

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 5, December 2014

# Bidirectional Edge-Resonant Switched Capacitor Cell-Assisted Soft-Switching Dc-Dc Converter

Saritha Thomas Vaidyan<sup>1</sup>, Rabiya Rasheed<sup>2</sup> Student, Dept. of EEE, FISAT, Angamaly, Ernakulam, Kerala, India<sup>1</sup> Assistant Professor, Dept. of EEE, FISAT, Angamaly, Ernakulam, Kerala, India<sup>2</sup>

**ABSTRACT**: Here a soft-switching pulse width modulation (PWM) non-isolated bidirectional dc-dc (BDC) converter embedding an edge-resonant switched capacitor (ER-SWC) cell is presented. Bidirectional dc-dc converters serve the purpose of stepping up or stepping down the voltage level between its input and output. Bidirectional dc-dc converter has the capability of power flow in both the directions. The conceptual bidirectional dc-dc converter treated here can be operated in two modes: - buck mode (step-down) operation and boost mode (step-up) operation. The converter here operated in discontinuous conduction mode (DCM). So the converter can achieve high-frequency zero-current softswitching (ZCS) turn-on and zero-voltage soft-switching (ZVS) turn-off operations in the active switches. Those advantageous properties enable a wide range of soft-switching operations together with a high-voltage step-up conversion ratio with a reduced current stress. Circuit design guidelines based on the soft-switching range is introduced. Then, a theoretical analysis is carried out for investigating the step-up voltage conversion ratio. The simulation is carried out here in MATLAB/Simulink platform. For demonstrating the effectiveness of the softswitching PWM bidirectional dc-dc converter, a 22W-40kHz prototype is evaluated in experiments, and then its performances are discussed.

KEYWORDS: Bidirectional dc-dc converters, soft-switching, Edge-resonant, Discontinuous Conduction

### I. INTRODUCTION

Bidirectional dc-dc converters (BDC) have recently received a lot of attention due to the increasing need to systems with the capability of bidirectional energy transfer between two dc buses. Apart from traditional application in dc motor drives, new applications of BDC include energy storage in renewable energy systems, fuel cell energy systems and uninterruptible power supplies (UPS). The fluctuation nature of most renewable energy resources, like wind and solar, makes them unsuitable for standalone operation as the sole source of power. A common solution to overcome this problem is to use an energy storage device besides the renewable energy resource to compensate for these fluctuations and maintain a smooth and continuous power flow to the load. As the most common and economical energy storage devices are batteries and super-capacitors. A dc-dc converter is always required to allow energy exchange between storage device and the rest of system. Such a converter must have bidirectional power flow capability with flexible control in all operating modes. To charge and discharge the storage element, the bidirectional DC-DC converter is used. Here a non-isolated bidirectional edge-resonant switched capacitor cell-assisted soft-switching dc-dc converter is presented. It is derived from an edge-resonant switched capacitor cell-assisted soft-switching PWM boost dc-dc converter [1]. The bidirectional converter can be operated in two modes: buck mode and boost mode. Edge resonance means resonance occurs at rising or falling edge of the PWM signal. The converter is operating in discontinuous conduction mode. By adopting discontinuous conduction mode (DCM) scheme, the conventional PWM boost dc-dc converter can attain the soft commutation naturally at the turn-on of the active switch and zero-current soft-switching (ZCS) turn-off of the freewheeling diode in the wide range of load variation without any additional circuit component. Those advantages lead to the simplicity in the main circuit configuration and the control systems.



(An ISO 3297: 2007 Certified Organization)

## Vol. 3, Special Issue 5, December 2014

However, there exists an inherent technical issue in the DCM scheme: the current stress in the power devices and components as well as in the input smoothing capacitor is larger than that of the PWM boost dc-dc converter in CCM. To overcoming the drawbacks of the PWM boost dc-dc converter in DCM, employment of the edge-resonant switched capacitor (ER-SWC) cell [13] is one of the effective techniques due to its high efficiency and high scalability characteristics. In the soft-switching PWM boost dc-dc converter with the ER-SWC cell, a wide range of soft-switching operations can be achieved under the condition of DCM/critical conduction mode (CRM) in the input dc current without any circulating current, while the current stresses in the power devices and the passive components can also be mitigated owing to the edge resonance within the switching cell.

### II. PROPOSED TOPOLOGY

The modified converter is a bidirectional edge-resonant switched capacitor cell-assisted soft-switching PWM dc-dc converter. The circuit configuration of the bidirectional ER-SWC soft-switching PWM dc-dc converter shown in Fig.1



Fig 1: Circuit diagram of Proposed converter

The ER-SWC cell consists of four active switches  $S_1$ ,  $S_2$ ,  $S_3$  and  $S_4$ , two diodes  $D_1$  and  $D_2$ , a resonant capacitor  $C_rC_r$ , and a resonant inductor  $L_r$ . This converter can work in two modes of operation i.e. in buck mode or in boost mode. When the switches  $S_1$  and  $S_2$  are on, the converter act as a boost converter. At that time  $S_3$  and  $S_4$  are off. In buck mode  $S_3$  and  $S_4$ , are operated. During that time  $S_1$  and  $S_2$  are off. Edge resonance means resonance occurs at the rising or falling edge of the PWM signal. The modified converter is an edge-resonant soft-switching converter, that means soft-switching happens at the rising or falling edge of the gate pulse

#### **III. OPERATION PRINCIPLE**

### A. Boost mode

In this mode the dc-dc converter acts as a boost converter. The gate pulse is given to  $S_1$  and  $S_2$ , keeping  $S_3$  and  $S_4$  off. The mode transitions with the simplified equivalent circuits are shown in Fig.2. The circuit operation during one switching cycle is divided into five sub modes, as described in the following.

• Mode 1  $[t_0 \le t < t_1,], (S_1, S_2, ZCS \text{ turn-on mode})$ : The inductor current  $i_{Lr}$ , is zero, and the active switches  $S_1$ , and  $S_2$ , are simultaneously turned ON at  $t_0$ . Then,  $i_{Lr}$  and the switch currents  $i_{S1}$  and  $i_{S2}$  rise gradually from the zero initial value with the edge resonance by  $L_r$  and  $C_r$ . Thereby, ZCS turn-on commutation can be achieved in  $S_1$  and  $S_2$ . During this mode,  $i_{Lr}$  is written as

$$i_{Lr}(t) = \frac{V_{in} + V_0}{Z} \sin(\omega_r t - t_0)$$
(1)
where  $Z = \sqrt{L_r/C_r}$  and  $\omega_r = 1/\sqrt{L_rC_r}$ 

The resonant capacitor  $C_r$  is discharged by  $i_{Lr}$  in this interval.

• Mode 2  $[t_1 \le t < t_2]$ , (inductive energy storing mode): The resonant capacitor  $C_r$  is completely discharged at  $t_1$ ; then, the diodes  $D_1$  and  $D_2$  are forward-biased. The beginning time  $D_1$  of this sub mode and its inductor current  $i_{Lr1}$  can be determined from (1) as

$$t_1 = t_0 + \frac{1}{\omega_r} . \cos^{-1}\left(\frac{V_{in}}{V_{in} + V_o}\right)$$
(2)

Copyright to IJAREEIE

www.ijareeie.com



(An ISO 3297: 2007 Certified Organization)

# Vol. 3, Special Issue 5, December 2014

$$i_{Lr1} = i_{Lr}(t_1) = \frac{\sqrt{V_0(2V_{in}+V_0)}}{Z}$$
During this interval,  $i_{Lr}$  rises linearly as expressed by
$$(3)$$

$$i_{Lr}(t) = \frac{V_{in}}{Lr} (t - t_1) + I_{Lr1}$$

(4)

The inductor current  $I_{Lr}$  is equally shared by the two branches  $S_1 - D_1$  and  $S_2 - D_2$ .



Fig 2. Operating modes during Boost operation

• Mode 3 [ $t_2 \le t < t_3$ ], ( $S_1$ ,  $S_2 ZVS$  turn-off mode): The two active switches  $S_1$  and  $S_2$  are turned OFF simultaneously at  $t_2$ . Then, the edge resonance begins again in the ER-SWC cell, and the voltages across  $S_1$  and  $S_2$  increase gradually by the effect of  $C_r$ . Thereby, ZVS turn-off commutation can be achieved in  $S_1$  and  $S_2$ . The inductor current  $i_{Lr2}$  at  $t_2$  can be defined from (4) as

$$I_{Lr2} = i_{Lr}(t_2) = \frac{v_{In}}{L_r}(t_2 - t_1) + I_{Lr1}$$
(5)  
where  $t_2 = t_o + DT$  and  $D$  denotes the duty cycle of  $S_1$  and  $S_2$  as defined by
$$D \approx \frac{T_{on}}{T}$$
(6)

During this mode,  $i_{Lr}$  is defined by  $I_{Lr}(t) = I_{max} \sin \left[ \omega_r (t - t_2) + tan^{-1} \left( \frac{ZI_{Lr2}}{r} \right) \right]$ 

$$I_{Lr}(t) = I_{max} \sin\left[\omega_r (t - t_2) + tan^{-1} \left(\frac{2I_{Lr2}}{V_{in}}\right)\right]$$
(7)  
where  $I_{max}$  represents the peak value of  $i_{Lr}$ , as expressed by  
$$I_{max} = \sqrt{I_{Lr2}^2 + \left(\frac{V_{in}}{z}\right)^2}$$
(8)

This operation mode continues until the capacitor voltage  $V_{Cr}$  equals the output voltage  $V_o \operatorname{att}_3$ .



(12)

# International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Special Issue 5, December 2014

• Mode 4  $[t_3 \le t \le t_4]$ , (inductor energy releasing mode): The resonant capacitor voltage  $V_{cr}$  rises up to the output voltage at  $t_3$ ; then, the conduction interval of  $D_1$  and  $D_2$  is terminated. The beginning time  $t_3$  of the submode and the corresponding inductor current  $i_{Lr3}$  can be defined from (7) as

$$t_{3} = t_{2} + \frac{1}{\omega_{r}} \left\{ sin^{-1} \left( \frac{V_{o} - V_{in}}{ZI_{max}} \right) + tan^{-1} \left( \frac{V_{in}}{ZI_{Lr2}} \right) \right\}$$
(9)

$$i_{Lr3} = i_{Lr}(t_3) = \sqrt{I_{max}^2 - (\frac{V_0 - V_{in}}{Z})^2}$$
(10)

The inductor current  $i_{Lr}$  is forward to the load via  $D_o$  and thereby, the input voltage  $V_{in}$  is boosted to the output voltage  $V_o$ . During this interval,  $i_{Lr}$  is expressed by

$$i_{Lr}(t) = \frac{v_{in} - v_o}{L_r} (t - t_3) + I_{Lr3}$$
(11)

The inductor current  $i_{Lr}$  gradually decreases and naturally reaches to the zero level at  $t_4$ . Accordingly, occurrence of the reverse recovering current in the output freewheeling diode  $D_0$  can be mitigated.

• Mode 5  $[t_4 \le t \le t_5]$ , (inductor current discontinuous Mode): Inductor current  $i_{Lr}$  reduces to zero level after  $t_4$ , which is determined from (11) by

$$t_4 = t_3 + \frac{L_r I_{Lr3}}{V_0 - V_{in}}$$

The load current flows through the output capacitor  $C_o$  in this submode; then, the inductor current keeps the zero level until the next switching cycle starts at $t_5$ .

### B. Buck mode

In this mode the dc-dc converter acts as a buck converter. The gate pulse is given to  $S_3$  and  $S_4$ , keeping S1 and S2 off. The gate pulse given to switch S4 is complimentary of S3. The mode transitions with the simplified equivalent circuits are shown in Fig.3



Fig 3. Operating modes during Boost operation

• Mode 1  $[0 \le t < DT]$ ,  $(S_3 \text{ on}, S_4 \text{ off})$ : During this interval  $S_3$  is on, the ER-SWC cell is not conducting, because  $S_1, S_2$  and  $S_4$  are off and also  $D_1$  and  $D_2$  are reverse biased. The input provides energy to the load as well as to the inductor. The voltage across the inductor can be represented as

$$V_{Lr} = V_{in} - V_o \tag{13}$$

• Mode 2  $[DT \le t < T]$ ,  $(S_3 \circ ff, S_4 \circ n)$ : In this interval switch S3 is off. The inductor discharges through load. The inductor current flows through Lr-R0 -S2 -S1

$$V_{Lr} = -V_o \tag{14}$$



(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Special Issue 5, December 2014

### **IV. ANALYSIS OF VOLTAGE CONVERSION RATIO**

The analysis of the bi-directional converter is done by considering its boost mode operation[1]. The inductor current and voltage waveforms of the ER-SWC soft-switching PWM dc-dc converter in boost mode are illustrated and compared with those of the conventional hard-switching PWM boost dc-dc converter in DCM under the condition of the same duty cycle in Fig.4. The positive voltage–second area  $S_B$  in fig.4



Fig 4:Current and voltage waveforms of input inductor Lr in DCM of conventional and ER-SWC dc-dc converters in boost mode under the same duty cycle condition.

As a result, the negative amplitude of  $V_{Lr}$  in Fig. 5 is extended much more than that of the conventional type, then a larger output voltageV<sub>0</sub>, i.e., higher voltage conversion ratio can be obtained in the ER-SWC dc-dc converter in boost mode. The voltage conversion ratio (M = Vo/Vin) of the ER-SWC boost dc-dc converter in DCM can be determined from the input and output power balance. By assuming the time origin to = 0 in Fig. 5 for simplicity, the time integrations of the inductor current  $i_{Lr}$  in each submode are defined by

$$S_{1} = \int_{0}^{t_{1}} i_{Lr} \cdot dt = C_{r} V_{0}$$
<sup>(15)</sup>

$$S_{2} = \int_{t_{1}}^{t_{2}} i_{Lr} dt$$
  
=  $\frac{V_{in}}{2L} (DT - t_{1})^{2} + I_{Lr1} (DT - t_{1})$  16

$$S_3 = \int_{t_{-}}^{t_{-}} i_{Lr} \cdot dt = C_r V_0 \tag{17}$$

$$S_{4} = \int_{t_{3}}^{t_{4}} i_{Lr} dt = \frac{L_{r} I_{Lr3}^{2}}{2(V_{0} - V_{in})}$$
(18)  
$$S_{5} = \int_{t_{1}}^{T} i_{Lr} dt = 0$$
(19)

 $S_5 = \int_{t_4} I_{Lr} \cdot dt = 0$ Therefore, the average input current  $\overline{\iota_{Ir}}$  can be obtained by

$$\overline{\iota_{Lr}} = \frac{1}{T} \int_0^T \mathsf{i}_{Lr} \cdot \mathsf{dt} = \frac{1}{T} \sum_{k=1}^5 S_k$$
(20)

Neglecting the power losses in the ER-SWC boost dc-dc converter, the power balances between the dc power source  $V_{in}$  and the load  $V_0$  can be established as

$$V_{\rm in} \overline{t_{Lr}} = \frac{V_0^2}{R_0} \tag{21}$$

The input power  $V_{in} \overline{\iota_{Lr}}$  can be expressed from (15)–(21) as  $V_{in} \overline{\iota_{Lr}} = \frac{V_{in} V_0}{T(V_0 - V_{in})} \left\{ \frac{V_{in}}{2.L_r} (D_2 T)^2 + D_2 I_{Lr1} T + 2C_r V_0 \right\}$ (22) where  $D_2 T = t^2 - t^1$ . Furthermore, deformation of (21) with (22) yields the equation regarding the voltage conversion

ratio M as

$$M^{2} - (1 + 2C_{r}R_{0}f_{s})M - \frac{R_{0}f_{s}}{Z_{r}}D_{2}T(\sqrt{M^{2} + 2M} - \frac{\omega_{r}}{2}D_{2}T = 0$$
(23)



(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Special Issue 5, December 2014

### V. DESIGN GUIDELINE OF CIRCUIT PARAMETERS

The circuit parameters of  $L_r$  and  $C_r$  in the ER-SWC cell should be based on both of the maximum output power  $P_{o,max}$  with the maximum duty cycle  $D_{max}$  and the minimum output power  $P_{o,min}$  with the minimum duty cycle  $D_{min}$ . The determination of the zero crossing time of  $i_{Lr}$ ,  $t4 = D_{max}T$ , the maximum output power  $P_{o,max}$  can be expressed as

$$P_{0,max} = V_{in} \overline{t_{Lr.max}}$$
(24)

Where  $\overline{\iota_{Lr}}$  represents the average current of  $i_{Lr}$  at Po = Po, maxand this value can be obtained from (1), (4), (7), and (11); then, iLr, max means its maximum value. Then, the minimum output power Po, min can be given by

$$P_{0,min} = V_{in} \overline{\iota_{Lr,min}} = \frac{2C_r V_{in} V_0}{T} \left( 1 + \frac{V_{in}}{V_o - V_{in}} \right)$$
(25)

where  $\overline{\iota_{Lr,min}}$  denotes the minimum value of the resonant inductor average current  $\overline{\iota_{Lr}}$ . Deformation of (25) yields the parameter of the resonant capacitor *Cr* as expressed by

$$C_r = \frac{(\frac{V_0}{V_{in}} - 1)P_{0,min}}{2f_0 V_0^2}$$
(26)

The parameter of *Lr*should meet the condition indicated asfollows

$$L_r \le 1/C_r f_S^2 \left\{ \sin^{-1} \left( \frac{M-1}{M+1} \right) + \frac{2\sqrt{M}}{M-1} + \frac{\pi}{2} \right\}^2$$
(27)

### VI. SIMULATION RESULTS

The software used for simulation is MATLAB/Simulink. The proposed converter have two modes of operation, Boost Mode and Buck mode. In boost mode gate pulse is given to  $S_1$  and  $S_2$ . Fig.5 shows the simulink model of the bidirectional converter during boost mode. In boost mode the input voltage is in the range of 30V-100V and output is obtained as 200V. In buck mode gate pulse is given to  $S_3$  and  $S_4$ . The gate pulse given to switch  $S_4$ . is complimentary of switch  $S_3$ . Fig.6 shows the simulink model of the bidirectional converter during buck mode as 00V is given as input and 30V is obtained as output. The switching frequency is 40 kHz.



Fig.6 Simulink model of Buck Mode



(An ISO 3297: 2007 Certified Organization)

## Vol. 3, Special Issue 5, December 2014

Fig.7(a),(b) shows the input and output voltage waveforms during boost mode. Input voltage is30V and output voltage is obtained as 200V.



Fig.7 (a)Input Voltage (b) Output Voltage

Fig.8 (a),(b) shows the waveforms of input and output voltage during buck mode. Input voltage is 200V andoutput voltage is obtained as 30V.



Fig.8 (a)Input Voltage (b) Output Voltage

Fig.9 shows the hardware implementation of the Bidirectional DC-DC converter



Fig.9 Hardware Implementation



(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Special Issue 5, December 2014

#### VII. CONCLUSION

The Bi-Directional converter plays an important role in renewable energy applications. The proposed non-isolated bidirectional edge resonant switched capacitor cell assisted soft switching DC-DC converter can work in either boost mode or buck mode. This converter can achieve high-frequency zero-current soft-switching turn-on and zero-voltage soft-switching turn-off operations in the active switches. As a result a wide range of soft-switching operations together with a high-voltage step-up conversion ratio with a reduced current stress.

#### ACKNOWLEDGMENT

Initially, I would like to thank, the God Almighty for showing his blessings on me for successful completion of this work. Also I would like to thanks teachers, friends and parents.

#### REFERENCES

[1] T. Mishima and M. Nakaoka,"Analysis, Design, and Performance Evaluations of an Edge-Resonant Switched Capacitor Cell-AssistedSoft-Switching PWM Boost DC–DC Converter and Its Interleaved Topology", IEEE Tran. Power Electron, VOL. 28, NO. 7, July 2013

[2] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up DC-DC converter for a microgrid system," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.

[3] R. J.Wai and R. Y.Duan, "High step-up converter with coupled-inductor," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.

[4] E. C. Dias, L. C. G. Freitas, E. A. A. Coelho, J. B. Vieira, Jr., and L. C. de Freitas, "Novel true zero current turn-on and turn-off converters family: Analysis and experimental results," IET Power Electron., vol. 3, no. 1, pp. 33–42, 2010.

[5] S. H. Park, G. R. Cha, Y. C. Jung, and C. Y.Won, "Design and application for PV generation system using a soft-switching boost converter with SARC," IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 515–522, Feb. 2010.

[6] H.-L. Do, "A soft-switching DC/DC converter with high voltage gain," IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1193–1200, May 2010
 [7] P. Das and G. Moschopoulos, "A comparative study of zero-current transition PWM converters," IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1319–1328, Jun. 2007.

[8] K.-H. Liu and F. C. Lee, "Zero-voltage switching technique in DC/DC converters," IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293–304, Jul. 1990.

[9] I. Aksoy, H. Bodur, and A. F. Bakan, "A new ZVT-ZCS-PWM dc-dc converter," IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2093–2105, Aug. 2010.

[10] C. M. Stein, J. Pinheiro, and H. L. Hey, "A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode," IEEE Trans. Power Electron., vol. 17, no. 6, pp. 954–961, Nov. 2002.

[11] K. Yao, X. Ruan, X. Mao, and Z. Ye, "Reducing storage capacitor of a DCM boost PFC converter," IEEE Trans. Power. Electron., vol. 27, no. 1, pp. 151–160, Jan. 2012

[12] K. Yao, X. Ruan, X. Mao, and Z. Ye, "Variable-duty-cycle control to achieve high input power factor for DCM boost PFC converter," IEEETrans. Ind. Electron., vol. 58, no. 5, pp. 1856–1865, May 2011

[13] T. Mishima and M. Nakaoka, "A new family of ZCS-PWM dc-dc converter with clamping diodes-assisted active edge-resonant cell," in Proc. Int.Conf. Electr. Mach. Syst., Oct. 2010, pp. 168–173