) 
of the X-matrix had been chosen randomly. These levels were stored separately some other where as a new data matrix 
for the further segments of the analysis. Calculated DFHtr )(   for the values of   (using the non-stochastic interval 

for fifty randomly chosen data levels) are examined and it is mentionable that, for 0  the value of the DF i.e., 
9)( Htr . As we had already said that the trace of HAT-matrix i.e., DF will be stabilized for the value of   to be 

chosen (Tripp [3], [14]), and it is (approximately) 0.006 to go for the ridge regression. We had chosen the value of  , 
from the DF-trace because, Tripp.[3], [14] had argued that, stabilization of the effective degrees of freedom gives us the 
clue of stabilization of the coefficients of the regressors and   is allowed to grow until there is a settling in the 
effective regression degrees of freedom. In the Fig.1 it shows that the effective degrees of freedom is 8 which means it 
has dropped down from the original degrees of freedom and it was 9. Here it is mentionable that effective degrees of 
freedom in regression analysis is very important as the property of the HAT-matrix indicates that ‘apart from 2  the 
prediction variance, summed over the locations of the data points, equals the number of model parameters and as close 
to correct degrees of freedom, prediction at a data point is more correct. If we apply ridge regression on this chosen 
fifty data levels i.e. the data matrix with which the DF-trace was analyzed, the results of the coefficients for that data 
set will also show stability where DF-trace was stabilized for the values of  . For all the values of  , where DF-trace 
stabilized, the estimates of the coefficients also shows stability. Another thing is that, the sign also changes where the 
values of   stabilized. Comparing table is showed in the following. Now the ridge estimates for this interval 
comparing with the OLS estimates are given in the Table-5 

Table 5: Comparing Table for OLS Estimates and Ridge Estimates 

Estimated Regression Coefficients 
(For usual  OLS method) 

Estimated Ridge 
Regression Coefficients 

Estimated Regression Coefficients 
(For usual  OLS method) 

Estimated Ridge 
Regression Coefficients 

β0 (constant) 
β1  (for X1) 
β2  (for X2) 
β3  (for X3) 
β4  (for X4) 

-257.910 
0.301 

60.001 
-11.818 
-73.704 

-236.97 
2.29 
51.79 
-6.36 
-59.27 

β5  (for X5) 
β6  (for X6) 
β7  (for X7) 
β8  (for X8) 
β9  (for X9) 

0.299 
.004455 

1.28 
0.00124 
-0.0017 

0.3051 
0.0047 
0.719 
0.0031 

0.00001 

Let us see what happen if we take another non-stochastic interval. Say, it is (0, 0.2). Here the arbitrary increment is 
0.001. Examining all the calculated DF’s for different values of   it shows almost the same situation as we got in the 
case of the interval (0, 0.1). This is because; the data sets chosen randomly behave in the same manner for any given 
interval. As it had described before, the stabilization of DF-trace showing for this interval with randomly chosen levels 
(data points) of the data matrix, the value of the ridge parameter is approximately 0.024 (from a number of estimated 
values of ridge parameter using statistical programming). For this new arbitrary interval it is apparent that, whatever we 
choose the length of the non-stochastic interval will not cause any problem to select a value for the ridge parameter. 

Let us choose another fifty levels (data points) from the data matrix randomly and again store (save) these levels in 
some other where and consider them, as a whole, a new set of data matrix. As previously described, for a non-
stochastic interval, with an arbitrarily given increment, the trace of the HAT-matrix for different values of   had been 
examined through statistical programming. 

An interesting thing had been revealed from the examined values that, for randomly chosen levels from the original X-
matrix, the trace of the HAT-matrix will not give us any clue for the stabilization of the DF. Now the question is- 

Eigenvalues  
(

i ) 
Condition Number 

ki
i

i ,....,2,1,0,max 




 

Condition Index 

i
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
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Eigenvalues  

(
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Condition Number 
ki

i
i ,....,2,1,0,max 





 

Condition Index 

i
i 


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7.110 
0.993 
0.914 
0.335 
0.280 

1.000 
7.160 
7.779 

21.224 
25.392 

1.000 
2.675 
2.789 
4.606 
5.039 

0.130 
0.118 
0.054 
0.048 
0.014 

54.692 
60.254 
131.666 
148.125 
507.857 

7.395 
7.762 
11.474 
12.171 
22.535 
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where to stop for the value of  ? At this time we can use the help of generalized cross validation (GCV) procedure 
(Wahba et al. [2]) which is an another familiar criterion for choosing the value of  . It is mentionable that, GCV is a 
very well known method from prediction point of view. Thus, here the value for the parameter , is that point for 
which GCV is minimum for that particular data matrix (Wahba et al. [2]). Using GCV method, in this case, the value 
for   is 0.069. 

 

 
Fig. 1: DF-trace on Household data for Table-5  

Fig. 2: DF-trace on Household data for Table-6 
In the same manner fifty levels of the X-matrix had been chosen for one hundred times and for each time a new data 
matrix had been created. All these data were stored separately. Using all those data matrix one hundred values of   
were selected through the same process as described before. It is obvious that, there might come some points or values 
of   as outliers. To overcome this, 2.5th and 97.5th percentiles (as a rough computation) of those one hundred values of 
  had been chosen after arranging them in ascending order. 

2.5th percentile and 97.5th percentile values had been found 0.007 and 0.08 respectively. Thus our required interval, for 
the shrinkage parameter of ridge regression, is (0.007, 0.080). 

Now again it is needed to see the ridge estimates comparing with the OLS estimates of the coefficients of the 
explanatory variables as well as the mean square error. Table-6 is showing the ridge estimates for the constructed 
interval and also the OLS estimates. Here we had used an arbitrary increment (say 0.00292, as we had chosen to have 
25 segments of the interval and it is completely arbitrary) for the interval for different values of  . The first and the 
third column of the table is showing the ordinary least square estimates of the coefficients for different explanatory 
variables that were used in the model. 

Table 6: Comparing Table for OLS Estimates and Ridge Estimates 

Estimated Regression Coefficients 
(For usual  OLS method) 

Estimated Ridge 
Regression Coefficients 

Estimated Regression Coefficients 
(For usual  OLS method) 

Estimated Ridge 
Regression Coefficients 

β0 (constant) 
β1  (for X1) 
β2  (for X2) 
β3  (for X3) 
β4  (for X4) 

-257.910 
0.301 
60.001 
-11.818 
-73.704 

-251.719 
0.2956 

53.8893 
-11.0105 
-48.7849 

β5  (for X5) 
β6  (for X6) 
β7  (for X7) 
β8  (for X8) 
β9  (for X9) 

0.299 
0.004455 

1.28 
0.00124 
-0.0017 

0.3016 
0.00443 
0.9288 
0.00127 
0.00004 

And the DF-trace for the final interval of the ridge parameter is shown in the Fig.2 which shows less fall of effective 
degrees of freedom. 
At the first point of the examined interval i.e., 0.007, mean square error is, 

2 2ˆ ˆ ˆ ˆ ˆ( ) [( ) ( )] Ridge squared bias (82.703) 11.362821( )

k iMSE ER R R i i


      

 
      

 
 

While for OLS it was found ߪොଶ(130.43683) including mean of error sum of squares. In case of OLS the first term is the 
coefficient of variances. 
Again, at the last point of the interval the mean square error is, 

2 2
2

1

ˆ ˆ ˆ ˆ ˆ( ) [( ) ( )] Ridge squared bias (19.34657) 625.2810
( )

k
i

R R R
i i

MSE E       
 

      
  

While for OLS it was found ߪොଶ(1118696.234) including the mean of error sum of squares. 

Clearly the ridge regression estimates of the coefficients for the interval, which had been constructed by data levels 
bootstrapping method, are giving us lower sum of variances of the estimates. 
For convenience of the readers the values of   after slicing the interval into twenty five segments are given in the 
Table-7. 
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Table-7: Values of   after Slicing the Interval into Twenty Five Segments 

              
0.00700 
0.00992 
0.01284 
0.01576 

0.01868 
0.02160 
0.02452 
0.02744 

0.03036 
0.03328 
0.03620 
0.03912 

0.04204 
0.04496 
0.04788 
0.05080 

0.05372 
0.05664 
0.05956 
0.06248 

0.06540 
0.06832 
0.07124 
0.07416 

0.07708 
0.08000 

On the other hand, the method of automatic choice for the value of shrinkage parameter, suggested by Hoerl et al. [8] 
(Procedure was already described in methodology part of this research), gives us the value of   is 0.010109. 
Obviously it is lying between the interval (0.007, 0.080), and may be the estimates are also started to be stabilized from 
this point. But one thing has to be focused here that, the change of sign of the coefficient of the 9th variable is negative 
at the point 0.00992 (Table-8) which is very close to 0.010109. This 9th variable was named as Household Calorie 
Intake (HHCALORI) and the negative sign of this variable shows incongruity with usual expectancy of sign of its 
coefficient. Because, in general we know that, household expenditure is highly positively correlated with the 
expenditure on food and amount of calorie intake is also highly positively correlated with food expenditure. Thus with 
the constructed interval this important information is coming out that, where the change of sign of the coefficients are 
happening. 

Table-8: OLS Estimates and the Ridge Estimates for the Whole Interval Founded by the Method. 
Values of 
  

Constants Ridge Estimates 
β1 

(for X1) 
β2 

(for X2) 
β3 

(for X3) 
β4 

(for X4) 
β5 

(for X5) 
β6 

(for X6) 
β7 

(for X7) 
β8 

(for X8) 
β9 

(for X9) 
0.00000 -257.910 0.3010 60.0010 -11.8180 -73.7040 0.2990 0.00445 1.2800 0.00124 -0.0017 
0.00700 -253.915 0.3006 54.9948 -11.0179 -55.6935 0.2998 0.00446 1.0796 0.00124 -0.0002 
0.00992 -252.817 0.2996 54.6920 -11.0129 -49.5892 0.3006 0.00447 0.9347 0.00125 -0.0000 
0.01284 -251.719 0.2956 53.8893 -11.0105 -48.7849 0.3016 0.00443 0.9288 0.00127 0.00004 
0.01576 -251.681 0.2901 53.0865 -11.0080 -47.9807 0.3029 0.00437 0.9185 0.00127 0.00009 
0.01868 -251.220 0.2889 53.0038 -11.0050 -47.7764 0.3036 0.00431 0.9095 0.00129 0.00013 
0.02160 -250.825 0.2789 52.8810 -10.9880 -47.5721 0.3044 0.00428 0.8954 0.00129 0.00021 
0.02452 -250.428 0.2735 52.7783 -10.8180 -46.8679 0.3048 0.00425 0.8739 0.00130 0.00029 
0.02744 -250.180 0.2702 52.5755 -10.8040 -46.6636 0.3055 0.00423 0.8501 0.00130 0.00035 
0.03036 -249.932 0.2646 51.7728 -10.7581 -46.4594 0.3089 0.00421 0.7886 0.00131 0.00038 
0.03328 -249.734 0.2589 51.9700 -10.7337 -45.9551 0.3116 0.00418 0.7641 0.00131 0.00043 
0.03620 -249.636 0.2559 51.4672 -10.6956 -45.9501 0.3175 0.00417 0.7203 0.00133 0.00048 
0.03912 -249.438 0.2544 50.7645 -10.6606 -45.8466 0.3219 0.00415 0.6995 0.00134 0.00053 
0.04204 -249.340 0.2337 49.9917 -10.6354 -45.7423 0.3225 0.00414 0.6709 0.00136 0.00056 
0.04496 -249.142 0.2302 49.9590 -10.5229 -45.6380 0.3233 0.00410 0.6651 0.00138 0.00059 
0.04788 -248.974 0.2275 48.4562 -10.5181 -45.5338 0.3239 0.00408 0.6454 0.00139 0.00062 
0.05080 -248.856 0.2203 48.5535 -10.4695 -45.3295 0.3251 0.00406 0.6319 0.00139 0.00064 
0.05372 -248.948 0.2178 47.9507 -10.4031 -45.1253 0.3295 0.00404 0.6191 0.00141 0.00069 
0.05664 -248.751 0.2109 47.4480 -10.3996 -44.9210 0.3327 0.00401 0.5994 0.00142 0.00071 
0.05956 -248.653 0.2045 47.1452 -10.3805 -44.8167 0.3336 0.00399 0.5895 0.00142 0.00073 
0.06248 -248.255 0.1998 46.9025 -09.3711 -44.7125 0.3347 0.00398 0.5763 0.00144 0.00079 
0.06540 -247.957 0.1909 46.5397 -09.3665 -44.7082 0.3361 0.00395 0.5616 0.00145 0.00082 
0.06832 -247.859 0.1868 46.1370 -09.3404 -44.6739 0.3383 0.00393 0.5539 0.00145 0.00086 
0.07124 -247.761 0.1808 46.0242 -09.2998 -44.3597 0.3392 0.00392 0.5527 0.00145 0.00093 
0.07416 -247.683 0.1796 45.9815 -09.2756 -43.8954 0.3404 0.00391 0.5525 0.00145 0.00099 
0.07708 -247.625 0.1691 45.8287 -09.2575 -43.6912 0.3417 0.00390 0.5522 0.00146 0.00103 
0.08000 -247.598 0.1659 45.8260 -09.2021 -43.6309 0.3431 0.00389 0.5521 0.00146 0.00104 

As the GCV (Generalized cross validation) method was also used to choose the value of   for some random samples 
drawn from the original data, then from prediction point of view it is also important that, if anybody likes to go for the 
analysis with less error in prediction at different data points, he/she may also get help from the estimated interval of  . 

This is a pseudorandom interval because we had given the first interval arbitrarily and the point of stability was also 
chosen subjectively. A more precise interval may also be obtained by increasing the number of data levels at the stage 
of random selection of sample. If we draw a histogram (Fig.-3) for the sorted values of the estimated   values (for all 
five hundred values), we will get that, most of the values are centering in from 0.01 to 0.04. 

In regression analysis we assume theoretical regression model includes all explanatory variables. But presence of 
multicollinearity affects the least square estimators and renders them inefficient. The problem of multicollinearity 
might be regarded as a ‘black mark’ that reduces the confidence in conventional tests of significance of least squares 
estimators. Whatever multicollinearity exists, the variables should have been contained in the model for more realistic 
interpretation. Combating against multicollinearity one of the more popular methods used in these days is ridge 
regression. This was first introduced by Hoerl and Kennard[1] mainly based on a biased parameter for having lower 
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mean square errors than the ordinary least squares estimates. Thus choice of that parameter, termed as ‘shrinkage 
parameter’, is a matter of fact that, for what values of it would make us clear to interpret the coefficients of the 
explanatory variables. 

According to Hoerl and Kennard [1], for the value of the shrinkage parameter  , the estimates of the coefficients are 
stabilized and obviously the mean square error should be less than the sum of the variance of the estimates computed 
from the OLS method and the proper sign of the coefficients should also be obtained by ridge method. 

 

 
Fig.-3: Histogram of the Values of Shrinkage Parameters for Constructed Interval 

Data used for this analysis, household data, consists of some familiar variables which are correlated to each other more 
or less. The response variable was Household Expenditure (HHEXP) with some selected explanatory variables– 
Income (INCOME), Household size (HHSIZE), Number of male adult (MADULT), Years of schooling (SCHYEAR), 
Size of landholding (LANDSIZE), Durable assets (DURABLE), Monthly food expenditure (MFEXP), Monthly non-
food expenditure (MNFEXP) and Monthly household calorie intake (HHCALORI). It is obvious that, monthly food 
expenditure is highly positively correlated with the monthly household calorie intake. Again monthly household 
expenditure is also positively correlated with the monthly food expenditure, whatever less in amount. And 
consequently monthly household calorie intake is also positively correlated with HHEXP i.e., monthly household 
expenditure. But using the ordinary least square procedure the estimated coefficient for the variable HHCALORI is 
showing negative relation with total household expenditure while total monthly food expenditure is showing positive 
relation with the response variable. Clearly it is a case of contradictory situation for highly positively correlated two 
variables which has overcome by the method. 

V. CONCLUSION 

In this study construction of the interval of shrinkage parameter has been done through DF-trace introduced by Tripp 
[3], [14]. The basis for his study was that, with the stabilization of the effective regression degrees of freedom for the 
data set, leads us to the stabilization of the estimates of the coefficients of the explanatory variables. Using this criterion 
a point value for the shrinkage parameter can be obtained and it can also be seen that, where actually the signs of the 
coefficients are changing. The main goal of this analysis was to find an interval, if there any, as well as the fulfilment 
of the prediction criterion (as GCV used at different cases). The method of Hoerl et al. [8] suggested for the automatic 
choice for the value of the shrinkage parameter which may not be able to focus on the change of the sign of the 
coefficients clearly. From prediction point of view, using their method, it is also difficult to gather information that, 
where the error due to prediction is minimum with a fitted model. The interval for the shrinkage parameter obtained by 
this method for the given data set is (0.007, 0.080). From the Table-8 of the estimates of the coefficients for ridge 
regression is showing that, up to the second value of  , (0.00992) the sign of the coefficients of the ninth variable i.e., 
HHCALORI is negative. But at that point the sign of the coefficients of MFEXP is positive. As a user of linear 
regression model it wouldn’t be expected that the household expenditure has negative relation with household calorie 
intake. Using the method of automatic choice of   value suggested by Hoerl et al. [8], we had got 0.010109 for the 
value of shrinkage parameter which is too close to 0.00992. Thus at this point the sign of the coefficient of 
HHCALORI is not clear to understand. This also contradicts with our expectation for the proper sign criterion and 
stability of the estimates of the coefficients for ridge regression. But if we look at the point 0.01284 (after a little 
increment 0.00292) the sign had changed into positive while stability of the estimates had also started from somewhere 
near of this point, may be a little bit after as Hoerl et al. [8] method gives 0.010109. Having full respect in Hoerl et al. 
[8] it may be decided that, for all data sets their method might not give us clear information of proper sign and stability 
of the estimates together as we expect. But using the interval all the information of sign change and the stability of 
effective degrees of freedom may be obtained with a clear vision. 
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Another thing is that, as generalized cross validation (GCV) [2] was also used for some number of cases for choosing 
the value of shrinkage parameter, the interval may also be used, more or less, to take decision from prediction point of 
view for the value of  . Thus the interval (0.007, 0.080) gives us the information on sign change of the coefficients, 
stability of the coefficients and also the less error of prediction for different data points of the data set. 
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