
ISSN (Online) : 2319 - 8753
ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

Copyright to IJIRSET www.ijirset.com 1081

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

Binary Image Processing Implementation Using

Micro blaze Processor
R.Ponneela Vignesh

#1
, R.Senthil Kumar

*2

Assistant Professor,
 #

 Dept of ECE, Tamilnadu College of Engineering, Coimbatore, Tamilnadu, India.

ABSTRACT:-Field Programmable Gate Array

(FPGA) technology has become a viable target for the

implementation of real time algorithms suited to video

image processing applications. The unique architecture

of the FPGA has allowed the technology tope used in

many applications encompassing all aspects of video

image processing. Among those algorithms, linear

filtering based on a 2D convolution, and non-linear 2D

morphological filters, represent a basic set of image

operations for a number of applications. In this work,

an implementation of linear and morphological image

filtering using a FPGA, Xilinx, Spartan 3E, with

educational purposes, is presented. The system is

connected to a USB port of a personal computer, which

in that way form a powerful and low-cost design

station. The FPGA-based system is accessed through a

Mat lab graphical user interface, which handles the

communication setup. A comparison between results

obtained from MATLAB simulations and the described

FPGA-based implementation is presented.

KEY WORDS: FPGA, Morphological filtering,

VLSI architecture.

I. INTRODUCTION

Morphological processing is constructed with

operations on sets of pixels. Binary morphology uses

only set membership and is indifferent to the value,

such as gray level or color, of a pixel. We will

examine some basic set operations and their

usefulness in image processing. We will deal here

only with morphological operations for binary

images. This will provide a basic understanding of

the techniques. Morphological processing for gray

scale images requires more sophisticated

mathematical development. Morphological

processing is described almost entirely as operations

on sets. In this discussion, a set is a collection of

pixels in the context of an image. Our sets will be

collections of points on an image grid G of size N ×

M pixels [2].

The basic concepts and analytic tools in

mathematical morphology can be found, for binary

images, in set theory and integral geometry. In

mathematical morphology, a binary image is

represented as a subset of the 2D Euclidean space, R2

or its digitized equivalent Z2, and image processing

transformations are represented as set mappings

between collections of subsets [22]. Erosions and

dilations are the two fundamental morphological

operators. They are characterized by a subset called

the structuring element that is used to probe the

image. Mat heron has captured the ubiquity of

morphological operators by demonstrating that any

increasing (i.e., operators which preserve signal

ordering) and translation-invariant operators can be

represented as unions (resp., intersections) of

erosions (resp., dilations) [22]. In most applications

of mathematical morphology, the structuring element

remains constant in shape and size as the image is

probed. Hence, the focus of mathematical

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1082

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

morphology has been mostly devoted to translation-

invariant operators [15].

There are numerous applications in military,

industrial and robotic vision systems that require ultra

high speed image processing on the order of 1,000

frames per second. Binary image morphological

operations are well suited to a large class of basic

image processing applications. These operations

include image analysis tasks such as shape

recognition, image segmentation, noise reduction,

and feature extraction. Applying morphological

operators across an entire image space in an iterative

fashion usually implies a computationally expensive

algorithm. However, custom hardware can be used

for ultra-fast implementations of a number of basic

binary morphological operations [12].

The remainder of the paper is organized as

follows: Section II reveals the morphological

processing. Section III presents the proposed

architecture and the hardware implementation.

Section IV shows the results and discussion. Section

V provides the conclusion and future work.

II. MORPHOLOGICAL PROCESSING

The term morphology refers to the study of shapes

and structures from a general scientific perspective

[12]. Also, it can be interpreted as shape study using

mathematical set theory. In image processing,

morphology is the name of a specific methodology

for analyzing the geometric structure inherent within

an image. The morphological filter, which can be

constructed on the basis of the underlying

morphological operations, are more suitable for shape

analysis than the standard linear filters since the latter

sometimes distort the underlying geometric form of

the image.

Some of the salient points regarding the

morphological approach are as follows:

1. Morphological operations provide for the

systematic alteration of the geometric content of an

image while maintaining the stability of the important

geometric characteristics.

2. There exists a well-developed morphological

algebra that can be employed for representation and

optimization.

3. It is possible to express digital algorithms in terms

of a very small class of primitive morphological

operations.

4. There exist rigorous representations theorems by

means of which one can obtain the expression of

morphological filters in terms of the primitive

morphological operations.

In general, morphological operators transform the

original image into another image through the

interaction with the other image of a certain shape

and size, which is known as the structuring element

[17]. Geometric features of the images that are

similar in shape and size to the structuring element

are preserved, while other features are suppressed.

Therefore, morphological operations can simplify the

image data, preserving their shape characteristics and

eliminate irrelevancies. In view of applications,

morphological operations can be employed for many

purposes, including edge detection, segmentation,

and enhancement of images [11].

A. Binary Dilation

Dilation is found by placing the center of the

template over each of the foreground pixels of the

original image and then taking the union of all the

resulting copies of the structuring element, produced

by using the translation. From Figure 2.3, it is clear

how dilation modifies the original image with respect

to the shape of the structuring element[13].

Fig. 1 Dilation: a 3×3 square structuring element

Dilation generally has an effect of expanding an

image; so consequently, small holes inside

foreground can be filled. In another sense, dilation

can be a morphological operation on a binary image

defined as:

 g = f s

The dilation of an image f by a structuring

element s (denoted f s) produces a new binary

image g = f s with ones in all locations (x,y) of a

structuring element's orogin at which that structuring

element s hits the the input image f, i.e. g(x,y) = 1

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1083

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

if s hits f and 0 otherwise, repeating for all pixel

coordinates (x,y). Dilation has the opposite effect to

erosion -- it adds a layer of pixels to both the inner

and outer boundaries of regions [10].

B. Binary Erosion

The erosion of the original image by the structuring

element can be described intuitively by template

translation as seen in the dilation process. Erosion

shrinks the original image and eliminates small

enough peaks (Note: the terms „expand‟ for dilation

and „shrink‟ for erosion refer to the effects on the

foreground). Figure 2 clearly illustrates these effects.

The original image is eroded with 7x7 disk-shape

structuring element[3].

Fig. 2 Erosion: a 3×3 square structuring element

The erosion of a binary image f by a structuring

 element s (denoted f s) produces a new

binary image

 g = f s

With ones in all locations (x,y) of a structuring

element's origin at which that structuring

element s fits the input image f, i.e. g(x,y) = 1

is s fits f and 0 otherwise, repeating for all pixel

coordinates (x,y). Erosion removes small-scale details

from a binary image but simultaneously reduces the

size of regions of interest, too. By subtracting the

eroded image from the original image, boundaries of

each region can be found: b = f − (f s) where f is

an image of the regions, s is a 3×3 structuring

element, and b is an image of the region boundaries

[19].

C. Binary Opening

 The effects of the opening process on the

original image are smoothing, reducing noise from

quantization or the sensor and pruning extraneous

structures [6]. These effects result from the fact that

the structuring element cannot fit into the regions.

Therefore, it can be said that the result of the opening

process heavily depends on the shape of structuring

elements. Figure 3 presents an example of the

opening process.

The whole procedure of opening can be

interpreted as “rolling the structuring element about

the inside boundary of the image”. The opening of an

image f by a structuring element s (denoted by f s)

is erosion followed by dilation:

 f s = (f s) s

Fig. 3 a)Binary
image

b)Opening: a 2×2 square structuring
element

D. Binary Closing

In the closing operation, dilation and erosion are

applied successively in that order. Note that this order

is reversed for the opening process. In another aspect,

the closing process on a binary image can be defined

as: The closing operation can be described as in

Figure 4 as “rolling the structuring element on the

outer boundary of the image.”

The closing process has the effect of filling small

holes in the original image, smoothing as the opening

process does, and filling up the bay in the foreground.

Sometimes, it is said that the closing has an effect of

clustering each spatial point.

The closing of an image f by a structuring

element s (denoted by f • s) is a dilation followed by

erosion:

f • s = (f srot) srot

In this case, the dilation and erosion should be

performed with a rotated by 180 structuring

element. Typically, the latter is symmetrical, so that

the rotated and initial versions of it do not differ [16].

Closing is so called because it can fill holes in

the regions while keeping the initial region sizes.

Like opening, closing is idempotent: (f • s) • s = f • s,

and it is dual operation of opening (just as opening is

the dual operation of closing):

 f • s = (f
 c
 s)

c
; f s = (f

 c
 • s)

c
.

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1084

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

In other words, closing (opening) of a binary image

can be performed by taking the complement of that

image, opening (closing) with the structuring

element, and taking the complement of the result.

Fig. 4 closing with a 3×3 square structuring element

E. Binary Hit and Miss Transform

The hit and miss transform allows to

derive information on how objects in a binary

image are related to their surroundings. The

operation requires a matched pair of structuring

elements, {s1, s2}, that probe the inside and

outside, respectively, of objects in the image:

f {s1, s2} = (f s1) ∩ (f
 c
 s2)

Fig. 5 a) Binary image b) Hit and miss transform

A pixel belonging to an object is preserved by the hit

and miss transform if and only if s1 translated to that

pixel fits inside the object AND s2 translated to that

pixel fits outside the object. It is assumed

that s1 and s2 do not intersect; otherwise it would be

impossible for both fits to occur simultaneously.

It is easier to describe it by

considering s1 and s2 as a single structuring element

with 1s for pixels of s1 and 0s for pixels of s2; in this

case the hit-and-miss transform assigns 1 to an output

pixel only if the object (with the value of 1) and

background (with the value of 0) pixels in the

structuring element exactly match object (1) and

background (0) pixels in the input image. Otherwise

that pixel is set to the background value (0).

The hit and miss transform can be used for

detecting specific shapes (spatial arrangements of

object and background pixel values) if the two

structuring elements present the desired shape, as

well as for thinning or thickening of object linear

elements.

 III. PROPOSED SYSTEM

In this proposed system VLSI architecture is

designed and implemented, which is to perform the

binary image processing with high speed and reduced

complexity. For that, the coprocessor Micro blaze is

converted into morphological processing architecture

using Xilinx platform studio in system C language

and then tested in Spartan 3EDK FPGA kit. RS232

cable is used for interfacing the test circuit with PC.

This hardware implementation can overcome the

shortages of previous works not only that it can

achieve accuracy, noise and also the speed in

computation and low power consumption also.

A. Processor Design Technique

The Micro Blaze embedded soft core is a

reduced instruction set computer (RISC) optimized

for implementation in Xilinx field programmable

gate arrays (FPGAs). See Fig.6. for a block diagram

depicting the Micro Blaze core. Field-programmable

gate arrays (FPGA'S) are flexible and reusable high-

density circuits that can be easily re-configured by

the designer, enabling the VLSI design / validation

/simulation cycle to be performed more quickly and

less expensive. Increasing device densities have

prompted FPGA manufacturers, such as Xilinx and

Altera, to incorporate larger embedded components,

including multipliers, DSP blocks and even

embedded processors. One of the recent architectural

enhancements in the Xilinx Spartan, Virtex family

architectures is the introduction of the Micro Blaze

(Soft IP) and PowerPC405 hard-core embedded

processor. The Micro blaze processor is a 32-bit

Harvard Reduced

Instruction Set Computer (RISC) architecture

optimized for implementation in Xilinx FPGAs with

separate 32-bit instruction and data buses running at

full speed to execute programs and access data from

both on-chip and external memory at the same time.

An interrupt controller is available for use with the

Xilinx Embedded Development Kit (EDK) software

tools.

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1085

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

The processor will only react to interrupts if

the Interrupt Enable (IE) bit in the Machine Status

Register (MSR) is set to 1. On an interrupt the

instruction in the execution stage will complete,

while the instruction in the decode stage is replaced

by a branch to the interrupt vector (address Ox 10).

The interrupt return address (the PC associated with

the instruction in the decode stage at the time of the

interrupt) is automatically loaded into general

purpose register. In addition, the processor also

disables future interrupts by clearing the IE bit in the

MSR. The IE bit is automatically set again when

executing the RTID instruction.

Due to the advancement in the fabrication

technology and the increase in the density of logic

blocks on FPGA, the use of FPGA is not limited to

anymore to debugging and prototyping digital

circuits. Due to enormous parallelism achievable on

FPGA and the increasing density of logic blocks, it is

being used now as a replacement to ASIC solutions

in a few applications. Soft cores are technology

independent and require only simulation and timing

verification after synthesized to a target technology.

B. Xilinx Platform Studio

The Xilinx Platform Studio (XPS) is the

development environment or GUI used for designing

the hardware portion of your embedded processor

system. B. Embedded Development Kit Xilinx

Embedded Development Kit (EDK) is an integrated

software tool suite for developing embedded systems

with Xilinx Micro Blaze and PowerPC CPUs. EDK

includes a variety of tools and applications to assist

the designer to develop an embedded system right

from the hardware creation to final implementation of

the system on an FPGA. System design consists of

the creation of the hardware and software

components of the embedded processor system and

the creation of a verification component is optional.

A typical embedded system design project involves:

hardware platform creation, hardware platform

verification (simulation), software platform creation,

software application creation, and software

verification. Base System Builder is the wizard that is

used to automatically generate a hardware platform

according to the user specifications that is defined by

the MHS (Microprocessor Hardware Specification)

file. The MHS file defines the system architecture,

peripherals and embedded processors]. The Platform

Generation tool creates the hardware platform using

the MHS file as input. The creation of the verification

platform is optional and is based on the hardware

platform. The MHS file is taken as an input by the

Simgen tool to create simulation files for a specific

simulator.

Fig. 6 Embedded Development Kit Design

Three types of simulation models can be

generated by the Simgen tool: behavioral, structural

and timing models. Some other useful tools available

in EDK are Platform Studio which provides the GUI

for creating the MHS and MSS files. Create Import

IP Wizard which allows the creation of the designer's

own peripheral and import them into EDK projects.

Bit stream Initializer tool initializes the instruction

memory of processors on the FPGA. GNU Compiler

tools are used for compiling and linking application

executables for each processor in the system.

There are two options available for

debugging the application created using EDK

namely: Xilinx Microprocessor Debug (XMD) for

debugging the application software using a

Microprocessor Debug Module (MDM) in the

embedded processor

system, and Software Debugger that invokes the

software debugger corresponding to the compiler

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1086

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

being used for the processor. C. Software

Development Kit Xilinx Platform Studio Software

Development Kit (SDK) is an integrated

development environment, complimentary to XPS,

that is used for C/C++ embedded software

application creation and verification. The software

application can be written in a "C or C++" then the

complete embedded processor system for user

application will be completed, else debug &

download the bit file into FPGA.

Then FPGA behaves like processor

implemented on it in a Xilinx Field Programmable

Gate Array (FPGA) device.

IV. RESULTS AND DISCUSSION

Experiments are performed on gray level

images to verify the proposed method. These images

are represented by 8 bits/pixel and size is 128 x 128.

Image used for experiments are shown in below

figure. The architectures were implemented in system

c and placed and routed on Xilinx spartan3 XC3S200

FPGA, using Xilinx platform studio v.10.1

TABLE I

Comparison of Processor

Processor [22] [20] This

paper

Accuracy(bit) 7-bit 8-bit 16-bit

Speed(MHz) 10 28 50

Image processing Binary Binary

and gray

scale

Binary

Voltage (V) 4.5 3.3 2.5

Power

consumption

(mW)

148.5 120.43 50.35

Image pixels

16*16 64*64 128*128

Architecture

1-D

SIMD

1-D

SIMD

2-D

MIMD

After convert the header file in the Mat lab

the XPS could be processed. In XPS the impulse C

language is used. The processing of the input image

and the watermarked image could be processed in the

SPARTAN 3EDK. These could be processed by

converting these codings into the Bit streams. Then

the net list will be created for that bit streams to get

the proper output.

Fig. 7 Input image

Fig. 8 Output image

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1087

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

Fig. 9 Synthesis result

V. CONCLUSION

This paper presented an approach towards VLSI

implementation of the morphological image filtering)

for binary image processing. Binary image

processing having several advantages, and it could be

recently proposed for the JPEG2000 standard.

Consequently, this has become an area of active

research and several architectures have been

proposed in recent years. In this paper, we provide

architecture for morphological filtering for binary

image processing. The architectures are

representative of many design styles and range from

highly parallel architectures. Here a binary image-

based reconfigurable system is designed using the

EDK tool. Hardware architectures of morphological

binary images have been implemented as a

coprocessor in an embedded system. In addition, the

hardware cost of this architecture is compared for

benchmark images. This type of work using EDK can

be extended to other applications of embedded

system. The comparison showed that our processor is

more suitable for binary image processing and vision

systems. In Future we are going to implement this

architecture in ALTERA or VIRTEX to achieve the

high quality and noise free images.

ACKNOWLEDGMENT:

 We wish to acknowledge the efforts of Pantech

ProEd Pvt ltd.,for guidance which helped us work

hard towards producing this research work.

REFERENCES

[1] Y. Liu and C. Pomalaza-Raez, “A low-complexity algorithm

for the on-chip moment computation of binary images,” in Proc.

Int. Conf. Mechatron. Autom., 2009, pp. 1871–1876.

[2] E. C. Pedrino, O. Morandin, Jr., and V. O. Roda, “Intelligent

FPGA based system for shape recognition,” in Proc. 7th Southern

Conf. Programmable Logic, 2011, pp. 197–202.

[3] M. F. Talu and I. Turkoglu, “A novel object recognition

method based on improved edge tracing for binary images,” in

Proc. Int. Conf. Appl. Inform. Commun. Technol., 2009, pp. 1–5.

[4] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target

classification and tracking from real-time video,” in Proc.

Workshop Appl. Comput. Vision, 1998, pp. 8–14.

[5] J. Kim, J. Park, K. Lee et al., “A portable surveillance camera

architecture using one bit motion detection,” IEEE Trans.
Consumer Electron., vol. 53, no. 4, pp. 1254–1259, Nov. 2007.

[6] D. J. Dailey, F. W. Cathey, and S. Pumrin, “An algorithm to

estimate mean traffic speed using uncalibrated cameras,” IEEE
Trans. Intell. Transportation Syst., vol. 1, no. 2, pp. 98–107, Jun.

2000.

[7] T. Ikenaga and T. Ogura, “A fully parallel 1-Mb CAM LSI for
real-time pixel-parallel image processing,” IEEE J. Solid State

Circuits, vol. 35, no. 4, pp. 536–544, Apr. 2000.

[8] E. C. Pedrino, J. H. Saito, and V. O. Roda, “Architecture for
binary mathematical morphology reconfigurable by genetic

programming,” in Proc. 6th Southern Programmable Logic Conf.,

2010, pp. 9398.

[9] M. R. Lyu, J. Song, and M. Cai, “A comprehensive method for

multilingual video text detection, localization, and extraction,”

IEEE Trans. Circuit Syst. Video Technol., vol. 15, no. 2, pp. 243–
255, Feb. 2005.

[10] W. Miao, Q. Lin, W. Zhang et al., “A programmable SIMD

vision chip for real-time vision applications,” IEEE J. Solid State
Circuits, vol. 43, no. 6, pp. 1470–1479, Jun. 2008.

[11] A. Lopich and P. Dudek, “A SIMD cellular processor array

vision chip with asynchronous processing capabilities,” IEEE
Trans. Circuits Syst. I, vol. 58, no. 10, pp. 2420–2431, Oct. 2011.

[12] H. Yang and A. C. Kot, “Binary image authentication with

tampering localization by embedding cryptographic signature and
block identifier,” IEEE Signal Process. Lett., vol. 13, no. 12, pp.

741–744, Dec. 2006.

[13] M. Wu and B. Liu, “Data hiding in binary image for
authentication and annotation,” IEEE Trans. Multimedia, vol. 6,

no. 4, pp. 528–538, Aug.2004.

[14] H. Yang, A. C. Kot, and S. Rahardja, “Orthogonal data
embedding for binary images in morphological transform domain:

A high-capacity approach,” IEEE Trans. Multimedia, vol. 10, no.

3, pp. 339–351, Apr. 2008.

[15] H. Yang and A. C. Kot, “Pattern-based data hiding for binary

image authentication by connectivity-preserving,” IEEE Trans.

Multimedia, vol. 9, no. 3, pp. 475–486, Apr. 2007.

[16] K. M. Shaaban, S. A. Ali, and Y. B. Mahdy, “A chip design

for binary and binary morphological operations,” in Proc. Int.

Conf. Inform. Intell. Syst., 1999, pp. 554–559.

BINARY IMAGE PROCESSING IMPLEMENTATION USING MICROBLAZE PROCESSOR

Copyright to IJIRSET www.ijirset.com 1088

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

[17] K. Fujii, M. Nakanishi, S. Shigematsu et al., “A 500-dpi

cellular-logic

processing array for fingerprint-image enhancement and
verification,” in Proc. IEEE Custom Integr. Circuits Conf., May

2002, pp. 261–264.

[18] H. J. Park, K. B. Kim, J. H. Kim et al., “A novel motion
detection pointing device using a binary CMOS image sensor,” in

Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 837–840.

[19] M. Laiho, J. Poikonen, and A. Paasio, “Space-dependent
binary image processing within a 64×64 mixed-mode array

processor,” in Proc. Eur. Conf. Circuit Theory Design, 2009, pp.

189–192.

[20] E. N. Malamas, A. G. Malamos, and T. A. Varvarigou, “Fast

implementation of binary morphological operations on hardware-

efficient systolic architectures,” J. VLSI Signal Process., vol. 25,
no. 1, pp. 79–93, 2000.

[21] J. Velten and A. Kummert, “Implementation of a high-

performance

hardware architecture for binary morphological image processing

operations,” in Proc. 47th IEEE Int. Midwest Symp. Circuits Syst.,

Jul.2004, pp. 241–244.

[22] R. Dominguez-Castro, S. Espejo, A. Rodriguez-Vazquez et

al., “A 0.8-μm CMOS 2-D programmable mixed-signal focal-plane

array processor with on-chip binary imaging and instructions
storage,” IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1013–

1026, Jul. 1997.

