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INTRODUCTION
Development of more advanced and functional biomaterials has been an ongoing challenge in the last decades towards 

the benefit of millions of patients worldwide that need to be treated with biomaterial-based therapies. The ability of individual 
polymers to respond to changes in pH, temperature, electric or magnetic fields, together with the possibility of combining different 
polymers, is a strategy largely pursued in the field [1-4].

Polyelectrolyte (PE) Complexes (PECs) have been particularly under focus, especially as delivery systems of biomolecules 
[2-5]. Systems that can respond to a dynamic pH environment are of particular interest for applications within different locations in 
the body that exhibits substantial pH changes during either healthy or diseased state [2]. PECs have the ability to improve intrinsic 
properties shown by each PE (e.g. cytocompatibility and hydrophilicity [6-10]), enhance bulk properties (e.g. mechanical properties 
[11,12]) and act as delivery systems with increased capability (e.g. pH-responsiveness [13-17], higher loading efficiency [13,18] and ef-
fectiveness [9,18]).

Chitosan (Ch) has been one of the most studied PEs. Ch’s chemical structure resembles human polysaccharides that are 
present in the extracellular matrix of numerous tissues as proteoglycans. Ch is the only naturally occurring cationic glycosamino-
glycan (GAG) analogue [1,19-21], prone to molecular recognition by living cells or tissues. It is an efficient delivery vehicle for nucleic 
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acids, binding strongly with negatively charged biomolecules, and useful for gene therapy [22-25]. Plus, as a cationic polymer, Ch can 
be combined with anionic polymers.

Poly(γ-glutamic acid (γ-PGA) is one of the most promisor anionic PEs, highly due to its non-immunogenic behavior [26-28] and 
biodegradability into glutamic acid residues [29,30]. Glutamate is mostly known as major excitatory neurotransmitter in the central 
nervous system, acting as a synaptic transmitter, and influencing neuronal excitability, synaptic structure and function, neuronal 
migration during development, and neuronal viability [31-35]. It is also present in other tissues and organs, specifically in non-neu-
ronal tissues like bone, pancreas, skin and cartilage [31,33-36], and having significant roles in their normal function, although yet not 
fully understood. γ-PGA, being a poly(amino acid) built by glutamic acid monomers [29,30,37,38], may participate in similar processes.

Ch/γ-PGA PECs appear to be promisor with an increasing number of references in the literature, but there is a lack of sys-
tematized information. Therefore, this review aims to overview the process of PEC formation within different architectures, as well 
as the current status of the Ch/γ-PGA PECs and their applications in the fields of drug delivery and regenerative medicine. Within 
this scope, we expect to identify the main challenges of Ch/γ-PGA PECs application for tissue regeneration.

CHITOSAN (Ch) AND POLY(γ-GLUTAMIC ACID (γ-PGA) AS POLYELECTROLYTES (PEs)
Polyelectrolyte (PE) is the term used to classify polymeric macromolecules with charged or chargeable groups when dis-

solved in polar solvents (predominantly water) [39,40]. When a PE dissociates, it gives rise to a macroion and counterions in aque-
ous solution [39]. The macroion can be named polycation (positively charged PE) or polyanion (negatively charged PE) [40]. Table 1 
highlights some of the most studied PEs, either from natural or synthetic origin.

Table 1. Natural and synthetic polycations, and polyanions, used for polyelectrolyte complex (PEC) assembly [41-48].

 Natural Synthetic

Polycation Ch, Col, Gelatin, PLL, Arginine, Starch.

Poly(ethylene imine), Poly(allylamine hydrochloride), PDADMAC, Poly(vinyl 
pyrrolidone), Poly(amidoamine), Poly(N-isopropyl acrylamide), Poly(2-
(dimethylamino)ethyl methacrylate), Poly(2-(diisopropylamino)ethyl 
methacrylate).

Polyanion

HA, chondroitin sulfate, PGA, Cellulose 
sulfate, Alginate, Pectin, Heparin, Mucin, 
DNA, Poly(aspartic acid), Dextran sulfate, 

CMC, GG.

Poly(acrylic acid), Poly(styrene sulfonate), Poly(vinyl sulfate), Poly(methacrylic 
acid).

*PEC: Polyelectrolyte Complex; Ch: Chitosan; Col: Collagen; PLL: Poly(L-lysine); PDADMAC: Poly(diallyldimethylammonium chloride); HA: 
Hyaluronic Acid; PGA: Poly(glutamic acid); DNA: Deoxyribonucleic Acid; CMC: Carboxymethylcellulose; GG: Gellan Gum.

In particular, Ch is a polysaccharide and a linear copolymer of glucosamine and N-acetylglucosamine units connected 
through a β-1,4-linkage [41-51]. On the other hand, γ-PGA is a poly(amino acid) built by D- and L-glutamic acid residues linked by 
peptide bonds [29,37]. Both PEs are represented in Figure 1.

 
Figure 1. Chemical structure of the molecular units of Ch (A) and γ-PGA (B).

C. Rouget was the first to identify Ch in 1859 [52,53]. Ch is mainly obtained by N-deacetylation of chitin under alkaline condi-
tions [20,54-56]. Chitin is abundant in Nature (primary structural component of the exoskeleton of shrimps, crabs and lobster and 
squid pens as an equivalent to collagen, and present in lesser amounts in cell walls of some fungi and yeast and in plants as the 
equivalent of cellulose) [20,54,56-58]. When the degree of acetylation (DA, molar fraction of N-acetylated units) is lower than about 
50%, the polymer is termed Ch [58]. Ch’s molecular weight (Mw) and DA are its main structural parameters influencing the overall 
behavior of the polymer as a biomaterial [1,59]. Ch is soluble in nearly all diluted aqueous acidic solutions and insoluble in water, 
concentrated acid, alkali, alcohol, and acetone and in common organic solvents. The dissolution occurs by protonation of the 
primary amine (-NH2) groups of the D-glucosamine molecular unit [20,54,56,59,60]. These amine groups become protonated, and the 
polymer behaves as a PE [61,62]. As a PE, Ch has been extensively screened for its ability to form complexes with other polymers, 
particularly through electrostatic interactions [1,20,50,57,63].

Ch has been extensively described for a large range of biomedical applications [1,20,53,55,64-66], in numerous structures and 
forms [51]: 2D films [67-70], PEM films [71-74] or nanostructured surfaces [75]; small-scaled particles like nanoparticles [76-80], micropar-
ticles [81-83] or PEM micro- [84-86] or nanocapsules [87-89]; and 3D porous structures such as sponges [90-95], fiber meshes [96-101], or 
gels [102-106], either alone or in combination with other molecules. Parameters such as biodegradability and biocompatibility are 
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particularly important. Ch can be degraded enzymatically, through chemoenzymatic means, recombinant approaches and physi-
cal means like electromagnetic radiation and sonication [57,60,107]. In humans, in vivo degradation of Ch is thought to be primarily 
due to the activity of lysozymes (present in articular cartilage, liver, plasma, saliva, tears and milk [108]) and bacterial chitinolytic 
enzymes (e.g. chitosanase) that have been identified in human tissues of the gastrointestinal tract and lung [54,107,109,110]. These 
enzymes hydrolyze both glucosamine and acetylated residues, leading to polymer erosion into a suitable size for renal clearance 
[19,50,58,107]. Ch has additionally been regarded as a non-toxic and a biologically compatible polymer [1,55,56,111]. Ch and its derivatives 
have also been tested successfully against numerous cell types [54]. Moreover, it is approved by the Center for Devices and Radio-
logical Health (CDRH) of the Food and Drug Administration (FDA) as a wound dressing material (topical intended use) [61]. Ch has 
also been shown to possess mucoadhesive [112,113], chemoattractive [114-117], analgesic [118], antibacterial and antifungal [119-121], and 
hemostatic properties [122,123] (among others).

On the other hand, γ-PGA was firstly detected by Ivanovics and Bruckner [124] in 1937, as the sole constituent of the Bacillus 
anthracis surface capsule, and released into the medium upon bacterial cell lysis. After its discovery, γ-PGA was identified in the 
growth medium of several Bacillus strains as an extracellular product of their fermentation [29,125]. γ-PGA can be characterized by its 
Mw distribution, the ratio of D- to L-glutamic acid monomers and the carboxyl-group (α or γ) engaged in the peptide bond [29]. γ-PGA 
is soluble in water [30]; in acidic solutions, the carboxyl groups of γ-PGA become deprotonated [126,127] and the polymer can also 
be explored as a PE. As a PE, γ-PGA has been object of some studies regarding its ability to form complexes with other polymers, 
namely through electrostatic interactions [8,128-132].

In the case of γ-PGA, its potential for biomedical applications has been less explored than for Ch [29,30,133,134]. Still, γ-PGA 
has been processed in the form of 2D films [135,136], or PEM films [71,131,137]; small-scaled particles like nanoparticles [128,138-142], mic-
roparticles [143,144] or PEM nanocapsules [129]; and 3D porous structures such as sponges [7,8,11,12,145,146], fiber meshes [147-151], or gels 
[152-158], particularly in combination with other molecules. γ-PGA can be chemically degraded by prolonged exposure to an extreme 
pH value at high temperatures, physically by ultrasonic irradiation, or enzymatically [29]. In γ-PGA producing Bacilli, endo-γ-glutamyl-
peptidase and exo-γ-glutamyl-peptidase are the two types of enzymes that can degrade γ-PGA. In mammals, the existence of 
γ-PGA has also been reported [159]; being assumed that this polymer can be biochemically degraded into glutamic acid residues 
in vivo [29]. γ-PGA non-immunogenicity feature has been demonstrated by a lack of immune response after repeated polymer in-
jections [26-28], reinforcing a fact already discovered when γ-PGA was shown to mask the dangerous pathogen Bacillus anthracis 
from immune surveillance of the host [26,160-162]. Afterwards, γ-PGA and its derivatives have been tested successfully under differ-
ent shapes and against some cell lines [6-8,139,145,148,155,163], and primary cells [164,165]. Moreover, since γ-PGA is edible, it is generally 
regarded as safe [26,30,160,166].

SELF-ASSEMBLY AND ELECTROSTATIC COMPLEXATION OF PEs
Self-assembly is a spontaneous association of multiple components into larger entities [167-171]. Its concept can be enlight-

ened as follows: the ‘assembly’ connotes ‘to put together or build’ and the ‘self’ implies ‘without outside help or on its own’. The 
‘self’ that drives the assembly is(are) the interaction(s) between the assembling objects [172]. This process can occur at any scale, 
ranging from nano- and micrometer scale to macroscopic dimensions [173,174]. Self-assembly is the most ubiquitous process in 
Nature [171,175-178], being present in many biological systems. Classical examples include the hierarchical self-assembled rod-like 
structure of tobacco mosaic virus [179-181], phospholipids forming the membranes of cells and organelles [127,182-184], deoxyribonucle-
ic acid (DNA) self-complementary double-helix annealing [127,185], and protein aggregation forming the Extracellular Matrix (ECM) 
of connective tissues, namely fibronectin and collagen [186-189]. The assembling objects behind self-assembly are active building 
units bearing recognition information, and thus capable of recognizing each other. If the assembly happens in multiple stages, the 
building block can be different in each stage [168,190].

The self-assembly process relies on the action of non-covalent interactions (or weak, and also reversible, covalent interac-
tions) between the building blocks, underlying their assembly into larger and thermodynamically stable structures. A balance 
between attractive and repulsive forces should take place in order to obtain stable self-assembled structures [168,191,192]. The 
most described forces behind self-assembly comprehend van der Waals forces (including hydrogen bonding), hydrophobic in-
teractions, electrostatic forces, magnetic interactions, aromatic stacking, metal-ligand bonds and/or entropic effects (Figure 2) 
[169,171,172,191,193,194].

Electrostatic forces offer a type of bond that is low demanding in terms of its directionality and the distance between op-
positely charged functional groups (it has the least steric demand of all chemical bonds [195-203]), in addition to the possibility of 
forming multi-centre bonds [204]. Furthermore, the magnitude and length scale of these interactions can be regulated, namely by 
choosing the solvent (e.g., dielectric constant) and/or the concentration and chemical nature (e.g., size and valence) of the sur-
rounding charged counterparts [191]. Electrostatic self-assembly is an easy, reliable, cheap and versatile example of the known 
self-assembly processes; ergo, subject of numerous studies up until now [41,173,191,203,205-209].

Numerous building blocks – amphiphiles (lipids and surfactants) [210,211], polymers [212-214], copolymers [215-217], functional mol-
ecules/macromolecules (poly(amino acids) [218], peptides [219], proteins [220,221] and DNA [222,223]), nanoparticles (from biological 
origin – charged viruses [224] – to inorganic – magnetic, gold or silver [225-228]) – have been assembled by electrostatic interactions 
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Figure 2. Forces involved in self-assembly. (a) Van der Waals forces; (b) hydrogen bonds between a H-bond donor and a H-bond acceptor; (c) 
electrostatic interactions between oppositely, or likely, charged species; (d) magnetic interactions in response to a magnetic field (H); (e) aromatic 
stacking with face-to-face or edge-to-face interactions; (f) metal-ligand binding between a soluble metal acceptor centre (M) and organic ligand 
donors (X and Y); and (g) entropic effects, namely hydrophobic effects (separation of hydrophobic parts of amphiphilic objects from water 
molecules), confinement effects (increase of steric repulsion) or depletion forces (mediated by smaller particles or solvent molecules). Figure 
adapted from [171,190,191,195-202].
[199,207,209]. Although not complete, this list demonstrates the diversity of building blocks that can be used. Different self-assembled 
shapes have been obtained, as a result of the geometries of all interactions elicited by that object [168]: two-dimensional (2D) films, 
small-scaled particles or three-dimensional (3D) structures [168,199,207,209,229]. Examples of such outlines are represented in Figure 3.

 

Figure 3. Self-assembled entities obtained from oppositely charged self-assembling objects. 2D films: cationic poly(L-lysine) (PLL) and anionic 
hyaluronic acid (HA) alternate deposition onto a planar substrate; and planar and curved patterned gold substrates (NMe3

+-terminated- 
or, CO2

--terminated self-assembled monolayers (SAMs)), coated with PO3H
--terminated gold disks. Small-scaled particles: nanoparticles 

composed by the block copolymer poly(ethylene oxide)210-b-poly(tert-butyl methacrylate)97 (PEO-b-PMA) and oppositely charged surfactant 
hexadecyltrimethylammonium bromide (HTAB); and hollow layer-by-layer (LbL) capsules containing cationic polymer poly(diallyldimethylammonium 
chloride) (PDADMAC) and anionic silicon dioxide nanoparticles (SiO2). 3D structures: freeze-dried scaffolds composed of cationic chitosan (Ch), 
and anionic poly(γ-glutamic acid) (γ-PGA) and carboxymethylcellulose (CMC); and microfibers containing cationic Ch and anionic gellan gum (GG). 
Figure adapted from [212,230-235].

PECs in Solution

Molecules aggregate with each other in solution [236]. In general, mixtures of two neutral polymers (or PEs with same/similar 
charge density) in solution present thermodynamic incompatibility, with phase separation occurring when the polymer concentra-
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tion increases and the different phases formed become enriched in one of the components. However, when PEs present opposite 
charges, electrostatic interactions are established between them. When phase separation occurs, a phase becomes enriched in 
the two polymers while the other is composed by solvent only [237]. Hence, phase separation results in macroscopic phase separa-
tion, or in polymeric complexes [238].

Bungenberg de Jong [236,238] was the first to suggest PEC formation in solution, between gelatin and gum arabic, by observing 
the latest aforementioned phenomenon. Such phase separation occurrence was named "complex coacervation", and the polymer 
condensed liquid phase "complex coacervate" [236]. Therefore, complex coacervation is the spontaneous process that results in the 
aggregation of macromolecules or formation of colloidal particles under the action of electrostatic attractive forces [239,240]. Fuoss 
[241-243], Michaels [40,208,244,245], Kabanov [246-248], Tsuchida [236,249,250] and Dautzenberg [215,251-253], among others [236], were pioneers in 
the study of this method with PEs in solution, and at the colloidal level. Mixing solutions of polycations and polyanions lead to 
spontaneous formation of PEC dispersions (complex coacervates) of interpolymer complexes [236,254,255].

PECs in 2D: PE Self-Assembly into Multilayers (PEMs)

The technique known by layer-by-layer (LbL) self-assembly is considered the most well established bottom-up assembly 
methods of thin film deposition [41], and widely used for 2D PEC formation. With this method, PEs can be self-assembled by se-
quential adsorption of multiple thin polyion films from aqueous solutions onto charged solid substrates, forming PE Multilayers 
(PEMs) (Figure 3) [170,203,213,256].

Multilayer formation was first suggested by Kirkland [257] and Iler [258] in 1965-1966 [41,209,259]. They described for the first time 
the formation of layers of charged particles by adsorption from solution, by alternating deposition of positively and negatively 
charged colloid particles, such as silica and alumina. However, it was Iler [258] that suggested a way to prove the existence of a 
multilayered structure by use of reflected light after each layer addition. Still, Kirkland patented the system in 1970-1984 [260,261]. 
In 1980 [262], 1982 [263], 1984 [264] and 1990 [265] other researchers started suggesting multilayered film assembly based on elec-
trical charge reversal after each deposition step. In 1991, Decher and Hong [210,266] analyzed the thickness of multilayered films 
built by anionic and cationic bipolar amphiphiles and suggested the use of PEs for PEM formation from sufficiently concentrated 
PE aqueous solutions. Layer numbers of 35 and 39 were achieved, with corresponding 170 and 151 nm of thickness, calculated 
through small angle X-ray scattering.

Regardless, only in 1992, PEM formation through electrostatic interaction exclusively between PEs was reported [213]. PEM 
films of 100 consecutively alternating layers were assembled [203,213]. Through this new technique, a solid substrate with a posi-
tively charged planar surface (silanized aminopropylsilanized fused quartz or silicon single crystal substrates) was immersed in a 
solution containing an anionic PE (poly(styrene sulfonate)) and a monolayer of the polyanion was adsorbed [213]. Since the adsorp-
tion was carried out at relatively high concentrations of PE, a large number of ionic residues remained exposed to the interface 
with the solution and thus the surface charge was effectively reversed. After rinsing in pure water, the substrate was immersed 
in the solution containing a cationic PE (poly-4-vinylbenzyl-(N,N-diethyl-N-methyl-)-ammonium iodide). Again, a monolayer was 
adsorbed and the original surface charge was restored. By repeating both steps in a cyclic fashion, alternating multilayer assem-
blies of both polymer pairs were obtained. A linear increase of film thickness with layer number was observed. It was technically 
possible to calculate a PEM thickness of 42.5 nm of 39 deposited layers composed by the PE pair of poly(styrene sulfonate) and 
poly(allylamine hydrochloride) [213]. This process was designed by (LbL) deposition by Decher and colleagues [203,213]. Since then, 
surface modification via the LbL deposition technique through electrostatic interactions gained motion. An adaptation of this 
technique is represented in Figure 4.

Figure 4. (a) Molecular units of both polymers used in the polyelectrolyte multilayer (PEM) buildup: Ch (left), as a polycation, and γ-PGA (right), 
as a polyanion. (b) Simplified molecular picture of the first two deposition steps, illustrating film deposition starting with a positively charged 
surface. Counterions are included. Polyion conformation and layer intermingling are omitted for clarity. (c) Schematics of the layer-by-layer (LbL) 
deposition process, by horizontal immersion, using gold-coated silicon wafers as substrates, coated with a Ch film, obtained by spin-coating. 
Steps 1 and 3 represent the adsorption of the γ-PGA and Ch, respectively. Steps 2 and 4 are the intermediate rinsing with buffer solution. With 
such cyclic depositions, the simplest multilayer film architecture can be obtained. Figure reprinted with permission from Antunes JC, et al. [71] 



17RRJOMS | Volume 4 | Issue 4 | September, 2016

e-ISSN: 2321-6212 
p-ISSN: 2347-2278Research & Reviews: Journal of Material Sciences

A solid substrate with a positively charged planar surface is immersed in the solution containing the anionic PE and a monolayer of 
the polyanion is adsorbed (step 1 or step A). Since the adsorption is carried out at relatively high concentrations of PE, a number of 
ionic groups remain exposed to the interface with the solution and thus the surface charge is reversed. After rinsing in a buffered 
solution (or in pure water) the substrate is immersed in the solution containing the cationic PE. Again a monolayer is adsorbed but 
now the original surface charge is restored (step 3 or step B). These four steps are the basic buildup sequence for the simplest 
film architecture, (A/B)n, since by repeating the steps in a cyclic fashion (A, B, A, B, …), alternating multilayer assemblies of both 
polymers are obtained [213]. In more detail, LbL film-deposition requires a solid support bearing a minimal surface charge to initiate 
the assembly process. If not inherent, the substrate surface charge can be created by chemical or physical modifications. Cleaned 
hydrophilic glass, quartz, silicon wafers, mica, and gold-coated supports are the most frequently used materials. They are typically 
chosen according to their convenience for particular analytical methods [209,256,267]. The structure and properties of each layer of PE 
are typically independent on the substrate used after a few deposition cycles, being then governed by the choice of the respective 
polyanion/polycation pair and by the deposition conditions [259]. Self-repulsion of the already deposited layers should also take 
place, to adjust molecules conformation and consequent flexibility of the underlying layers, and promote further PE deposition 
[170,267]. Layer intermingling, imposed by intrinsic charge compensation [268], is also frequent [170,267].

Several important parameters influence PEMs buildup and need optimization for each PEM. They include: pre-treatment of 
the substrate, nature of the PEs, concentration and temperature of the solutions, solvent, salt type and ionic strength, pH, dip-
ping time, rinsing time, agitation during adsorption or rinsing, drying step, and environmental conditions such as temperature and 
humidity of the surrounding air [209,256,267,269,270].

The main advantages of PEM formation through LbL self-assembly technique derives from: i) its simplicity, since no complex 
equipment is required for the buildup (a suitable substrate, container(s) compatible with the materials used and a substrate han-
dling tool [209]); ii) each adsorption step is relatively quick (typically 10-20 min/adsorption step, but can be between 1 min and 1 h 
due to PE adsorption kinetics [221,231,256,269,271,272]); iii) low costs [170,273,274]; iv) compatible with industrial production methods [231,275]; 
v) easy build-up [231,256,267]; vi) the possibility of introducing different molecules [203,209,256,259,276], into the multilayer in a programmed 
sequence, adding new functionalities [170,231,275,276]; vii) the possibility of controlling PEC architecture at the nanometer-level, by 
selecting the substrate and building blocks, layering sequence, experimental conditions and influencing parameters [203,231,256]; 
viii) the lack of need for auxiliary molecules, such as catalysts or initiators, to initiate the reaction (generally performed in aque-
ous solution), which represents the main advantage over covalently crosslinked networks, favoring biocompatibility thus avoiding 
purification before administration [1].

The main limitations of PEMs include: i) fuzzy nano-assemblies, derived from the intermingled structures fabricated from LbL 
technique [170,203]; ii) interpolymer orientation or alignment of polymer chains in a given layer may be difficult to control [208,269,277-

279]; iii) long dipping times in the presence of biological materials can be prone to denaturation or photobleaching; or iv) eventual 
contamination by previous solutions of the layering scheme [209].

PEMs can be built not only on planar substrates, but also on substrates with different shapes, like protein aggregates, en-
zyme crystals, colloidal particles, cylindrical systems and even living cells [170,209,270,273,274]. Additionally, when using two building 
blocks, PEM preparation only requires the two PEs carrying complementary charges [1,203,256]. An exact positional matching of the 
charged groups is also not required [274]. Regardless, technical advances of this technique, which include the use of automated 
dipping robots [269,280,281], hydrodynamic LbL (with moving substrates [269,282], or solutions [283-285]), spin-assisted LbL [286-288], spray-
assisted LbL assembly [289-292], ink-jet assisted LbL [293,294], among others, are assisting in overcoming PEMs limitations, while 
increasing its use [41,209]. Combination of the bottom-up LbL technique with top-down lithographic techniques [295-298] are another 
valuable possibility [41].

PEM films have been mainly studied as potential coatings for implantable biomaterials, namely to inhibit coagulation, inflam-
mation or infections (choosing anti-thrombogenic, anti-inflammatory or anti-bacterial PEs, for instance), non-fouling properties (to 
prevent immune rejection or to enhance the efficiency of injected delivery vehicles), increase protein adsorption and/or promote 
integration with native tissue (having adhesive proteins or ECM components as building blocks, among other possibilities), cell/
biomolecules encapsulation and preservation of their functionality (parameters such as wall thickness and permeation can be 
modified according to the needs of the system), localized delivery of different molecules in response to different stimuli (namely 
pH-responsiveness), and modification of substrates to influence cellular processes as adhesion, proliferation, differentiation and 
ECM synthesis/degradation (tuning PEMs biodegradability, mechanical properties and bioactivity, either inherent to the PEs or 
induced by added molecules) [42,45,299-301]. Thin-film biosensors (incorporating able molecules within PEM structure – enzymes, 
antibodies, proteins, nucleic acids, inorganic colloids or organic molecules) are also important fields of application [301].

Ch/γ-PGA PEMs have been proposed as model surfaces to use as delivery systems (Table 2). For example, the chemokine 
stromal-derived factor-1 (SDF-1) was incorporated into Ch/γ-PGA PEMs using different approaches. Ch/γ-PGA PEMs with SDF-1 
were able to increase the recruitment of human bone marrow-derived mesenchymal stem/stromal cell (hMSC) in vitro due to a 
sustained SDF-1 release from the PEMs structure. This highlighted Ch/SDF-1/γ-PGA PEMs as potential hMSC attractants, clini-
cally relevant for different clinical settings, from tissue regeneration to immunomodulation [302]. This strategy inspired the use of 
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Ch/γ-PGA PEMs as protein reservoirs to other molecules. For example, the pro-inflammatory cytokine interferon-γ (IFN-γ) was incor
Table 2. Ch/γ-PGA PECs in regenerative medicine: 2D PEMs.

Ch/γ-PGA PEMs

Ch γ-PGA Molecule 
incorporated In vitro In vivo Main achievements Ref.

Mw (KDa) DA (%) Mw (KDa)
200 - 1230 - - - First PEM formation with organic solvents [131]

650, 1200 
and 1400 - 600 and 

1230 - - - Successful PEM formation with organic solvents, 
particularly with higher Mw of γ-PGA [302]

324 10 1050 - NIH3T3 cell 
line - No cytotoxicity [71]

324 10 1050 SDF-1 hMSCs - Chemoattractor-delivery system for SDF-1 [302]

366 14 1050 IFN-γ Human 
monocytes -

IFN-γ delivery system able to modulate macrophage 
phenotype (M2 into M1) and counteract cancer cell 

invasion
[303]

*2D: Two-Dimensional; PEM: Polyelectrolyte Multilayer; Mw: Molecular Weight; DA: Degree of Acetylation; NIH3T3: Mouse Embryonic Fibroblast; 
SDF-1: Stromal-Derived Factor-1; hMSCs: Human Bone Marrow-Derived Mesenchymal Stem/Stromal Cells; IFN-γ: Interferon-γ.

porated into Ch/γ-PGA PEMs and IFN-γ-PEMs were capable of counteracting human M2 macrophage phenotype while decreasing 
human cancer cell invasion, pointing the potential of this therapeutic strategy to target macrophages at the tumor site and ham-
per their cooperation in cancer cell-related activities such as invasion [303].

PEC of different polymers can be proposed, such as poly(Styrenesulfonate) (PSS) and poly(Allylamine Hydrochloride) (PAH), 
two synthetic polymers initially studied by Decher et al. [213] and one of the most widely studied PE pairs, namely to further analyze 
PEM formation [304-307]. Nevertheless, studies with natural polymers have been preferred for biomolecules delivery and regenera-
tive medicine, since biological recognition allows the PEs to become bioactive and biodegradable [19,58,308,309]. Within natural poly-
mers, focus has been given to Ch, collagen, hyaluronic acid and chondroitin sulfate [221,231,310,311], mostly to act as ECM or potential 
ECM analogues. For example, the work of Thierry et al. [74] with Ch and hyaluronic acid as PE counterparts to release nitric-oxide-
donor sodium nitroprusside: loaded PEMs reduced platelet adhesion and enhanced thromboresistance, while promoted the anti-
inflammatory and wound healing properties of both PEs. Moreover, with the long-lasting delivery of matrix-bound recombinant hu-
man bone morphogenetic protein 2 (rhBMP-2) [310], PEMs could further assist tissue-engineered constructs or metallic biomaterial 
surfaces, to promote tissue formation or implant integration within the native tissue.

PE Self-Assembly into Patterned Surfaces

As aforementioned, electrostatic interactions can be used to direct the patterning of surfaces through selective electro-
static attachment [233]. This can be achieved by generating charged surface patterns at different substrates based on different 
lithographic methods, followed by adsorption from solution of molecules carrying the opposite charge [41,233,312-314]. As illustrated in 
Figure 3, charged gold particles can selectively attach to regions presenting the opposite charge, when stirred in suspension with 
a surface patterned with charged self-assembled monolayers (SAMs). Electroplating gold into cavities of patterned photoresist, 
releasing the gold into ethanol, and modifying the surfaces with charged alkanethiols, can create charged gold particles with well-
defined shapes; various sizes and shapes can be tailored by altering the photoresist pattern [233].

Micropatterning with PEMs can be used to build biosensors, which can be used for immunoassays, drug screening, and tis-
sue engineering (TE) [299]. On the other hand, research on PE micropatterning alone has been directed to produce nanostructured 
coatings with complex patterns or guide area-selective patterned assembly, with uses mostly found within flexible transistors, 
sensing elements, integrated circuits, antennas, as well as biomedical implants and other devices [41].

PE Self-Assembly into Small-Scaled Particles

PEs can also spontaneously self-assemble in the form of small-scaled particles, namely at the nanometer scale with a size 
ranging from 1 to 1000 nm [315-317], by direct mixture of polycation and polyanion aqueous solutions [172,255,318,319].

The process of PEC formation of nanoparticles can also be influenced by several parameters. In what concerns PE counter-
parts, PE type, Mw and charge density, have to be defined first. Then, media parameters such as concentration of PE solutions, 
mixing ratio of charged units, salt concentration, pH, temperature and volume of all solutions, must be selected. Finally, while 
preparing the nanoparticles, the order of PE addition (polyanion to polycation, or vice-versa) as well as questions related to the 
mixing procedure (mixing type, protocol and device) should be taken into consideration (although typically PE solutions are mixed 
with a magnetic stirrer at a fixed velocity) [240,318,319]. Environmental conditions, such as temperature and humidity of the surround-
ing air, are also probable influences in the assembly [256,267,270].
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PEC formation into nanoparticles is usually determined by a fast kinetics (values as low as 5 μs have been described) [255,318], 
including the initial diffusion stage of mutual entanglement between polymers under release of counterions, formation of primary 
particles, and the further stage of their aggregation and rearrangement of the already formed aggregates [238,255,318]. This process 
is illustrated in Figure 5.

 

Figure 5. Simplified schematic representation of the process involved in the formation of PEC nanoparticles (a) Representation of the PEs used 
in the assembly: Ch as a polycation and γ-PGA as a polyanion. (b) Formation of primary complexes comprising a few self-assembled PEs. (c) 
Formation of secondary complex particles, with a typical core/shell structure, in which the shell contains an excess of one of the PEs. Figure 
adapted from [320].

After the mixture of the PEs, the dispersion mostly consists of three components: (i) small soluble primary complexes 
comprising a few polycations and polyanions, (ii) dispersed colloidal particles of aggregated primary complexes (secondary com-
plexes), and (iii) larger insoluble precipitated particles. The former typically exhibit sizes of a few nanometers, the second exhibit 
sizes of 20-500 nm, and the latter exhibit sizes of 0.1-1 mm. The secondary complex particles (case ii) are the ones with most 
interest to a clinical setting. They typically form a core/shell structure, according to which a 1:1 charge stoichiometry prevails in 
the particle core, and in the shell the excess PE component is located, giving the particle the defined charge sign [254,319-321]. Even if 
the stoichiometry of the charged units is 1:1, the major component may be bound in excess [255]. They can have spherical, rod-like, 
or toroid shapes, and a loose gel-like up to compact internal structure [319].

The attachment of a PEC colloidal particle is mainly caused by the strong electrostatic interactions between the PE assem-
bling units, whereby the gain in entropy due to the release of low molecular counterions has a major role [255,316,322-324]. Moreover, 
as for any colloidal particle, a decrease in interfacial energy is critical for its formation [324]. Repulsive forces (Figure 2) are also 
commonly present and may assist in the stabilization of PEC structures. Other attractive forces may additionally take part in the 
assembly process [255,318].

As for PEMs, PEC formation into nanoparticles is a simple and versatile process, which uses mild conditions, and allows the 
incorporation of other molecules (drugs, genes, proteins, vaccines, or diagnostic agents) within their structure [47,318,319,325-327]. Con-
trol over size, shape and surface chemistry is also a possibility [319]. However, the use of PEC nanoparticles present some advan-
tages over PEM films as: i) absence of substrate restrictions [328]; ii) high surface/volume ratio [321]: small enough to pass through 
biological barriers [327], internalize into target cells [4] and influence a number of cellular processes [329-331]. Current limitations of 
PEC nanoparticles include difficulties in the reproducibility of the preparation protocol, size and shape uniformity, conservation of 
colloidal stability after binding of compounds and interaction with surfaces [240,321].

A higher control over all parameters influencing PEC assembly into nanoparticles is the most described strategy to overcome 
all limitations [238,240,332-335]. Post-treatment of the dispersions can be applied as well. A known example comprehends consecutive 
centrifugation, separation and re-dispersion steps of the coacervate phase, which can increase the monomodality of the com-
plexes [214,319,336]: the initial raw dispersion can be centrifuged, the supernatant discarded and the formed coacervate phase of the 
serum dissolved again to the original volume. The latter is able to increase the amount of secondary complex particles and reduce 
the polydispersity of the dispersion. Other authors [323,337] filtered the raw dispersions, aiming at the removal of larger aggregate 
particles and collection of smaller particles towards a lower dispersion of particle sizes [319]. The interaction with surfaces can also 
be improved by adding molecules specifically to that effect. In the work of Hadju et al. [338], folic acid was covalently attached to 
γ-PGA, Ch/γ-PGA PEC nanoparticles were prepared, and were then able to target folate receptors overexpressed in tumor cells. 
Loaded with the magnetic resonance imaging (MRI) metal, gadolinium, the nanoparticles showed an increased efficiency as MRI 
contrast agents. A resume of the main applications of Ch/γ-PGA nanoparticles is described in Table 3. As small-scaled particles, 
Ch/γ-PGA PEC nanoparticles have already been studied as a diclofenac-delivery system and were shown to reduce human mac-
rophage activation in vitro [339]. An increased protection from immune surveillance was also shown by Moon and colleagues using 
Ch/γ-PGA PEC nanoparticles [340]: intranasal administration of recombinant influenza hemagglutinin antigen, or inactivated virus, 
loaded into Ch/γ-PGA nanoparticles protected mice against the highly pathogenic influenza A H5N1 virus. The safety of γ-PGA was 
highlighted in addition to its potential to be used as a vaccine adjuvant, not only against influenza, but also against other viruses.
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Table 3.Ch/γ-PGA PECs in regenerative medicine: small-scaled particles.

Ch/γ-PGA PECs in small-scaled particles
Ch γ-PGA Molecule 

incorporated In vitro In vivo Main achievements Ref.
Mw (KDa) DA (%) Mw (KDa)

20 15 - Lansoprazole - - First description of Ch/γ-PGA 
microparticle preparation [143]

400 ≤10 1230
Antimicrobial 

peptides LL-37 and 
NO

- -
First description of Ch/γ-PGA 

microparticles as multifunctional 
carriers for LL-37 and NO

[144]

50 15 160 - Caco-2 cell line - Intestinal delivery systems [139]

80 15 60 Insulin Caco-2 cell line Diabetic male Wistar 
rats. Oral intake. Oral insulin delivery [13]

15 - >2000 rHA antigen or 
inactivated virus -

Female BALB/c 
mice, seronegative 

for influenza A virus. 
Intranasal vaccination

Intranasal mucosal adjuvant for 
influenza A vaccine [340]

320 12 1200 - - -
First PEC nanoparticle 

preparation with pH adjustment 
before self-assembly

[128]

320 12 1200 Gadolinium HeLa cell line 
CD1 female nude 

mice. MRI imaging in 
tumor-bearing mice. 

Injectable MRI-targeting contrast 
agents for early cancer detection [338]

Low - - Doxorubicin HN-5a cell line - No cytotoxicity [6]

324 11 10-50 - Primary human 
macrophages - No cytotoxicity [38]

324 10 10-50 Diclofenac Primary human 
macrophages - Suppress local inflammation [339]

60 15 100 DTPA -

Wistar rats. 
Study absorption 

enhancements, after 
in situ intestinal 

closed-loop technique 

Injectable treatment to improve 
insulin absorption [341]

80 15 20 siRNA HT1080 cell line - Cell transfection [9]

600 20 1000 FITC-labeled 
dextran - -

First PEM nanocapsule 
preparation. Delivery systems in 

acidic environments
[129]

10 10 200-500 Insulin L929 cell line -
PEM nanocapsules. 

Cytocompatible. Glucose-triggered 
insulin delivery

[342]

*NO: Nitric Oxide; Caco-2: Human Epithelial Colorectal Adenocarcinoma; rHA: Recombinant Influenza Hemagglutinin; HeLa: Human Cervical 
Carcinoma; MRI: Magnetic Resonance Imaging; HN-5a: Human Oral Squamous Cell Carcinoma; DTPA: Diethylene Triamine Pentaacetic Acid; 
siRNA: Small Interfering Ribonucleic Acid; HT1080: Human Fibrosarcoma; FITC: fluorescein Isothiocyanate; L929: Mouse Fibroblast.

PE Self-Assembly into PEM Nanocapsules

PEM nanocapsules is another spherical architecture at the nanoscale that has been actively studied in the field [3,129,230,341-

343]. Colloid-templated electrostatic LbL self-assembly starts with the selection of a colloidal particle template such as silica or 
polysterene latex particles. Anionic PEs can subsequently adsorb to the charge particles and initiate the LbL self-assembly pro-
cess, as thoroughly described in section 3.2. Hollow nanocapsules can be obtained after removal of the core particles through 
their dissolution or decomposition [230].

The process of PEM nanocapsule formation combines the advantages of both PEM films along with the benefits of a spheri-
cal shape at the nano-scale, leading to increased control over their size and membrane thickness, in comparison to PEC nanopar-
ticles alone [5,129,344].

The low toxicity, ability to incorporate different molecules, increase load efficiency and stability, control load release and the 
small size and shape of PEC nanoparticles are giving added value as contrast agents in biomedical imaging, signaling molecules 
that enhance diagnostic ability, carriers for drug/gene/protein/polynucleotide delivery, and themselves as therapeutic elements 
[316,319,327,345]. PEM nanocapsules are promising candidates for more complex tasks of storage, encapsulation and release [5]. 
Main reasons comprise the ability to readily tailor their properties, namely their size, membrane thickness, composition, surface 
functionality, permeability, and colloidal stability [5,129,344]. Moreover, the stepwise formation of the PEM nanocapsules allows the 
introduction of multiple functionalities [344], similarly as previously described for the PEM films.
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PECs in 3D Hydrogels

During complexation, PEs can either coacervate, or form a more or less compact hydrogel: macromolecular networks swollen 
in water or biological fluids [1]. These hydrophilic polymer networks have a high affinity for water, thus high water content [48,346], but 
are prevented from dissolving due to their physically crosslinked network. As such, water or biological fluids infiltrate the polymer 
chains of the polymer network, leading to swelling and the formation of a hydrogel [1,346].

After the pioneering work of Wichterle and Lim in 1960 about crosslinked 2-Hydroxyl Methacrylate (HEMA) hydrogels [347], 
and knowledge of their hydrophilic character and potential to be biocompatible, hydrogels are a thriving research field [2,348,349]. 
Hydrogels can assume different shapes and reach macroscopic dimensions, depending of the processing methodology employed 
[1,349,350]. In particular, the formation of 3D PEC hydrogels combines the features of PEs in aqueous solutions with processing meth-
odologies at the macroscale, namely self-assembled gels [351-353], porous scaffolds [7,10,354], microfibers [212,355], or nanofibers [356,357].

The spontaneous gelation into 3D porous PEC scaffolds is one of the most common methodologies actually studied in the 
field. Main steps of the processing methodology are represented in Figure 6.

 

Figure 6. Simplified schematic representation of the process involved in the formation of 3D porous PEC scaffolds. Representation of the PEs 
used in the assembly: Ch as a polycation and γ-PGA as a polyanion. (b) Figure adapted from [2,71,349].

Formation of 3D porous PEC scaffolds typically starts by blending PE solution with the powder of its PE counterpart to obtain 
homogeneous dispersion of the latter component. Dissolution and pH adjustment is followed. Spontaneously, charges are mixed 
at the pH-range of interaction and gel formation occurs [7,10,349,354]. Water-filled ‘voids’ or ‘macropores’ can also be formed [349]. 
Subsequently, the mixture can be cast into shape-forming molds [358], followed by freeze-drying [7,10,354]. pH-responsive 3D porous 
scaffolds are ergo obtained, structures able to respond to perturbations in the environmental pH through swelling/deswelling, as 
water is either absorbed or expelled from the hydrogel network [2].

Factors common to all PEC self-assemblies also apply to 3D porous PEC scaffolds, with the main consequence being the 
degree of PE interaction. Within these structures, global charge densities, PE concentration and relative proportion in the PEC, 
pH, temperature, ionic strength and order of mixing are the main studied parameters, together with parameters specific of each 
particular PE [1,349]. Moreover, physical hydrogels such as these are typically reversible and it is possible to dissolve them by chang-
ing environmental conditions such as pH and the ionic strength of solution [2,349].

PECs in 3D present some advantages as: i) no need to remove residues of toxic crosslinkers; ii) reversible sol-gel transitions 
with high sensitivity under mild conditions; iii) convenient incorporation of multiple properties to introduce heterogeneity for host-
ing hydrophobic drugs [48]. However, we cannot exclude that hydrogels in general tend to possess low mechanical strength, posing 
significant difficulties in handling, and their sterilization can also be challenging [349].

With 3D porous PEC scaffolds, the control of all parameters influencing their formation, working in consonance to reach the 
final PEC structure, remains an additional difficult task. However, preparing PECs under reproducible conditions is one strategy 
that is being attempted. For instance, and as aforementioned in the description of the processing methodology, PE solutions can 
be mixed at a pH value where complexation does not occur in order to obtain a homogeneous mixture. Only then the pH of the 
solution can be adjusted to the intended value, thereby promoting the electrostatic interaction [1]. The latter strategy has been 
found within PEC formation at the macroscale [7,10,354]. Still, physical hydrogels can be heterogeneous, due to clusters of molecular 
entanglements, or hydrophobically- or ionically-associated domains, which can create inhomogeneities. Free chain ends or chain 
loops also are also included in the transient network defects of physical gels such as these [349].

pH-sensitive hydrogels based on PEs have additionally been designed to possess precise responsiveness by exploiting the 
wide pH range of different sites of the human body in order to achieve controlled site-specific biomolecules delivery. PECs pH-re-
sponsive hydrogels can be applied in the biomedical field as delivery systems, cell encapsulation, tissue regeneration and wound 
dressing (within specific applications with low mechanical demands) (Table 4) [1,2,48,348,349]. Hydrogel swelling and release profiles 
can be modulated by tailoring processing parameters [1].
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Table 4. Ch/γ-PGA PECs in regenerative medicine: 3D structures.

Ch/γ-PGA PECs in 3D
 Ch γ-PGA Molecule 

incorporated In vitro In vivo Main achievements Ref.
Mw (KDa) DA (%) Mw (KDa)

400 10 2000 - ROS cells - First Ch/γ-PGA 3D PECs. 
Cytocompatible [7]

400 15 - - NHDF cell line - No cytotoxicity [8]

30 and 
300 3 1250 - NIH3T3 cell line - No cytotoxicity. Promotion 

of cell proliferation [10]

300 3 1250 - -
ICR male mice. 

Observation of wound 
closure.

Wound dressing material, 
with adequate moisture 
and increased healing 

capacity

[12]

300 2-3 1250 - -

Male Wistar rat. 
Evaluation of socket 

healing following tooth 
extraction

New bone formation in the 
alveolar socket following 

tooth extraction
[11]

*3D: Three-Dimensional; ROS: Rat Osteosarcoma; NHDF: Human Normal Human Dermal Fibroblasts.

As PEC hydrogels, Ch and γ-PGA have been shown to be cytocompatible towards fibroblasts and promote cell proliferation [10], 
improve wound closure rate and wound healing in vivo in mice [12] and promote an earlier and increased bone tissue formation in 
the alveolar socket following tooth extraction in rats [11]. Interestingly, Chang and colleagues [11] observed a decrease of inflamma-
tory cells presence in the sockets of PEC-treated groups in their histological findings. Moreover, PEC hydrogels led to a larger pres-
ence of mineralized tissue, exhibiting significantly earlier as well as greater amounts of new bone formation than treatment with 
Ch alone. This fact was also attributed to the presence of γ-PGA in the treatment performed. Another possible explanation to this 
outcome is the possible activation of the glutamatergic signaling, which is functional in bone and results in increased bone forma-
tion [35,359]. It is expected that γ-PGA might be consumed/degraded, thus generating a glutamate pool able to activate glutamate 
signaling pathway [359], as glutamic acid-rich sequences are involved in the nucleation of hydroxiapatite by bone sialoproteins [360].

CONCLUSION
In conclusion, Ch/γ-PGA PECs can be useful for numerous applications. Their cytocompatibility, their immunomodulatory ca-

pacity [302,303,339], their stimuli responsiveness [128,129], the ability to control their hydrophilicity and swelling ratio [8,129], together with 
their versatility to be used as vehicles for drugs, genes, vaccines, enzymes and/or other biomaterials [9,129,144,340] and furthermore 
promote new tissue formation [11,12] are strong aspects that Ch/γ-PGA PECs have a role in restoring tissue homeostasis.

In truth, PEMs can be successfully produced with many PEs, either biostable or degradable/biodegradable, synthetically 
produced or biologically derived. But Ch/γ-PGA PECs importance in the regenerative medicine field can have a particular impact. 
For example, these PECs appear to play a significant role in cartilage tissue, as γ-PGA revealed to promote chondrogenic ECM by 
hMSCs [164] and enhance type II collagen deposition in an injury model of intervertebral disc [361]. Moreover, γ-PGA-based PECs in 
proper forms like films, particles, capsules and scaffolds can be used as carriers of different biomolecules to several purposes: 
SDF-1 [302] to recruit hMSCs, IFN-γ [303] to polarize macrophages, diclofenac [339] to control inflammation, gadolinium [338] to detect 
carcinogenic features; recombinant antigens or inactivated viruses [340] for vaccines; small interfering ribonucleic acid (siRNA) [9] 
to increase cell uptake and biological effect; insulin [13] or Diethylene Triamine Pentaacid Acid (DTPA) [341] to increase insulin bodily 
levels. The non-immunogenic feature of γ-PGA has been opening new perspectives on their use as immunoadjuvant in vaccines 
and is expected to increase in the field of immunotherapy.

Still, the control of all parameters influencing PEC formation, working in consonance to reach the final PEC structure, to-
gether with a high-throughput method of fabricating different structures remain the main drawbacks to the widespread use of 
PECs. Preparing PECs in a high-throughput manner, under reproducible conditions is one the main challenges to be pursuit in the 
near future. The control of all the different parameters that are known to influence PEC formation is essential to keep reproduc-
ibility among different PEC batches and will require a synergy between different expertise and knowledge fields, from chemistry 
to robotics, to physics, to nanotechnology, to biomaterials engineering, to fundamental biology, among others. Only through the 
combination of the different areas, a real effective and standardized method of producing Ch/γ-PGA PEC can be reached and 
widespread their use within tissue engineering and regenerative medicine approaches.
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