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ABSTRACT: It is well recognized in the computer algebra theory and systems communities that the Fast Fourier 
Transform (FFT) can be used for multiplying polynomials. Theory predicts that it is fast for “large enough” 
polynomials. The basic idea is to use fast polynomial multiplication to perform fast integer multiplication. We can 
achieve really fast FFT multiplication on GPU with parallel FFT implementation, in this case with cuFFT. Here we 
provide cuFFT multiplication and its comparison with well known fast big integer arithmetic libraries (.net BigInteger, 
GMP, IntX). We also compare our results with results of other papers in this area. Experiments showed, that cuFFT 
multiplication is becoming faster than all other tested methods, when we deal with about 2^15 digit integers. 
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I. INTRODUCTION 
 

Multiplying big integers is an operation that has many applications in Computational Science. Many cryptographic 
algorithms require operations on very large subsets of the integer numbers. A common application is public-key 
cryptography, whose algorithms commonly employ arithmetic with integers having hundreds of digits [1]. Arbitrary 
precision arithmetic is also used to compute fundamental mathematical constants such as π to millions or more digits 
and to analyze the properties of the digit strings or more generally to investigate the precise behavior of functions such 
as the Riemann zeta function where certain questions are difficult to explore via analytical methods. Another example 
is in rendering fractal images with an extremely high magnification, such as those found in the Mandelbrot set [2]. 
 
 Three most popular algorithms for big integers multiplication are Karatsuba-Ofman [3], Toom-Cook [4] and FFT 
multiplication [5] algorithms. Classical multiplication operation has ܱ(݊ଶ) complexity, where ݊ is the number of digits. 
By using polynomial multiplication with FFT, which has time complexity ܱ(݈݊݊݃݋), we can significantly reduce the 
time it takes for multiplication. For such large data volume based applications the Graphics Processing Unit (GPU) 
based algorithm can be the cost effective solution. GPU can process large volume data in parallel when working in 
single instruction multiple data (SIMD) mode. In November 2006, the Compute Unified Device Architecture (CUDA) 
which is specialized for compute intensive highly parallel computation is unveiled by NVIDIA [6]. The NVIDIA 
CUDA Fast Fourier Transform library (cuFFT) provides a simple interface for computing FFTs up to 10x faster.  By 
using hundreds of processor cores inside NVIDIA GPUs, cuFFT delivers the floating‐point performance of a GPU 
without having to develop your own custom GPU FFT implementation. cuFFT uses algorithms based on the well-
known Cooley-Tukey and Bluestein algorithms, so you can be confident that you’re getting accurate results faster than 
ever [8].  
 

II. RELATED WORK 
 

First let's discuss some libraries and frameworks that perform arbitrary precision arithmetic and in particular - big 
integer multiplication. System.Numerics.BigInteger [9] was introduced by Microsoft in .NET 4.0 and is the .NET type 
for large integers. The BigInteger type is an immutable type that represents an arbitrarily large integer whose value in 
theory has no upper or lower bounds. The members of the BigInteger type closely parallel those of other integral types. 
Because the BigInteger type is immutable (see Mutability and the BigInteger Structure) and because it has no upper or 
lower bounds, an OutOfMemoryException can be thrown for any operation that causes a BigInteger value to grow too 
large. One of them is IntX [10]. IntX is an arbitrary precision integers library with fast multiplication of big integers 
using Fast Hartley Transform. The GNU MP Library [11] - one of the fastest well-known Bignum libraries in the 
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world. GNU MP (or GMP) is written in plain C and Assembly language so it compiles into optimized native code, it 
also uses fast calculation algorithms - that's why it's very fast. GMP is a free library for arbitrary precision arithmetic, 
operating on signed integers, rational numbers, and floating-point numbers. There is no practical limit to the precision 
except the ones implied by the available memory in the machine GMP runs on. Among other multiplication algorithms, 
GMP also uses FFT multiplication (depending on operand size). In [12] implemented FFT multiplication algorithm and 
done experiments by comparing FFT multiplications with normal multiplications at various bases. Also there is an 
existing large number multiplication implementation on CUDA by K. Zhao [13], where implemented multiple-
precision Karatsuba and Montgomery multiplication algorithms. 
 

III. THE DISCRETE FOURIER TRANSFORM 
 

The one dimension of discrete Fourier transform (DFT of an ܰ-point discrete-time signal ݂(ݔ)) is given by the 
equation: 

(ݑ)ܨ = ෍݂(ݔ)
ேିଵ

௫ୀ଴

݁ି
௝ଶగ௨௫
ே ,                                                                              (1) 

for ݑ =  0, 1, 2, . . . ,ܰ − 1. 
Similarly, for given (ݑ)ܨ we can obtain the original discrete function ݂(ݔ) by inverse DFT: 

(ݔ)݂ =
1
ܰ
෍(ݑ)ܨ
ேିଵ

௨ୀ଴

݁
௝ଶగ௨௫
ே ,                                                                              (2) 

for ݔ =  0, 1, 2, . . . ,ܰ − 1. 
The Discrete Fourier Transform is frequently evaluated for each data sample, and can be regarded as extracting 
particular frequency components from a signal. 
 

IV. THE FAST FOURIER TRANSFORM 
 

The straightforward method of computing ܨ on an element of ܥ௡ takes ܱ(݊ଶ) operations. However, there are 
algorithms for computing ܨ in ܱ(݈݊݊݃݋)  steps. Let’s compute the Fourier transform of ݖ = ,ଵݖ)  . . . ,  ଶ௡ܨ ଶ௡). Letݖ
denote the Fourier transform relative to ܥଶ௡ and let ܨ௡ denote the Fourier transform relative to ܥ௡. Define  

߱௡ = ଶ௡߱             ;(݊/݅ߨ2)݌ݔ݁ =  (3)                                                          .(2݊/݅ߨ2)݌ݔ݁
Let [ܺ]௞ denote the ݇th coordinate of a vector ܺ. We have 

௞[(ݖ)ଶ௡ܨ] = ෍ ௜߱ଶ௡௜௞ݖ
ଶ௡ିଵ

௜ୀ଴

= ෍ ௜߱ଶ௡௜௞ݖ
௜ ௘௩௘௡

+ ෍ ௜߱ଶ௡௜௞ݖ
௜ ௢ௗௗ

.                                                     (4) 

We define 
௞ܧ = ,௞[௡(ܼா)ܨ]             ܱ௞ = ௞[௡(ܼை)ܨ] .                                                                  (5) 

Here ܼா and ܼை are the vectors made respectively from the even and odd components of ܼ. With this notation, 
Equation 4 can be written more succinctly as follows. 

௞[(ݖ)ଶ௡ܨ] = ௞ܧ + ߱ଶ௡௞ ܱ௞ .                                                                             (6) 
Equation 6 holds for all ݇ =  0, . . . , 2௡ିଵ, but we only need compute ܧ௞ and ܱ௞  for ݇ =  0, . . . , ݊ − 1 because 

௞ା௡ܧ = ௞ܧ ;             ܱ௞ା௡ = −ܱ௞ .                                                                       (7) 
Suppose it takes ܶ(݊) operations to compute the Fourier transform of a vector in ܥ௡. The trick above shows that we 
can compute the Fourier transform of a vector in ܥଶ௡ using 2ܶ(݊)  +  8݊. Here is a breakdown of the computation. 
 We can compute {ܱ௞} and {ܧ௞} for ݇ =  0, . . . ,݊ −  1 in 2ܶ(݊) steps. 
 We can compute ߱ଶ௡

௞  for ݇ =  0, . . . , 2݊ − 1 in 2݊ steps. 
 It takes 3 more steps to compute each instance of Equation 6. So, this is a total of 6݊ additional steps. 
 
We clearly have ܶ(2଴)  ≤  8. An easy induction argument shows 

ܶ(2௞) ≤  8 × 2௞ × (݇ + 1).                                                                             (8) 
This shows that, for ݊ =  2௞, the Fourier transform of a vector in ܥ௡ can be computed in ܱ(݊ ݈݃݋(݊)) steps. It is worth 
mentioning that “step” here refers to operations that are more complicated than simple floating point operations. For 
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instance, a typical step involves multiplying a complex number of size ݈݃݋(݊) with an nth root of unity. An actual 
analysis of the number of floating point operations needed to compute the Fourier transform would depend on how 
efficiently these individual steps could be done. 
 

V. GPU ARCHITECTURE AND CUDA FFT (CUFFT) LIBRARY 
 

GPUs are massively multithreaded manycore chips. NVIDIA Tesla products have up to 128 scalar processors, over 
12,000 concurrent threads in flight, over 470 GFLOPS sustained performance. NVidia graphics card architecture 
consists of a number of so-called streaming multiprocessors (SM). Each one includes 8 shader processor (SP) cores, a 
local memory shared by all SP, 16384 registers, and fast ALU units for hardware acceleration of transcendental 
functions. A global memory is shared by all SMs and provides capacity up to 4 GB and memory bandwidth up to 144 
GB/s. FERMI architecture introduces new SMs equipped with 32 SPs and 32768 registers, improved ALU units for fast 
double precision floating point performance, and L1 cache [14]. 
 
CUDA is a scalable parallel programming model and a software environment for parallel computing. It is very easy to 
use for programmer introduces a small number of extensions to C language, in order to provide parallel execution. 
Another important features are flexibility of data structures, explicit access on the different physical memory levels of 
the GPU, and a good framework for programmers including a compiler, CUDA Software Development Kit (CUDA 
SDK), a debugger, a profiler, and cuFFT and cuBLAS scientific libraries. The GPU executes instructions in a SIMT 
(single-instruction, multiple-thread) fashion. The execution of a typical CUDA program is illustrated in Fig. 1. 
 

 
Fig. 1. Execution of a CUDA program. Serial program with parallel kernels [14]. 

 
cuFFT key features are [8] 
 1D, 2D, 3D transforms of complex and real data types 
 1D transform sizes up to 128 million elements 
 Flexible data layouts by allowing arbitrary strides between individual elements and array dimensions 
 FFT algorithms based on Cooley-Tukey and Bluestein 
 Familiar API similar to FFTW Advanced Interface 
 Streamed asynchronous execution 
 Single and double precision transforms 
 Batch execution for doing multiple transforms 
 In-place and out-of-place transforms 
 Flexible input & output data layouts, similar tp FFTW  "Advanced Interface" 
 Thread-safe & callable from multiple host threads 
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VI. CUDA FFT BIG INTEGER MULTIPLICATION ALGORITHM 
 

We now present the algorithm to multiply big integers with cuFFT. The basic idea  is to use fast polynomial 
multiplication to perform fast integer multiplication. Fig. 2. shows  the flow diagram of cuFFT multiplication 
algorithm. Let’s discuss every point of this diagram step by step. 

 
 

Fig. 2. Flow diagram of cuFFT multiplication algorithm  
 

(Color coding: white - host code, yellow - memory copy operation, green - device code) 
 

1. Input values (ܽ and ܾ) can be given to program input in different ways. We can read  them from a file or a 
database, or we can set them from the program interface. In our case user can insert input values from interface, but for 
testing and experimental purposes we have an option to generate random big integers. For number generation we use 
number of digits, which sets by the user.  
 
2. For multiplication with FFT first we have to represent an integer as a polynomial. The default notation for a 
polynomial is its coefficient form. A polynomial ݌ represented in coefficient form is described by its coefficient vector 
ܽ =  {ܽ଴,ܽଵ, … ,ܽ௡ିଵ}  as follows: 

(ݔ)݌ = ෍ܽ௜ݔ௜
௡ିଵ

௜ୀ଴

                                                                           (9) 

We call ݔ the base of the polynomial, and (ݔ)݌ is the evaluation of the polynomial, defined by its coefficient vector ܽ, 
for base ݔ. Multiplying two polynomials results in a third polynomial, and this process is called vector convolution. As 
with multiplying integers, vector convolution takes ܱ(݊ଶ) time. But convolution becomes multiplication under the 
discrete Fourier transform (convolution in time domain can be achieved using multiplications in frequency domain): 
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(ܿ)ܨ =  (ܾ)ܨ(ܽ)ܨ
ܿ =  ((ܾ)ܨ(ܽ)ܨ)ଵିܨ

When we represent an integer as a polynomial, we have a choice in what base to use. Any positive integer can be used 
as a base, but for the sake of simplicity we restrict ourselves to choosing a base 10. Consider the integer 12345, whose 
polynomial form using base = 10 is ܽ =  {5, 4, 3, 2, 1}. Since FFT works with complex numbers, we have to get 
vectors of complex numbers. For this purpose, by setting imaginary part to zero, we get 
ܽ = {[5, 0], [4, 0], [3, 0], [2, 0], [1, 0]} vector. 
 
3. Determination of  blockSize and gridSize of CUDA kernel. We done experiments to find the best block size 
for CUDA kernel, and grid size we calculate based on block size. 
 
4. These transfers are the slowest portion of data movement involved in any aspect of GPU computing. The 
actual transfer speed (bandwidth) is dependent on the type of hardware you’re using, but regardless of this point, it is 
still the slowest. The peak theoretical bandwidth between device memory and the device processor is significantly 
higher than the peak theoretical bandwidth between the host memory and device memory. Therefore, in order to get the 
most bang for your buck in our application, we really need to minimize these host-device data transfers. If you have 
multiple transfers occurring throughout your application, try reducing this number and observe the results. In our case 
we have two “Copy data from host to device” operation: 

,ݏ݁ݐݕܤ݉ݑ݊,ܽ,ܽ_ݒ݁݀)ݕ݌ܿ݉݁ܯܽ݀ݑܿ  ;(݁ܿ݅ݒ݁ܦ݋ܶݐݏ݋ܪݕ݌ܿ݉݁ܯܽ݀ݑܿ
,ܾ_ݒ݁݀)ݕ݌ܿ݉݁ܯܽ݀ݑܿ ܾ, ,ݏ݁ݐݕܤ݉ݑ݊  ;(݁ܿ݅ݒ݁ܦ݋ܶݐݏ݋ܪݕ݌ܿ݉݁ܯܽ݀ݑܿ

 
5. Here we perform two forward FFTs for arrayA and arrayB. Result polynomial of multiplication arrayA and 
arrayB, arrayC has degree of two times greater than highest of degree arrayA and arrayB. So degree arrayC will be 
computed as: 

݁ݖ݈݅ܵܽ݊݃݅ݏ = < ℎݐ݃݊݁ܮ.ܽ)2 ? ℎݐ݃݊݁ܮ.ܾ   ܽ. ℎݐ݃݊݁ܮ ∶  ܾ.  (ℎݐ݃݊݁ܮ
Before performing forward Fourier transform, we are padding the coefficients of arrayA and arrayB  with zeros up to 
 .ܥ2ܥ.݁݌ݕܶݐ݂݂ݑܿ and ݁ݖ݈݅ܵܽ݊݃݅ݏ We execute cuFFT plan with .݁ݖ݈݅ܵܽ݊݃݅ݏ
 
6. At this point we have two transferred arrays on device, and we have to perform pairwise multiplication. 
Because we deal with complex data, we have: 

                                         ;ܿ ݔ݈݁݌݉݋ܥ
ܿ. = ݔ ∗ ݔ.ܽ   ܾ. − ݔ  ܽ. ∗ ݕ  ܾ. ;ݕ
= ݕ.ܿ  ܽ. ∗ ݔ + ݕ.ܾ   ܽ. ∗ ݕ  ܾ. ;ݔ

 

 
7. Here we perform inverse FFT for arrayC 
 
8. The formula for the transform that cuFFT uses is non-orthogonal by a factor of (݁ݖ݈݅ܵܽ݊݃݅ݏ)ݐݎݍݏ. 
Normalizing by ݁ݖ݈݅ܵܽ݊݃݅ݏ and 1/݁ݖ݈݅ܵܽ݊݃݅ݏ is what is needed when using FFTs to compute Fourier Series 
coefficients, so we divide  result of point 7 to ݁ݖ݈݅ܵܽ݊݃݅ݏ on device. 

 
9. This point is similar to point 4, only here we copy memory back from device  to host 

 
10. Carry-propagation is the last step to get resulting polynomial. We will present pseudocode for this operation: 
 

Pseudocode 1. Carry-propagation for big integer multiplication 
Input: Integer array sourceArray 
Output: Integer array resultArray 
1. CarryPropagation() 
2. carry := 0 
3. for  (i from 0 to sourceArray.length) 
4. sum := carry + sourceArray[i] 
5. mod := sum % 10 
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6. resultArray.Add(mod) 
7. carry := sums / 10 
8. end for 
9. while  (carry > 0) 
10. if  (carry.length > 1) 
11. index :=  carry.length - 1 
12. else 
13. index := 0 
14. end 
15. resultArray.Add(carry[index]) 
16. carry := carry / 10 
17. end while 

 
11. In last step we form integer representation from polynomial and send result to output. 
 

VII. EXPERIMENTS AND RESULTS 
 

We have realized in CUDA 5.5 cuFFT multiplication algorithm, and conducted a series of benchmarks using a GeForce 
GT 630 graphics card on a desktop with the processor Intel(R) Core(TM) i3-2100 3.10GHz and 4 GB main memory. 
This graphics card has the compute capability 2.1, consists of 96 CUDA for integer and single-precision floating point 
arithmetic operations. We first vary the block size and calculate grid size based on block size to find their effect on the 
performance. Big integers are generated randomly in the test. We generate integers with different number of digits. In 
Table 1 presented block size effect on performance. We calculate time takes for one multiplication operation in 
milliseconds. We take average value for each data size after doing 100 test multiplication operations. Time for big 
integer generation is not taken into account in calculations. 
 

 Number of digits 
Block Size 1000 2000 5000 10000 20000 50000 100000 200000 

64 3.9 4.3 7.3 11.4 15.1 33.2 61.4 119.5 
128 3.4 4 7 10.1 14.7 32.9 61.2 119 
256 3.1 3.6 4.7 9 13.2 29 56 112 
512 3.2 3.7 5.2 9.3 14 31.2 60 115 

Table 1. Block size effect on performance of cuFFT multiplication 
 
Fig. 3. shows  the diagram of experiment results shown in Table 1. As we can see, we have a best performance of 
multiplication, when block size of kernel is 256. We calculate grid size with following formula 
 

= ݁ݖ݅ܵ݀݅ݎ݃ + ݁ݖ݅ܵ݇ܿ݋݈ܾ / ݁ݖ݅ܵݎ݋ݐܿ݁ݒ  ! ݁ݖ݅ܵ݇ܿ݋݈ܾ % ݁ݖ݅ܵݎ݋ݐܿ݁ݒ)  =  0 ?  1 ∶  0) 
 

where ݁ݖ݅ܵݎ݋ݐܿ݁ݒ is the length of multiplying polynomials, “/” and “%” are ݀݅ݒ and ݉݀݋ operations respectively. 
Horizontal axis of Fig. 3 presents the number of digits of multiplied integers and vertical axis is time of multiplication 
in milliseconds. Block size determines the number of threads that can be executed in parallel within a single block. 
Maximum value for block size is based on GPU. We can have maximum 512 threads per block for GPUs with 
Compute Capability 1.x and 1024  threads per block for GPUs with Compute Capability 2.x and 3.x. 
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Fig. 3. Block size effect on performance of cuFFT multiplication 

 
In his paper Ando Emerencia presents FFT multiplication algorithm and its comparison with normal multiplication, at 
various bases [12]. In Fig. 4 presented results from [12] for base 10. We will discuss base 10, because our experiments 
also are done for base 10. The individual values of the measurements taken are also listed in the table below. We see 
here that for an input size of more than 200, the FFT method becomes increasingly faster than normal multiplication. 
For an input size of 10ହ, the FFT multiplication algorithm takes 258ms, while normal multiplication requires more than 
28 seconds, so the time required differs by a ratio of more than a hundred. 

 
Fig. 4. A plot showing the average time spent per multiplication operation as a function of the sum of the lengths of the 

integers to be multiplied. Both axes are drawn on a logarithmic scale [12]. 
 

We see here that for an input size of more than 200, the FFT method becomes increasingly faster than normal 
multiplication. For an input size of 10ହ, the FFT multiplication algorithm takes 258ms, while normal multiplication 
requires more than 28 seconds, so the time required differs by a ratio of more than a hundred. If we compare Fig. 4 and 
Fig. 3, we can see that cuFFT multiplication is much times faster, about 5x faster for input size of 10ହ. 
 
Arbitrary-precision arithmetic in most computer software is implemented by calling an external library that provides 
data types and subroutines to store numbers with the requested precision and to perform computations. Different 
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libraries have different ways of representing arbitrary-precision numbers. There are many arbitrary-precision arithmetic 
libraries which perform big integer multiplication.  We choose three of them to run our experiments: 
 Microsoft .net System.Numerics.BigInteger [9] 
 IntX [10] 
 GNU MP (or GMP) [11] 
 

Number of digits 
 1000 2000 5000 10000 20000 50000 100000 200000 

cuFFT 3.1 3.6 4.7 9 13.2 29 56 112 
.net BigInteger 1.6 6.2 28 103 408 2480 10257 40014 
IntX 1.6 3.1 7.8 23 73 312 957 2553 
GPM 0.6 1 1.5 4.2 11 32 95 234 

Table 2. Comparison of cuFFT multiplication with other libraries 
 
In Table 2 presented comparison of cuFFT multiplication with multiplications of .net BigInteger, IntX and GMP 
libraries. Experiments done for different sizes of input integer (number of digits). Provided experimental results are 
time for one multiplication operation in milliseconds. We have done 100 multiplication for each data size and library, 
and take average result. Fig. 5 is the chart representation of Table 2. 
 

 
Fig. 5. Comparison of cuFFT multiplication with .net BigInteger, IntX and GMP 

 
As we can see from this figure, for integers with 5000 digits, cuFFT is faster than .net BigInteger and IntX, but GMP is 
the fastest. cuFFT becomes faster than GMP starting from integers with 50000 digits. For data size 10ହ. cuFFT is about 
2 times faster than GMP. 
 

VIII. CONCLUSION 
 

As we can see, we gain in performance using parallel GPU based multiplication algorithm, with cuFFT library from 
CUDA. Experiments showed, that cuFFT multiplication is becoming faster than all other tested methods, when we deal 
with about 2ଵହ digit integers. 
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