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ABSTRACT 

 

 The convergence behavior of the Least Squares Constant Modulus 

Algorithm in an adaptive beam forming application is examined. It is assumed 

that the desired signal and the interference are uncorrelated. The improvement 

in output SIR with each iteration of the algorithm is predicted for several 

different signal environments. Deterministic results are presented for an 

environment containing two complex sinusoids. Probabilistic results are 

presented for a constant modulus desired signal with a constant modulus 

interferer and with a Gaussian interferer. The asymptotic improvement in output 

SIR as the output SIR becomes high is also derived. The results of Monte Carlo 

simulations using sinusoidal, FM, and QPSK signals are included to support the 

derivations. 

 

 
 

INTRODUCTION 

 

 The first CMA to be proposed was based on a Stochastic Gradient Descent (SGD) form [1]. The main drawback of this 

method is its slow convergence. A faster converging CMA similar in form to the Recursive Least Squares method is the 

orthogonal zed CMA [5]. Another fast converging CMA is the Least Squares CMA (LSCMA) [1,2,3,4], which is a block-update 

iterative algorithm. It is guaranteed to be stable and is easily implemented.  Despite the generally accepted use of the LSCMA, 

few analytical results on its convergence have appeared in the open literature. The performance of the algorithm has instead 

been demonstrated through Monte Carlo simulation. The lack of analytical results is due to the difficulty of analyzing the non-

linear CMA cost function. Existing work on the convergence behavior of CMA mostly deals with finding minima of the CMA cost 

function and finding undesirable stable equilibrium  in equalization applications. A notable exception is the work by Treichler 

and Larimore on convergence of SGD CMA in an environment containing two complex sinusoids [6,7]. Their work predicts the 

output power of each sinusoid in a temporal filtering application. The Analytic CMA (ACMA) algorithm presented by van der 

Veen in [8] should also be noted. This algorithm solves directly for a set of beam former weight vectors that spatially separate a 

set of CM signals. The ACMA, although effective in many situations, is fairly complex and its behavior with closely spaced 

and/or low SNR signals is not clear. For these reasons it is recommended in [8] that the ACMA be used to initialize the LSCMA, 

and that several iterations of the LSCMA be used to find the optimal solutions for the weight vectors. In this paper we 

determine the convergence rate of the LSCMA in some simple environments, including: (1) high output SIR; (2) sinusoidal 

desired signal and sinusoidal interferer; (3) CM desired signal and CM interferer; (4) CM desired signal and Gaussian interferer. 

We assume that the interference is uncorrelated with the desired signal. The convergence rate is expressed in terms of the SIR 

improvement achieved with one iteration of the LSCMA. We first examine the situation where the LSCMA output SIR is high We 

show that if the interference is perfectly removable, each LSCMA iteration will increase the output SIR by approximately 6 dB. 

This result is valid for any CM desired signal (arbitrary angle modulation), and any uncorrelated interference. We next examine 
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an environment containing two complex sinusoids, and show that the LSCMA output SIR can be predicted for each iteration. 

 The results are analogous to those presented in [8,9,10]. An environment containing two CM signals, each having 

random phase, is then considered. It is shown that the average behavior of the LSCMA in this environment is similar to the 

deterministic behavior in the two-sinusoid environment. Finally, an environment containing a CM desired signal and Gaussian 

interference is examined.  

 

Analysis Frameworks 

 

 In this section we describe the general framework used to analyze the LSCMA. A key assumption is that the 

interference is uncorrelated with the desired signal. We essentially describe a simple way to measure the quality of the 

pseudo-training signal, d(n). If no background noise is present, the quality of the beamformer output y( n) will be identical to 

the quality of d(n). When background noise is present, the quality of y(n) is dependent on the quality of d( n) and the optimal 

output SINR. The optimal output SINR is in turn dependent on many factors, including the array geometry, the number of 

antennas, the number of incident signals, and the angle of arrival of each signal. The beamformer output signal at the kth 

iteration can be expressed, to within a multiplicative constant, as  

 

𝑦𝑘 𝑛 = 𝑊𝑘
𝐻 𝑛 = 𝑠 𝑛 + 𝑔𝑧(𝑛)     (1) 

 

 where s( n) is the constant modulus desired signal, z( n) is noise and interference, and the SINR of the beamformer 

output is controlled by g. Both the desired signal s(n) and the interference z( n) have unit variance. The hard-limiter output dk( n) 

will contain three components: (1) one component which is correlated with the desired signal; (2) one component which is 

correlated with the interference; and (3), one component which is correlated with neither the signal nor the interference. This 

last component is the result of intermodulation. Between the signal and the interference. We can express the hard-limiter 

output as 

 

𝑑𝑘(n)=
𝑦𝑘(𝑛)

|𝑦𝑘 𝑛 |
=∝ 𝑠 𝑛 + 𝛽𝑧 𝑛 + 𝜀(𝑛)       (2) 

 

 Where the scalars ∝  and 𝛽  control the desired signal power and the interference power, respectively, and 𝜀(𝑛)  

contains the intermodulation terms. We will now examine the relationship between the SINR in dk (n) and the SINR in the up-

dated beam former output 𝑦𝑘+1. We initially assume that no background noise is present, and that the array has sufficient 

degrees of freedom to completely remove the interference. Given these assumptions, the optimal beam former output SINR is 

infinite. These assumptions are clearly not realistic, but this helps provide insight into the behavior of the LSCMA. As the 

block size N→∞, the updated weight vector 𝑊𝑘+1minimizes the MSE between 𝑦𝑘+1(n) and 𝑑𝑘 𝑛 , 

 

lim𝑛→∞
1

𝑁
 |𝑦𝑘+1 𝑛 −𝑑𝑘(𝑛)|2𝑁−1

𝑛=0 =𝜀{|𝑦𝑘+1(𝑛)−𝑑𝑘(𝑛)|2}     (3) 

 

 We can express the updated beamformer output as  

 

𝑦𝑘+1 𝑛 = 𝑊𝑘+1
𝐻 𝑥 𝑛 = 𝛼′𝑠 𝑛 + 𝛽′𝑧(𝑛)                           (4) 

 

 Which, together with (12), allows the MSE to be written as   

 

𝜀{|𝑦𝑘+1(𝑛)−𝑑𝑘(𝑛)|2} =𝜀{| 𝛼′−𝛼 𝑠 𝑛 +  𝛽′−𝛽 𝑧 𝑛 − 𝜉(𝑛)|2}  (5) 

 

= 𝛼′ −𝛼 
2
𝜍𝑠

2 + |𝛽′−𝛽|2𝜍𝑧
2         (6) 

 

 where we have made use of the fact that s(n), z(n), and 𝜉 (n) are mutually uncorrelated. Clearly the MSE is minimized for 

𝛼′ = 𝛼, 𝛽′ =𝛽. This implies that the signal component in the updated beamformer output will match the magnitude and phase 

of the signal component in the hard-limiter output. Thus the MSE between𝑑𝑘(𝑛) and the updated beamformer output𝑦𝑘+1(𝑛) is 

minimized when 

 

𝑦𝑘+1 𝑛 = 𝑊𝑘+1
𝐻 𝑥 𝑛 = 𝛼𝑠 𝑛 + 𝛽𝑧(𝑛)                (7) 

 

 In order to find 𝛼 and𝛽, we calculate the cross-correlation of s(n) and z(n), respectively, with d(n). Note that  
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𝑅𝑠𝑑 ≜ 𝜀{𝑠(𝑛)𝑑∗(𝑛)}            (8) 

=𝜀{𝑠(𝑛)(𝛼𝑠 𝑛 + 𝛽𝑧 𝑛 + 𝜉(𝑛))}      (9) 

 

=𝛼∗                                    (10) 

 

 Similarly we have 

 

𝑅𝑠𝑑 ≜ 𝜀 𝑠 𝑛 𝑑∗ 𝑛  = 𝛽∗            (11) 

 

 The SINR 𝜌 in the hard-limiter output dk is 

 

𝜌 𝑑𝑘 =
|𝛼 |2

|𝛽 |2 =  
|𝑅𝑠𝑑 |2

|𝑅𝑧𝑑 |2                     (12) 

                  

 Since, we model s( n) and z( n) as having unit variance. Thus, the output SIR of the updated LSCMA weight vector can be 

determined from Rsd and Rzd. This requires that the probability density function (PDF) of the signal and the interference be 

known. To further illustrate the concepts behind this analysis framework, we will apply the LSCMA to a simple environment 

containing two uncorrelated complex sinusoids. The array configuration consists of two antennas, with the interelement spacing equal to 

𝜆/2, where 𝜆 is the carrier wavelength. One sinusoid, with a frequency of 5/1024, is incident from broadside to the array, which we define 

as 0°. This sinusoid is treated as the desired signal. The second sinusoid, with a frequency of -31/1024, is incident from 30°. This 

sinusoid is treated as the interfering signal. The amplitude of the first sinusoid is unity, and the amplitude of the second sinusoid is 0.9. 

The LSCMA is applied to this environment with the initial weight vector Wo = [ 1 0]. Thus the initial SIR is approximately -0.9 dB. The 

LSCMA block size N is set to 1024 samples. The periodogram of the initial beamformer output yo(n) is shown in Figure 1. The next step in 

the LSCMA is to hard-limit the beamformer output. The periodogram of the hard-limited beamformer output is shown in Figure 2. Note 

that the original sinusoidal frequencies are still present, along with intermodulation products. Also note that the relative amplitude of the 

desired sinusoid is now slightly higher relative to the interfering sinusoid. The exact change in relative amplitude is calculated later in 

Subsection 3.2. The next step in the LSCMA is to update the weight vector using the hard-limiter output in the same manner as a training 

signal. Figure 3 shows the periodogram of the updated beamformer output. As discussed earlier, the amplitude of each sinusoid in the 

updated beamformer output matches the amplitude of the corresponding sinusoids in the hard-limiter output. The intermodulation 

products are orthogonal to the signals present in the array data, and so have no effect on the weight update. It can be seen that the SIR in 

the updated beamformer output is approximately 3 dB higher than the initial SIR. 

 

 

Figure 1: Periodogram of the initial beamformer output for the simple two-sinusoid environment. The initial SIR of 0.9 dB is 

indicated by the dotted horizontal lines. 
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Figure2: Periodogram of the hard-limited beamformer output for the simple two-sinusoid environment. The SIR of 3.09 dB is 

indicated by the dotted horizontal line. Note that the calculation of SIR does not take into account the intermodulation terms. 

 

 We now derive an expression for the output SINR of the updated LSCMA weight vector when background noise is 

present. This will be shown to be dependent only on the optimal output SINR, the initial SINR, and the SINR gain provided by the 

hard limit non-linearity. The observed data is modeled as 

 

Figure 3: Periodogram of the updated beamformer output for the simple two-sinusoid environment. The SIR of 3.09 dB is 

identical to the SIR in the hard-limiter outputs. 

 

 When background noise is present the interference and noise cannot be completely removed by beam forming. 

Independent thermal noise generated by each of the M receivers required for the M antennas in the array is a common source of 

background noise. The relationship between the SINR in 𝑑𝑘 (𝑛)and the updated LSCMA output SINR is then somewhat more 

complicated.We now derive an expression for the output SINR of the updated LSCMA weight vector when background noise is 

present. This will be shown to be dependent only on the optimal output SINR, the initial SINR, and the SINR gain provided by the 

hard limit non-linearity. The observed data is modeled as 

 

𝑥 𝑛 = 𝑎𝑠 𝑛 + 𝑞(𝑛)      (13) 

 

 Where a is the spatial signature of the desired signal and q( n) contains the noise and interference. We assume that Rqq is 

equal to the identity matrix. There is no loss of generality since whitening the data has no effect on the LSCMA. The cross-

correlation vector Rxd is given by 

 

Rxd= 𝑐𝑎𝑎𝐻𝑊0 + 𝑊0                         (14) 

 

 where 𝑊0  is the initial weight vector, and c is the square root of the SINR gain, with  

 

c≜
𝛼

𝛽 𝜌𝑘
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 The covariance matrix of the data is 

 

𝑅𝑥𝑥 = 𝑎𝑎𝐻 + 𝐼          (15) 

 

 By the matrix inversion lemma 

 

𝑅𝑥𝑥
−1 = 𝐼 −

𝑎𝑎𝐻

1+𝜌
           (16) 

 

 where p is the optimal output SINR . The updated weight vector 𝑤𝑘+1is 

 

𝑤𝑘+1 = 𝑅𝑥𝑥
−1𝑟𝑥𝑑              (17) 

 

= ( 𝐼 −
𝑎𝑎𝐻

1+𝜌
)( 𝑐𝑎𝑎𝐻𝑊0 + 𝑊0) (18) 

 

= (
𝑐−1

1+𝜌
𝑎𝑎𝐻 + 𝐼)𝑊0 (19) 

 

 The output SINR of the updated weight vector is  

 

𝑆𝐼𝑁𝑅𝑘+1 =
|𝑎𝐻𝑊1 |2

𝑊1
𝐻𝑊1

             (20) 

 

=
{𝜌 

𝑐−1

1+𝜌
 +1}2|𝑎𝐻𝑊0 |2

𝜌(
𝑐−1

1+𝜌
)2|𝑎𝐻𝑊0 |2+2 

𝑐−1

1+𝜌
 |𝑎𝐻𝑊0 |2+𝑊0

𝐻𝑊0
      (21) 

 

 Since the initial SINR 𝜌0is 

 

𝜌0 =
|𝑎𝐻𝑊0|2

𝑊0
𝐻𝑊0

         (22) 

 

 the output SINR of the updated LSCMA weight vector can be written 

 

𝑆𝐼𝑁𝑅𝑘+1 =
{𝜌 

𝑐−1

1+𝜌
 +1}2𝜌0

𝜌𝜌0(
𝑐−1

1+𝜌
)2+2𝜌0 

𝑐−1

1+𝜌
 +1

     (23) 

 

 We argued earlier that the output SINR of the updated LSCMA beamformer is equal to the SINR in the hard limited 

signal dk ( n) if no background noise is present. It is straightforward to show that  

 

lim𝜌→∞ 𝑆𝐼𝑁𝑅𝑘+1 = 𝑐2 𝜌𝑘 =
𝛼2

𝛽2
   (24) 

 

Which supports the argument made earlier. Also note that when c operation provides no gain, and 

  

𝑆𝐼𝑁𝑅𝑘+1|𝑐=1 = 𝜌𝑘  (25) 

 

 Here the output SINR of the updated weight vector equals the initial output SINR, as expected. In order for LSCMA to 

converge, the hard-limiter must emphasize the desired signal relative to the noise and interference. The effect of hard-limiting 

and other non-linear operations on communication signals and noise has been a topic of study since the 1950's, e.g., see 

[1,2,3,4,5] and references therein. A central motivation for this work is to understand the effect of non-linear amplifiers on 

communication signals, which are commonly used in satellite transponders. Non-linear processing has also been studied as a 

possible means for reducing the effects of noise and interference, e.g., [3,4]. These studies have clearly shown that hard-

limiting and filtering a constant envelope signal will increase the SNR, even when the intermodulation components are 

considered. In fact, for a constant envelope signal, the hard-limiter becomes the optimal nonlinearity as the SNR tends to 

infinity [7-10]. 
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Two Complex Sinusoid Environment 

 

 We now examine the behavior of the LSCMA in an environment where the antenna array receives two orthogonal 

complex sinusoids in the absence of background noise. We show that if the SIR at iteration k is known, the LSCMA output SIR 

can be predicted exactly for all later iterations. We also show that these results are a very good approximation with sinusoids 

having arbitrary, but well separated, frequencies. The results presented here are deterministic. Other results presented later 

examine the mean behavior of the LSCMA using a probabilistic framework. The beamformer output signal obtained with the 

existing LSCMA weight vector is modeled as 

 

𝑦 𝑛 = 𝑠 𝑛 + 𝑔𝑧 𝑛 = 𝑒𝑗 𝑤1𝑛 + 𝑔𝑒𝑗 𝑤2𝑛     (25) 

 

 where 𝑊𝑖  = 2𝜋𝑘𝑖/N for integer ki. The parameter 𝑔 determines the relative power of the sinusoids. In (43), s( n) and z( n) 

represent the desired signal and the interferer, respectively. The amplitude of the desired signal in y( n) is assumed to be unity, 

which has no effect on the behavior of the LSCMA. Temporal cross-correlation of the desired signal, s( n), and the hard-limiter 

output signal, d(n), is 

 

𝑅 𝑠𝑑 ≜< 𝑠(𝑛)𝑑∗(𝑛) >𝑁=<
1+𝑔𝑒 𝑗∆𝑛

|𝑦(𝑛)|
>𝑁           (26) 

 

 Where ∆≜ 𝑤1 −𝑤2. We note that since y is periodic, 1/ |𝑦| is also periodic and may therefore be expressed as a Fourier 

series. The period of 1/ |𝑦|is 2𝜋/ ∆. The function is real and even, so the Fourier series is given by  

 
1

|𝑦(𝑛)|
=

𝑎0

2
+  𝑎𝑘𝑐𝑜𝑠𝑘∆𝑛

∞
𝑘=1  (27) 

Where 

𝑎𝑘 =
2∆

𝜋
 

𝑐𝑜𝑠𝑘 ∆𝑛

 1+𝑔2+2𝑔𝑐𝑜𝑠 ∆𝑛

𝜋/∆

0
𝑑𝑛     (28) 

 

The Fourier coefficients given by (3.46) are independent of∆, which implies that the results to follow hold true for any 

frequencies 𝑊1 and𝑤2, if these frequencies lead to orthogonal sinusoids. Substituting (45) into (44) yields 

 

𝑅 𝑠𝑑 =<  1 + 𝑔𝑒𝑗 ∆𝑛 (
𝑎0

2
+  𝑎𝑘𝑐𝑜𝑠𝑘∆𝑛

∞

𝑘=1

) >𝑁 

=
𝑎0

2
+< 𝑔𝑒𝑗 ∆𝑛  𝑎𝑘𝑐𝑜𝑠𝑘∆𝑛

∞
𝑘=1 > 

 

=
𝑎0+𝑔𝑎1

2
           (29) 

 The Fourier coefficients 𝑎0 and 𝑎1 may be found using numerical integration. Using a similar approach for 𝑅 Zd  yields The 

output SIR of the hard-limiter is 

 

𝑆𝐼𝑅𝑜𝑢𝑡 =
|𝑅𝑠𝑑 |2

|𝑅𝑧𝑑 |2
= (

𝑎0+𝑔𝑎1

(𝑔𝑎0+𝑎1 )
)2       (30) 

 
𝑆𝐼𝑅𝑜𝑢𝑡

𝑆𝐼𝑅𝑖𝑛
= (

𝑎0+𝑔𝑎1

𝑔(𝑔𝑎0+𝑎1)
)2      (31) 

 

 and the SIR gain is 

 

 Figure4 shows the SIR gain (31) as a function of input SIR . Note that the SIR gain tends asymptotically to 6 dB as 

predicted by the high SIR analysis. 

 

 The results presented in Figure 4 are now used to predict the output SIR of the LSCMA in an environment containing a 

sinusoidal desired signal and a sinusoidal interferer. A two element beamformer is simulated with the inter-element spacing 

equal to one-half the carrier wavelength, A. The desired signal is incident from broadside with an amplitude of one, and the 

interferer is incident from 30° off broadside with an amplitude of 0.9. The initial LSCMA weight vector is set to [1 0]𝑇, so that 

the initial SIR ≅+0.9 dB. The block size is 1024 samples, with 𝑓1= 5/1024 and 𝑓2 = -31/1024. Table 1 compares the predicted results.  

 

 



            ISSN: 2320-2459 

RRJPAP | Volume 1 | Issue 2 | April – June, 2013                 30 

 

 

Figure 4: Improvement in SIR achieved by one iteration of LSCMA with sinusoidal desired signal and sinusoidal interferer. 

 

Figure 5: Amplitude of both complex sinusoids in the beamformer output as a function of the number of LSCMA iterations. 

Solid line indicates predicted amplitude, '+' indicates amplitude measured in simulation. 

 

 

 measured output SIR at several iterations of the algorithm, which shows excellent agreement with theory. These same 

results are presented in an alternative manner in Figure5. This figure shows the amplitude of each sinusoid as a function of 

the number of LSCMA iterations. A similar figure, showing the behavior of the SGD CMA in an environment with two 

sinusoids, appears in [10]. 

 

Table 1: Comparison of predicted and measured LSCMA output SIR in an environment containing two complex sinusoids. 

 

Iteration Output SIR (dB) SIR Gain 

 Measured Theory  

0 0.915 0.915 - 

1 3.097 3.095 2.181 

2 7.195 7.193 4.099 

3 12.554 12.552 5.358 

4 18.390 18.388 5.837 

5 24.363 24.361 5.973 

6 30.372 30.370 6.009 

7 36.389 36.387 6.018 

8 42.409 42.407 6.020 

 

CONCLUSIONS 

 

 We have examined the convergence behavior of the LSCMA in some simple environments. Algorithms such as Multi 

Target CMA, Multistage CMA, and Iterative Least Squares with Projection  can be used for this purpose. The results presented 
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here can form a basis for analysis of these multi-signal extraction techniques. Clearly the variance and distribution of output 

SINR obtained with the LSCMA is also an important area for investigation. We finally comment on the hard-limit non-linearity. 

For high SIR, the hard-limiter is the optimal non-linearity when the desired signal has a constant envelope. However, at low 

SIR other non-linearities can yield greater SIR gain. Thus it is possible that non-linear functions other than the hard-limit can 

be used to develop blind adaptive algorithms which converge faster for low initial SINR. 

 

REFERENCES 

  

1. TE Biedka, WH Tranter, JH Reed. Convergence analysis of the least squares constant modulus algorithm in interference 

cancellation applications. IEEE Trans on Commun. 2011;48(3):491-501. 

2. AL Swindlehurst, S Daas, J Yang. Analysis of a decision directed beamformer. IEEE Trans on Signal Processing. 

2005;43(12):2920-2927. 

3. S Reed, JD Mallett, LE Brennan. Rapid convergence rate in adaptive arrays. IEEE Trans Aerospace Electron Syst. 

2004;10:853-863. 

4. BG Agee. Convergent behavior of modulus-restoring adaptive arrays in gaussian interference environments. Proc of the 

Asilomar Conf on Signals Systems and Computers. 2008:818-822. 

5. J Lundell, B Widrow. Application of the constant modulus adaptive beamformer to constant and nonconstant modulus 

signals. Proc of the Asilomar Conf on Signals Systems and Computers. 2007:432-436. 

6. JR Treichler, BG Agee. A new approach to multipath correction of constant modulus signals. IEEE Trans on Acous Speech 

and Signal Process. 2003;2:459-471. 

7. R Gooch, J Lundell. The CM array: An adaptive beamformer for constant modulus signals. Proc of Inter Conf on Acous 

Speech and Signal Process. 2006:2523-2526. 

8. BG Agee. The least-squares CMA: A new technique for rapid correction of constant modulus signals. Proc of Inter Conf 

on Acous Speech and Signal Process. 2006:953-956. 

9. BG Agee. Maximum likelihood approaches to blind adaptive signal extraction using narrowband arrays. Proc of the 

Asilomar Conf on Signals Systems and Computers. 2011:716-720. 

10. Alle-Jan van der Veen, A Paulraj. An analytical constant modulus algorithm. IEEE Trans Signal Processing. 

2006;44(5):1136-1155.  


