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 ABSTRACT:    Power consumption of system level on chip communications is becoming more 
significant in the overall system on chip power as technology scales down.  High bandwidth is desired 
to enhance parallelism for better performance, and the power efficiency on this bandwidth is critical to 
the overall SoC power consumption. Current bus architectures such as AMBA, Core connect, and 
Avalon are convenient for designers but not efficient on power. This paper proposes a physical 
synthesis scheme for on chip buses and bus matrices to minimize the power consumption, without 
changing the interface or arbitration protocols. By using a bus gating technique, data transactions can 
take shortest paths on chip, reducing the power consumption of bus wires to minimal. Routing resource 
and bandwidth capacity are also optimized by the construction of a shortest-path Steiner graph, wire 
sharing among multiple data transactions, and wire reduction heuristics on the Steiner graph. In this 
paper, we optimize on-chip bus communications on the tradeoffs between minimal power, maximal 
bandwidth, and minimal total wire length. Based on AMBA protocols, we modify the bus structure 
using a “bus gating” technique, and apply optimizations which are biased toward minimal power, but 
also favor bandwidth and routing resource. 
 

I.INTRODUCTION 

Bus vs NoC  Bus and network-on-chip (NoC) are the two types of pop- ular on-chip communication 
architectures. Bus has been widely used for its speed and simplicity, but lacks the communication 
bandwidth to support parallelism. Bus matrix extends its bandwidth, but not in an e±cient way on 
power or wires compared to NoC, which is therefore regarded as a better choice for many applications 
because of its bandwidth capacity, regularity and scalability. However, NoC has relatively large delay, 
which is a critical disadvantage to system performance, because communications in NoC must take a 
series of hops on routers in the network. Even with sophisticated routers taking only one clock cycle 
each hop, the total delay over a long path is still significant. The accumulation of delay on hops is 
inevitable due to the independency of routers, and it scales up with the number of routers and system 
complexity. Therefore, we believe bus based communication provides better perfor- mance in delay-
sensitive systems, because bus delay can be minimized through centralized control and arbitration. On 
the other hand, the weaknesses such as low bandwidth and wire e±ciency, are not intrinsic in bus. In 
this paper, we address these issues on bus matrix to make it capable and efficient on-chip 
communication architecture. Electronic system design is being revolutionized by widespread adoption 
of the System-on-Chip (SoC) paradigm. The benefits of using such an approach are numerous, 
including improvements in system performance, cost, size, power dissipation, and design turn-around-
time. In order to exploit these potential advantages to the fullest, a complete design methodology must 
adequately address two dimensions of system design. Firstly, it is essential to efficiently and optimally 
map an application’s computation requirements to a set of high-performance system components, like 
CPUs, DSPs, application specific cores, memories etc. Secondly, it is equally important to empower a 
designer with techniques and tools to map the system’s communication requirements onto a well 
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optimized communication architecture that is well suited to the specific application at hand. The focus 
of this paper lies on the second of these two aspects of system design. Increasing levels of integration 
are leading to a growing volume and diversity of data and control traffic exchanged among SoC 
components. As a result, a poorly designed on-chip communication architecture could become a severe 
impediment to optimal system performance and power consumption. In order to support high-
performance components, the on-chip communication architecture must efficiently transport the large 
volume of heterogeneous communication traffic they generate. Hence techniques to efficiently and 
optimally map the system’s communication requirements to a target communication architecture need 
to be included as an integral part of any system design flow 
 

II.PROBLEM FORMULATIONS 
 
      We require the bus synthesis algorithm to generate a bus matrix based on a given communication 
constraint graph and a placement of master and slave devices. In this way, on-chip bus matrices can be 
flexibly reconfigured for different system designs and communication patterns. The optimization is on 
power and wires under the bandwidth requirement given by the graph. Here with AMBA protocols, we 
can use definition 1 to model the communication graph of   bus matrices. 
  
Definition 1: A communication graph GC = (Vs, Vt, A) is directed bipartite graph, where Vs is the set 
of source vertices, Vt is the set of terminal vertices, and A is the set of arcs from Vs to Vt . 
 
      We denote the set of master devices by Vs, the set of slave devices by Vt.An arc (vi,vj) in GC 

means master device i needs to access slave  device j. Also given are the fixed on-chip locations of 

these devices. 

Definition 2: A placement on a communication graph GC is a physical location function P : Vs _Vt 

_→ R2. 

Definition 3: For communication graph GC = (Vs, Vt,A) and placement function P : Vs _Vt _→ R2, a 

bus matrix graph is a weighted graph _ = (V, E, ω) with placement  

 P_ : V _→  R2 such that: 

a) Vs ⊆ V 

Vt ⊆ V; 

b) ∀ v ∈ Vs _Vt , P_(v) = P(v); 

c) For any A_ ⊆ A such that 

∀ (ui,wi) _= (uj,wj) ∈ A_, ui _= uj ∧ wi _= wj , 

there is a set of paths ρ : A_ _→ _ such that: 

i) ∀ (u, v) ∈ A_, ρ((u, v)) ⊆ V _E; 

ii) ∀ (u, v) ∈ A_, 
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_(i,j)∈ρ((u,v)) _P(i) − P(j)_1 = _P(u) − P(v)_1; 

iii) ∀ e ∈ E, |{r ∈ _ : e ∈ r}| ≤ ω(e). 

 

The objective is to find the bus matrix graph with minimal 

total wire length L(_) = _(u,v)∈E ω((u, v))_P(u) − P(v)_1. 

 
III.THE IDEAL BUS MATRIX GRAPH 

 

 
 
 
The above fig shows an example of a bus matrix graph connecting fur masters s0, s1, s2, s3 and three 
slaves t1, t2, t3. Five communication arcs are present: s1 may access t2 and t3, and t1 may be accessed 
by s0, s2, and s3. The single weight  edges in Fig. 5 (by solid segments) are adequate for this 
requirement. Notice that (s0, t1) is the only arc having more than one shortest paths. And when its 
connection is on, s2 and s3 cannot access t1 at the same time, i.e., bus lines “s2 ↔ t1” and “s3 ↔ t1” 
are both open. Depending on s1’s connection, since s1 can take at most one of “s1 ↔ s2” and “s1 ↔ 
s3,” the connection from s0 can always choose the one other than s1’s and find an open path to t1. 
This formulation defines an ideal high bandwidth low power on-chip communication solution, but with 
limited practicality. Because first, minimization on the wire length of _ is computationally expensive 
due to the exponentially increasing combinations of arc subset A_. And even if we pre-compute the 
optimal solution, it is still impractical to store the path sets for all the subsets, or to compute the path 
set _ in real time. Another problem is that, if the communication pattern changes dynamically, when 
some connections are still on but need to change paths, it may induce extra delay or timing 
issues. 

 
IV.HEURISTICS FOR GENERATING SHORTEST-PATH STEINER GRAPHS 

      In our problem of minimal shortest-path Steiner graph, the locations of a set of sources s1, s2, · · · , 
sm and terminals t1, t2, ..., tn are given, and the objective is to find a rectilinear routing solution 
containing all the source-to-terminal shortest paths, with total wire length as small as possible. In 
single source cases, this is a rectilinear Steiner arborescence (shortest-path tree) problem which has 
been studied. Finding the exact solution of a minimum rectilinear Steiner tree (MRST) is NP-complete 
[7], and finding 
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a minimum rectilinear Steiner arborescence (MRSA) is believed to be hard [15] although without 
hardness proof. For practical use, several efficient heuristic algorithms are introduced and compared in 
[5], among which the 2-IDeA/G algorithm has the best average performance over runtime. In general 
cases containing multiple sources, the problem has not been studied before. We adopt the the 2-
IDeA/G heuristic as basis and add more heuristics to construct the shortest-path Steiner graph. k-
IDeA/G heuristic for MRSA The k-IDeA/G (iterated k-deletion for arborescence) algorithm   is based 
on the RSA heuristic (denoted RSA/G). The basic flow of RSA/G is to start with n terminals as n 
subtrees and iteratively merge a pair of subtree roots v and v_ such that the merging point is as far 
from the source as possible, so that the wires can be shared as much as possible. It terminates when 
only one subtree remains. For efficient implementation, the RSA/G first sorts all the nodes on the 
Hanan grid  in decreasing distance to the source s, and visits each node maintaining a peer set P of 
subtree roots. We denote the rectilinear distance from s to v as Δs(v) or Δ(s, v). Two basic operations 
are used in RSA/G at: terminal merger opportunity (TMO), when a terminal is added into P as a 
subtree; and Steiner merger opportunity (SMO), when |X| ≥ 2 and the subtrees in X are merged. 
  

V.THE RSA/G ALGORITHM 

  
Given a source s and n terminals t1, · · · , tn, 
v1, · · · , vN are the Hanan grid nodes sorted by 
Δs(v1) > · · · > Δs(vN); 
P ← φ; 
for i = 1 to N do 
if there is tj at vi, then (TMO) 
P ← P _{vi}; 
X ← P _{vj |Δs(vj) = Δs(vi)+Δ(vi, vj)}; 
if (|X| ≥ 2) then (SMO) 
merge the nodes in X rooted at vi 
P ← (P _X)_{vi}; 
return the arborescence rooted at s;remove up to k nodes from v1, · · · , vN when running the RSA/G 
algorithm. By removing some nodes, the SMO 
merges are skipped at those points, which in some cases can result in better overall solution. In each 
iteration of the k-IDeA algorithm, all the combinations of skipping k or less nodes are tried in the 
RSA/G and the best set of skipped nodes are marked as permanently deleted. The iterations are then 
repeated until no further improvement is obtained. 
 

VI.MULTIPLE MRSA CONSTRUCTION WITH SHARED WIRES 

With multiple sources s1, · · · , sm, our algorithm needs to construct a Steinter graph G which 
contains all the MRSAs starting form every source. While each MRSA is minimized by k-IDeA, the m 
arborescence should share as much wire as possible to minimize total wire length on G. We devise 
additional heuristics based on k-IDeA to construct multiple MRSAs one by one, explained as follows. 
First, on each MRSA (rooted at si on ith iteration) construction, the terminals requiring connections 
can move towards the source si along existing edges of G, so that the wires can be reused and shared. 
we only need to connect 8 nodes instead of the original 16 terminals to form the MRSA rooted at s2, 
because all the other terminals can be reached from one of 
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these nodes with shortest path from s2. This set of nodes (denoted T_) can be obtained by checking 
each   terminal tj , which necessitates a shortest-path connection from si. Starting from ti, we move 
towards si as much as possible along existing wire paths until reaching a vertex v (a terminal or a 
Steiner node) in G where no vertex closer to si can be reached, then add it to T_. When there are 
multiple paths in the graph, we pick the final vertex closest to si so the rest part of the path is short and 
likely to need less wire.  
 
Nodes requiring connections 

 

 
 

Second, we construct the MRSA on the set of nodes T_ using existing wires. The TMO 
condition is then changed to vi ∈ T_. The SMO condition is changed, also for the purpose of wire 
reusing, from |X| ≥ 2 to |X| ≥ 2 or (|X| = 1 and vi ∈ G). Because when vi is already in the graph, it can 
share wires with the node in X like the case when |X| ≥ 2 in RSA/G. As figure 6 shows, when X 
contains only one node {t2}, it should be connected into G when vi comes to t3, and half of the 
connection length can be saved using the existing horizontal wire. The detailed algorithm is described 
in table 2, where routine ‘connect (u, v)’ uses existing wires if applicable on shortest connections. 
 

Connecting a node into the Steiner graph 
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VII.REVISED RSA/G’ ALGORITHM 

 
Given existing Steiner graph G, source sk, terminals 
t1, · · · , tn, and v1, · · · , vN are same as in RSA/G; 
Routine Necessitate(vertex v); 
U ← {u ∈ G and exists a wire path from 
v to u of length Δsk (v) − Δsk (u)}; 
T_ ← T_ _ {um ∈ U with minimum Δsk (u)}; 
T_ ← φ; 
for i = 1 to n do Necessitate(ti); 
P ← φ; 
for i = 1 to N do 
if vi ∈ T_ then P ← P _{vi}; (TMO) 
X ← P _{vj |Δsk (vj) = Δsk (vi)+Δ(vi, vj)}; 
if (|X| ≥ 1 and vi ∈ G) then (SMO) 
for each (u ∈ X) connect(vi, u); 
P ← P _X; 
Necessitate(vi); 
else if (|X| ≥ 2) then (SMO) 
merge the nodes in X rooted at vi 
P ← (P _X)_{vi}; 
return; (the MRSA rooted at sk is added to G) 
 

The k-IDeA iterations remain unchanged. After the shortest path Steiner graph is constructed 
by applying k-IDeA on the m sources, there are possibly some redundant edges that can be removed. 
So the final step is to check each edge (vi, vj) ∈ G, if G still contains all the master-to-slave shortest 
paths without (vi, vj ),  
 

remove edge (vi, vj ). Practical Bus Matrix Synthesis  Formulation Given a communication graph GC 
and its placement, we define another bus matrix graph with fixed paths for the arcsin GC, i.e., each 
pair of master-slave connection always takes the same path regardless of other connections. 
 

VIII.BUS MATRIX CONTROL DESIGN 
 

Apart from path lengths and data wire lengths, the control overhead needs to be considered for 
a complete optimization. Although the data lines consume the major amount of routing resource 
because they are usually at least 64 bit (32 bit × 2-way) wide, control overhead is increased compared 
to traditional bus architectures by adopting Steiner graphs. We need a lot of switches at Steiner nodes 
to guide the on-chip traffic, and each switch needs a certain number of control signals depending on its 
node degree and edge weights. 
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Control on switches in a bus matrix 
 

 
 

The sketch of bus matrix control scheme 

 
      Each slave device has an arbiter which handles the requests from masers and decides the 
connection. The result is sent to the central switch control unit, where all the connection paths are 
stored. Depending on the set of active paths,  the central switch control sends control signals to all the 
switches on each path, which together instantly create the master-to-slave connection requested by the 
master device. 
 

IX.CONCLUSION 
 
      The weaknesses of  original bus matrices, such as low power efficiency and low wire efficiency, 
are resolved by using a Steiner graph structure. Compared to network-on-chip which has better 
bandwidth flexibility, bus matrix has much less latency because of its centralized control, consumes 
less power because of the shortest (or close to shortest) paths with minimal control/packet overhead 
Efficiency on bus lines is maximized without the need to redesign system components and IP modules 
Routing resource is also reduced without compromising low power. 
 Therefore, we believe bus matrix architectures will be widely applied for efficient communications in 
various future systems. 
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