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ABSTRACT 

 

 Despite the generally accepted use of the LSCMA, few analytical results on its 

convergence have appeared in the open literature. The performance of the algorithm 

has instead been demonstrated through Monte Carlo simulation. The lack of analytical 

results is due to the difficulty of analyzing the non-linear CMA cost function. Existing 

work on the convergence behavior of CMA mostly deals with finding minima of the 

CMA cost function and finding undesirable stable equilibrium in equalization 

applications. We next examine an environment containing two complex sinusoids, and 

show that the LSCMA output SIR can be predicted for each iteration. It is shown that 

the average behavior of the LSCMA in this environment is similar to the deterministic 

behavior in the two-sinusoid environment. Finally, an environment containing a CM 

desired signal and Gaussian interference is examined.  

 

 

 

 

INTRODUCTION 

 

 A notable exception is the work by Treichler and Larimore on convergence of SGD CMA in an environment 

containing two complex sinusoids[1,2,3,4,5,6,7,8]. Their work predicts the output power of each sinusoid in a temporal filtering 

application. The Analytic CMA (ACMA) algorithm presented by van der Veen in should also be noted. This algorithm solves 

directly for a set of beam former weight vectors that spatially separate a set of CM signals. The ACMA, although effective 

in many situations, is fairly complex and its behavior with closely spaced and/or low SNR signals is not clear. For these 

reasons it is recommended in that the ACMA be used to initialize the LSCMA, and that several iterations of the LSCMA be 

used to find the optimal solutions for the weight vectors. In this paper we determine the convergence rate of the LSCMA in 

some simple environments, including: (1) high output SIR; (2) sinusoidal desired signal and sinusoidal interferer; (3) CM 

desired signal and CM interferer; (4) CM desired signal and Gaussian interferer. We assume that the interference is 

uncorrelated with the desired signal. The convergence rate is expressed in terms of the SIR improvement achieved with 

one iteration of the LSCMA. The main advantage of CMA is that it is a 'blind' adaptive algorithm, i.e., it does not require a 

training signal. Other blind adaptive algorithms have been designed to exploit cyclo-stationarity known signal 

constellation, known spreading code in CDMA, and time or frequency gated properties. The first CMA to be proposed was 

based on a Stochastic Gradient Descent (SGD) form. The main drawback of this method is its slow convergence. A faster 

converging CMA similar in form to the Recursive Least Squares method is the orthogonal zed CMA. Another fast 

converging CMA is the Least Squares CMA (LSCMA), which is a block-update iterative algorithm. It is guaranteed to be 

stable and is easily implemented.  We first examine the situation where the LSCMA output SIR is high We show that if the 

interference is perfectly removable, each LSCMA iteration will increase the output SIR by approximately 6 dB. This result is 

valid for any CM desired signal (arbitrary angle modulation), and any uncorrelated interference. We next examine an 

environment containing two complex sinusoids, and show that the LSCMA output SIR can be predicted for each iteration. 

The results are analogous to those presented in [3,4,5,6,7]. An environment containing two CM signals, each having random 

phase, is then considered.  
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METHODS OF CONTINUES SIGNAL WITH INTERFERENCE 

 

         We now examine the behavior of the LSCMA with a CM signal and Gaussian interference. These results are of 

interest since the distribution of a large number of co-channel interferers, as might be encountered in CDMA 

applications, will tend toward Gaussian by the central limit theorem. The input to the hard-limiter is expressed as : 

 

𝑦 𝑛 = 𝑠 𝑛 + 𝑔𝑧 𝑛 = 𝑒𝑗𝜙 (𝑛) + 𝑔𝑚(𝑛)𝑒𝑗𝜓 (𝑛) (1) 

 

where s(n) is an angle-modulated signal and z(n) is unit-variance complex Gaussian interference. Note that 𝜓(𝑛)is 

uniformly distributed over (-𝜋, 𝜋]while m(n) is Rayleigh distributed with PDF: 

 

𝑟 𝑚 =  2𝑚𝑒−𝑚2
        𝑚 > 0

0                     𝑚 < 0
    (2) 

 

The cross-correlation of s( n) and d( n) is 

 

𝑅𝑠𝑑 =
1

𝜋
 𝑄(𝑚)
∞

0
 𝑚𝑒−𝑚2

𝑑𝑚    (3) 

Where, 

 

𝑄(𝑚) =
1

2𝜋
 

1+𝑔𝑚𝑐𝑜𝑠 Δ

 1+𝑔2𝑚2+2𝑔𝑚𝑐𝑜𝑠 Δ

𝜋

−𝜋
𝑑Δ   (4) 

 

 

In a similar fashion it can be shown that 

 

𝑅𝑧𝑑 =
1

𝜋
 𝑃(𝑚)
∞

0
 𝑚𝑒−𝑚2

𝑑𝑚    (5) 

 

 

Where, 

 

𝑃(𝑚) =
1

2𝜋
 

𝑚𝑐𝑜𝑠 Δ+g𝑚2

 1+𝑔2𝑚2+2𝑔𝑚𝑐𝑜𝑠 Δ

𝜋

−𝜋
𝑑Δ      (6) 

 

 Both (11) and (12) are evaluated by numerical integration and used to obtain the SIR gain shown in Figure 1. The 

SIR gain as measured from simulations is also shown in Figure 2 and verifies the theoretical analysis. The simulation 

parameters are the same as those used previously. As before the SIR gain tends to 6 dB as the input SIR becomes high. 

Note that the SIR gain is greater than 0 dB even for an input SIR of -10 dB. This would seem to indicate that LSCMA can be 

expected to converge even at low initial input SIR. However, it is important to bear in mind that these results are based on 

probabilistic notions.  

 

 We first examine the situation where the beam-former output SIR is high, as might be the case near LSCMA 

convergence. We model y( n) As 𝑦 𝑛 = 𝑠 𝑛 + 𝑔𝑧 𝑛 = 𝑒𝑗𝜑 (𝑛) + 𝑔𝑚(𝑛)𝑒𝑗𝜓 (𝑛)             (7) 

 

where 𝜑(𝑛)is the phase of the desired signal s(n), and m(n) and  𝜓(𝑛) are the magnitude and phase, respectively, of the unit-

variance interference term, z(n). The scalar 9 controls the SIR, and we assume g≪ 1. . Note that we have assumed for 

convenience that the desired signal has unit amplitude in the beamformer output. This has no effect on the behavior of the 

LSCMA, since any scaling of y(n) is removed by hard-limiting The cross-correlation of s( n) and d( n) is  

 

𝑅𝑠𝑑 ≜ 𝜀 𝑠 𝑛 𝑑∗ 𝑛  = 𝜀{
𝑠 𝑛 𝑦 ∗(𝑛)

|𝑦(𝑛)|
}             (8) 

 

Using the binomial approximation (1 + 𝑟)−1/2 ≈ 1 − 𝑟/2, 

 
1

|𝑦(𝑛)|
=

1

 𝑦 𝑛 𝑦∗(𝑛)
 

= (1 + 𝑔2𝑚2 𝑛 + 2𝑔𝑚(𝑛)cos⁡(𝜙 𝑛 − 𝜓(𝑛)))−1/2 

≅ 1 − 𝑔𝑚 𝑛 𝑐𝑜𝑠∆(𝑛)         (9) 

 

where ∆ 𝑛 = 𝜙 𝑛 − 𝜓(𝑛)  Before proceeding further we consider the PDF of ∆ 𝑛 . We are concerned here with the PDF of the 

phase difference of two independent complex baseband signals for the case in which the PDF of the phase of each signal is 

uniform over (−𝜋, 𝜋]. The desired PDF is obtained by convolving two uniform PDFs, which results in a triangular-shaped PDF 

over (−2𝜋, 2𝜋]. Since the phase wraps (ejΔ = 𝑒𝑗 2𝜋Δ) the PDF of Δ is uniform over (−𝜋, 𝜋]. This is true even if the received signals have 

the same modulation format and identical carrier frequencies. The cross-correlation of s( n) and d( n) can now be approximated as 
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𝑅𝑠𝑑 ≅ 𝜀{𝑒𝑗𝜙  𝑛 (𝑒−𝑗𝜙  𝑛 + 𝑔𝑚 𝑛 𝑒−𝑗𝜓  𝑛 )(1 − 𝑔𝑚(𝑛)𝑐𝑜𝑠∆ 𝑛 )} 
≅ 𝜀{(1 + 𝑔𝑚(𝑛)𝑒𝑗 ∆(𝑛))(1 − 𝑔𝑚(𝑛)𝑐𝑜𝑠∆ 𝑛 )} 

≅ 1 (10) 

where the magnitude of the interfering signal m( n) and the phase difference ~(n) are assumed independent. The result that 

Rsd c::: 1 is intuitively appealing since the SIR is high. 

 

The cross-correlation of z( n) and d( n) is 

 

𝑅𝑧𝑑 ≅ 𝜀{𝑚 𝑛 𝑒𝑗𝜓  𝑛 (𝑒−𝑗𝜓  𝑛 + 𝑔𝑚 𝑛 𝑒−𝑗𝜓  𝑛 )(1 − 𝑔𝑚(𝑛)𝑐𝑜𝑠∆ 𝑛 )} 

≅ 𝜀{(𝑚 𝑛 𝑒−𝑗∆ 𝑛 + 𝑔𝑚2(𝑛))(1 − 𝑔𝑚(𝑛)𝑐𝑜𝑠∆ 𝑛 )} 

≅ 𝑔𝜀 𝑚2 𝑛  − 𝑔/2𝜀{𝑚2(𝑛)} 

≅ 𝑔/2 (5) 

 

The output SIR (22) now becomes 

 

𝑆𝐼𝑅 =
|𝑅𝑠𝑑 |2

|𝑅𝑧𝑑 |2
= 4𝑔2         (11) 

 

 Since the input SIR is 1/ g2, the ratio of the output SIR to the input SIR is 4, so that the SIR increases by 6 dB. This 

result for high SIR holds for any CM signal with uncorrelated cochannel noise and interference and will be observed in the 

simulation results to follows. 

 

Background Noise Inclusion  

 

In this section we examine the effect of background noise on the behavior of the LSCMA. We assume  that the noise has a 

complex circularly symmetric Gaussian distribution and is uncorrelated from sensor to sensor. We consider one 

environment where the interference is Gaussian, and another where the interference is CM. In both cases the desired 

signal is QPSK and is assumed to have been match filtered and sampled so that it is CM. All simulation results are based 

on 1000 trials with the LSCMA block size equal to 256 symbols. The array is linear with eight elements and uniform 

interelement spacing equal to 𝜆/2. The signal power is measured relative to the unit variance background noise, and is 

termed the Signal to White Noise Ratio (SWNR). 

 

 

Figure 1: Improvement in output SIR achieved with one iteration of LSCMA with a QPSK desired signal received with a 

Gaussian interferer and Gaussian background noise. Solid lines indicate theoretical result, '+','0', and 'x' denote mean gain 

from simulation. 

 

 First consider the case where the desired signal is incident from 0° and a single Gaussian interferer is incident 

from 5°. Since the noise and interference is Gaussian, the SINR gain from hard-limiting is given by (57) and (59). The 

LSCMA output SINR is related to the SINR gain from hard-limiting by (34). The mean LSCMA SINR gain is presented in 

Figure 1 for SWNR equal to 5, 10, and 20 dB. The power of the interferer is kept equal to the power of the desired signal. 

The figure shows excellent agreement between the measured and predicted SINR gain. As the SWNR increases, the optimal 

output SINR increases, and the SINR gain approaches the gain obtained when no background noise is present. Now 

consider the case where the interference is CM. Since the interference is not Gaussian, calculation of the SINR gain is 

tedious and it is appropriate to make some approximations. When the beamformer output SINR is low, the dominant 

source of distortion is the CM interferer, and the SIR gain from hard-limiting can be accurately predicted by the results for 

CM interference, given by (53) and (54). As the output SINR becomes higher, the interferer is nulled, and the background 

noise becomes the dominant source of distortion. However, we have shown that in all cases the SINR gain from hard-

limiting approaches 6 dB as the SINR becomes high. Therefore the behavior of LSCMA in this case can be predicted by 

using the results for CM interference (53) and (54) together with (34). Simulation results for an environment similar to that 

described above, except that the Gaussian interferer is replaced with a CM QPSK interferer, are presented in Figure 2. This 
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figure shows very good agreement between the approximate theoretical result and the simulation results.  

 

Figure 2: Improvement in output SIR achieved with one iteration of LSCMA with a QPSK desired signal received with a QPSK 

interferer and Gaussian background noise. Solid lines indicate theoretical result, '+','0', and 'x' denote mean gain from 

simulation. 

 

CONCLUSION 

 

  The results presented here can form a basis for analysis of these multi-signal extraction techniques. Clearly the 

variance and distribution of output SINR obtained with the LSCMA is also an important area for investigation. We finally 

comment on the hard-limit non-linearity. For high SIR, the hard-limiter is the optimal non-linearity when the desired 

signal has a constant envelope. However, at low SIR other non-linearities can yield greater SIR gain. Thus it is possible 

that non-linear functions other than the hard-limit can be used to develop blind adaptive algorithms which converge 

faster for low initial SINR. 
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