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Abstract— Now-a-days every computing device is based on the Turing Machine. It is known that classical physics is sufficient to explain 

macroscopic phenomena, but is not to explain microscopic phenomena like the interference of electrons. In these days, speed-up and down-sizing of 
computing devices have been carried out using quantum physical effects; however, principles of computation on these devices are also based on 
classical physics. This paper tries to analyze mathematically a possibility that the Universal Quantum Turing Machine (UQTM) is able to compute 
faster than any other classical models of computation. Basically we focused on comparative study on computation power of Universal Turing 
Machine (UTM) and UQTM. Namely, in the equal, we tried to show that the UQTM can solve any NP-complete problem in polynomial time. The 
result analysis showed that UQTM is faster for any computation. 
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INTRODUCTION 

Quantum is a discrete quantity of energy proportional in 

magnitude to the frequency of the radiation it represents [1]. 

An analogous discrete amount of any other physical quantity, 

such as momentum or electric charge is known as Quantum 

[1,3]. Bit (Binary Digit) is the smallest unit of information 

within computer, the only thing that computer can understand 

Bit is basic unit of Classical Computer. Classical Computer 

only works binary values called Bits, each having a value 

usually denoted by 0 or 1. One of the most intuitive 
representation of bit is an open or closed  switch or by 

extension, and „on‟ or „off‟ portion of the circuit .In today‟s  

modern computer ,this representation  remains in transistors, 

with a high voltage possibly denoting a 1 and  low voltage 

possibly denoting a zero. A two state system (0 →1) is the 

building block of classical computational device. Quantum bit 

(Qubit) is a unit of quantum information. Qubit represents 

both the state memory and the state of entanglement in a 

system. Quantum entanglement is experimentally verified 

property of nature.  

 
Quantum Entanglement occurs when the particles such as 

electron, photon, molecules interacts physically and then 

become separated. This interaction is called entanglement. 

Quantum bit (Qubit) can exist in a superposition of states 

which can be represented as α|0>+β|1> where α, β represents 

complex number satisfying |α|2 +|β|2=1.Any state measurement 

results in |0> with probability |α|2 and |1> with probability 

|β|2.A n-Qubit system can exist in any superposition of the 2 

basis states. Quantum entanglement is a form of quantum 

superposition. A Quantum Computer also works with two 

Eigen values, a 0 and 1, but these units are termed as Qubit or 

Quantum Bits due to their non classical behavior. A Qubit can 
take any value i.e. linear combination of Qubit 0 or Qubit 1.  

 

Therefore while classical bits can take any value of north and 

south and any orientation would be illegal. A Quantum bits 

(Qubit) can take the value of northeast [2]. However upon 

measurement, only one of these values, north or south is read. 

To determine the coefficient of the linear combination of the 
relative portions of the amount read being north and south 

must be found out through repeated measurements of the 

original Qubit state. Only something that exhibit quantum 

phenomena that can be used to hold a Qubit. It is impossible 

for a simple on/off switch to hold a linear combination of on 

or off. On the other hand electron or nuclear spin and 

polarization state of photon make natural candidates. These 

quantum states either spin or polarization must also somehow 

be able to manipulate so that that value could be assigned to 

each bit [3]. Figure1 shows a binary transition of states 

incorporating physical phenomenon. 

 

Figure 1 Transition of states in an atom 

TURING MACHINE 

We are interested in designing an automaton (machine) that 

can solve our two objectives. (i)Recognizing (ii) Computation. 

A Turing Machine (TM) is a generalization of Pushdown 

Automata (PDA) a tape instead of a tape and stack. The 
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potential length of the tape is assumed to be infinite and 

divided into cells, and one cell hold one input symbol. The 

head of TM is capable to read as well as write on the tape and 

can move left or right or can remain static. Turing 

Machine(TM) is an abstract version of a computer; this has 

been used to define formally what is computable. The 

Church‟s Thesis [4] is supported the fact that a Turing 

Machine(TM) can stimulate the behavior of general purpose 

computer system. Alan Turing, an English mathematician in 

1936, suggests the concept of Turing Machine. Turing 

Machine accepts the language defined by the grammars that 
are called Type 1 languages or Recursively Enumerable 

languages. Turing Machine is idealized in that they have an 

infinite memory, which comes in the form of an “infinite tape” 

(infinite on both the sides). The idea is that this tape consists 

of cells each of which can take one symbol from some 

underlying alphabet Σ, and that there is a „read/write head‟ 

which moves over the tape one position at a time and can 

either read from or write to the tape. It is practical to assume 

that the input string is written on the tape (from left to right).  

 

When the machine starts the read/write head is positioned on 
the cell holding the first symbol of the input string. We further 

assume that the tape contains no further symbols that are all 

remaining cells are empty. In order to describe what the 

machine does (that is, under which circumstances it moves the 

head one position to the left or the right, or it reads from the 

tape, or writes to the tape) we need to have a notion of state, 

just as we had with the other automata. As before there is a 

specific start state, and this time we need an action stop to tell 

us when the machine has finished its computation. 

Abstract Model of a UTM: 

A Turing Machine (TM) consists of a finite control, which can 

be in any of a finite set of states. There is a tape divided into 

square or cells; each cell can hold any one of a finite number 

of symbols. Figure 2 shows a model of TM and its 

components. 

. 

Figure 2: Turing Machine Model 

Initially, the input, which is a finite-length string of symbols 

chosen from the input alphabet, is placed on the tape. All 

other tape cells, extending infinitely to the left and right, 

initially hold a special symbol called the blank. The blank is a 

tape symbol but not an input symbol, and there may be other 

tape symbols besides the input symbols and the blank, as well. 

There is a tape head symbol scanned. In one move, the Turing 

Machine will work as following steps. 

a. The next state optionally may be the same as the current 
state.   

b. Write a tape symbol in the cell scanned. This tape 

symbol replaces whatever symbol was in that cell. 

Optionally, the symbol written may be the same as the 

symbol currently there. 

c. Move the tape head left or right. In our formalism we 

require a move, and do not allow the head to head to 

remain stationary. This restriction does not constrain what 

a Turing Machine(TM) can compute, since any sequence 

of moves with a stationary head could be condensed, 

along with the next tape head could be condensed, along 

with the next tape Head move, into a single state change, 

a new tape symbol, and a move left or right. 

Mathematical Description of Turing Machine: 

Turing Machine has seven tuples and is defined as, 

M = (Q, Ʃ , Γ, δ, q0, B, F) 

Where, 

    Q = the finite set of state the finite control. 

    Ʃ  = the finite set of state the input symbols. 
    Γ = the complete set of tape symbols; Ʃ  is always a subset   

of Γ. 

    δ: The Transition Function. The arguments of δ(q, X) are a 

state q and a tape symbol X. The value of δ(q, X) ,if it is 

defined, is a triple(p, Y, D) where 

a. p is the next state in Q. 

b. Y is the symbol, in Γ, written in the cell being scanned, 

replacing whatever symbol was there. 

c. D is a direction, either L or R, standing for „left‟ or 'right' 

respectively, and telling us the direction in which the 

head moves. 

     q0 = a start State, a member of Q, in which the finite 
control is found initially. 

      B = blank symbol. 

      F = a set of final or accepting states, a subset of Q. 

 

Depending upon the number of moves in transition, a TM may 

be deterministic or non-deterministic. If TM has at most one 

move in transition, then it is called Deterministic Turing 

Machine (DTM). If one or more than one move is possible for 

single symbol then the TM is Nondeterministic (NDTM). 

Figure-3 shows a possible NDTM model where each state 

gives rise to more than one state for a single input symbol 
[4,5,6]. 

 

 

Figure 3: An abstract model of NDTM 

 

 A standard TM reads one cell of the tape and moves left or 

right one cell. The difference between TM and two way 

automatons is writing capability, not in the movement of the 

control head. 

The transition function δ is defined as δ(p, a) =(q, b, D), where 

P is present state; q is next state; a,b  Γ  and D is the 

movement (left or right).  
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a) After reading an input a  Γ. TM does the following 

thing. (i) Replace a by b and move right (R) as δ(p, a) =(q, 

b, R)  

b) Without writing move right (R) as δ(p, a) =(q, b, R)  

c) Replace a by b and move left(L) as δ(p, a) =(q, b, L)  

d) Without write, move left(L) as δ(p, a) =(q, a, L). 

Computational power of UTM: 

If c0 is the configuration in the starting state, with w on the 

tape and the tape head at the left end of the string, w is 

accepted if the computation c0 → c1 → · · · → cf eventually 

reaches an accepting state. If the length of the computation is 

bounded by a polynomial in the length of x, the language 

accepted by the machine is in P. The action of the Turing 

machine can equivalently be described as a linear operator M 

on an infinite-dimensional space. The set of configurations 

form a basis for the space. 
 

X1 q X2 is the instantaneous description or configuration of a 

TM which is in state q with X1 being the contents of the tape 

to the left of the read write head and X2 being the contents of 

the tape to the right of and including the current read write 

head tape position.       

Representation of Language L = {a
n
b

n
c

n
| n>=0} 

Transition state of the above language is given below.  

δ (q0,a)= (q1,x,R); 

δ (q1,a)= (q1,a,R); 

δ (q1,y)= (q1,y,R); 

δ (q1,z)= (q1,z,R); 
δ (q1,b)= (q2,y,R); 

δ (q2,b)= (q2,b,R); 

δ (q2,z)= (q2,z,R); 

δ (q2,c)= (q3,z,L); 

δ (q3,a)= (q3,a,L); 

δ (q3,y)= (q3,y,L); 

δ (q3,b)= (q3,b,L); 

δ (q3,z)= (q3,z,L); 

δ (q3,x)= (q0,x,R); 

δ (q0,y)= (q4,y,R); 

δ (q4,y)= (q4,y,R); 
δ (q4,z)= (q5,z,R); 

δ (q5,z)= (q5,z,R); 

δ (q5,$)= (q6,$,R); 

 

The transition diagram for the language L is given in Figure 4 

below. 

 

Figure 4: Transition diagram for L = {a
n
b

n
c

n
| n>=0} 

Probabilistic Machine: 

With a probabilistic machine, δ defines, for each current state 

and symbol, a probability distribution over the possible next 

moves. The action of the machine can be defines as an infinite 

matrix, where the rows and columns are configuration, and 
each column adds up to 1.However, how much information 

can be encoded in a single entry? We require the entries α to 

be feasibly computable. That is, there is a feasibly computable 

f such that: |f(n) − α| < 2
−n 

BPP: 

BPP is collection of languages L for which there is a 
probabilistic machine M, running in polynomial time with 

  
The class of languages is unchanged if we replace 2/3 and 1/3 

by 1- ϵ  and ϵ  for any error indeed the set of all feasibly 

computable probabilities with {0, 1/2, 1}. The only inclusion 

relations we know are P⊆NP and P⊆BPP. Primality testing, 

long known to be in BPP was recently shown to be in P. 

The Language Recognization and Turing Machine: 

TM can be used as a language recognizer. Turing Machine 

recognizes all the languages, CFL, CSL, and Type 0. A string 

W is written on the tape, with blanks filling out the unused 

portions. The machine enters a initial state q0, with the read 

write head position on the left most symbol of W. If after a 

sequence of moves, the Turing Machine enters the final state 

and halts, then w is considered to be accepted. A language is 

accepted by Turing Machine is known as Recursively 

enumerable language (RE), being enumerable means, TM 

precisely list all the strings of that language. Although TM 
may precisely list all the strings of RE (Type 0) language, it 

may not be able to decide every such language. Deciding a 

language requires that TM halt on a final state for every w L.  

 

And also halts on a non final state for every w L. Therefore 

we select subclass of type 0 languages, which are decidable by 
TM, are known as Recursive set of   language. For a recursive 

language, a TM always halts in a final state for all its member 

strings and accepts them and also halts in a non final state and 

rejects others which are not member strings. Recursive sets   

Recursively enumerable sets (RE). We have designed a TM 

for L = {w; w (a + b)*  ending in substring abb}. Figure 5 

shows a TM which recognizes the language L. 

 

 

Figure 5: Turing machine for L 
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TM can perform computation like addition, subtractions, 

multiplication, and division. Number on the tape is 

represented in form of   Zero. Suppose i is a positive integer, 

then oi represents this integer. It is assumed that a 1 separates 

two integer numbers. Suppose f  is a computable function and 

has arguments a1,a2,a3 such that f (a1,a2,a3) =m, where a1,a2,a3 

and m are some natural numbers then f is said to be computed 

by TM M .Such a function f is said to be Turing Computable 

or simply computable. TM computes integer function as 

defined below.f1 (a1, a2, a3......,an)→m. If f1 is defined for all 

arguments a1, a2, a3......an then total function is analogous to 
recursive language. A function f1(a1, a2, a3......,an)  computed 

by a TM is known as partial recursive function, if f is defined 

for some, not for all values of a1, a2, a3......,an. The TM that 

compute this function halts for some and may not halts for 

other input like n!, log2n etc... total recursive function. Figure-

6 shows a sample difference between Total Recursive 

Function and Partial Recursive Function. 

 

 
 

Figure 6: Computational ability of TM 

Modification of Turing Machine: 

There are many modification of Turing Machine. 

a. Two-way infinite TM. L is recognized by a Turing 

Machine with a two-way infinite tape if and only if it is 
recognized by one-way infinite tape. Figure 7 shows this 

machine model. 

 

Figure 7: Two-way infinite TM 

b. Multiple TM: If a language L is accepted by multiple 

tape Turing Machine, it is accepted by single tape Turing 

Machine. Figure 8 shows a theoritical structure of this 

type of TM. 

 

 

Figure 8: Multiple TM 

c. Non-deterministic TM: If L is accepted by a non-

deterministic Turing Machine(TM) M1, then L is 

accepted by some deterministic Turing Machine M2 (See 

Figure 3). 
d. Multi Dimensional Turing Machine: In k-dimensional 

TM the tape consists of k-dimensional array to cells 

infinite in all 2k direction for some fixed k. If  L is 

accepted by k-dimensional Turing Machine M1, then L is 
accepted by some single tape Turing Machine M2. 

Multi Head Turing Machine: 

A  k-head TM has some fixed number k of  head are numbered 

I through K and a move of TM depends on the state and on the 

symbol scanned by each  head in one move the head may 

move independently left right or remain stationary. If L is 
accepted by some k-head by some k-head TM M1, it is 

accepted by one head TM M2. Figure 9 refers to K-Headed 

turing machine. 

 

.  Figure 9: K-head TM 

Multi Track Turing Machine: 

In this type of Turing machine the rope of the Turing Machine 

TM is divided into k tracks, for any finite k. 

Turing Machine with stay option: 

In these TM‟S the read-write head can stay at the current 
position upon reading an input symbol without moving Left or 

right. 

Off-line Turing Machine:   

An off line Turing Machine(TM) is a multiple TM whose 

input tape is read-only. Usually we surround the input tape by 

end marker c on the left and s on right. The Turing 
Machine(TM) is not allowed to move the input tape head off 
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the region between c and s, it should be obvious that the 

offline TM is just special case of multiple TM. An offline TM 

can simulate any TM by using one more tape than M. The first 

thing of offline TM  does is copy its own input onto the extra 

tape and it then stimulates M as if extra tape were M‟s input. 

QUANTUM TURING MACHINE 

The Quantum Turing Machine (QTM) was defined by David 

Deutsch in 1985.QTM is a precise model of a quantum 

physical computer. There are two ways of thinking about 

QTM, (i)the quantum physical analogue of a Probabilistic 

Turing Machine; (ii) computation as transformation in a space 

of complex superposition of configuration. The QTM is the 

most general model for a computing device based on Quantum 

physic. Like an ordinary Turing machine. A Quantum Turing 
Machine M consists of a finite control, an infinite tape, and a 

tape head. a quantum Turing machine is defined to be a 

quantum system consisting of a processor, a moving head, and 

a tape, obeying a unitary time evolution determined by local 

interactions between its components, and allowing to be in a 

superposition of computational configuration. Deutsch pointed 

out that the global transition function between computational 

configurations should be determined by a local transition 

function which depends only on local configurations.. 

Bernstein and Vazirani found a simple characterization of the 

local transition functions for the restricted class of quantum 

Turing machines in which the head must move either to the 
right or to the left at each step. Since the above characterization 

constitutes an alternative definition of quantum Turing 

machines more tractable in the field of theoretical computer 

science, it is an interesting problem to find a general 

characterization valid even when the head is not required to 

move or more generally when the machines has more than one 

tape [7,8]. 

Mathematical Definition of QTM: 

A Quantum Turing Machine (QTM) is a 7-tuples 

M= (Q, ∑, Γ, U, 0q  B, F) 

Where, 

Q is a Finite number of states.  

Γ is tape symbols.      

∑    is an input symbol. 

B ϵ  Γ is a blank symbol. 

δ is a state transition  function and is a q mapping from Q  

×  Γ   ×  Γ   ×  Q  ×   {L,R} to  C. 

q 0 ϵ  Q   is a initial state. 

F  Q is a set of final states. 

 

An expression δ(p, a, b, q, d)= C represents the following: 
If M reads a symbol a in a state a, p (let c1 be this 

configuration of M), M writes a symbol on the square under 

the tape head, changes the state into q , and moves the head 

one square in the direction denoted by d  {L, R} (let c2 be 

this configuration of M ), and c is called an amplitude of this 

event. Then we define the probability that M changes its 
configuration from c1 to c2 to be |C|

2
. This state transition 

function δ defines a linear mapping in a linear space of 

superposition of M‟s configuration. This linear mapping is 

specified by the following matrix M‟s configuration. This 

linear mapping is specified by the following matrix M6. Each 

row and column of M6 is corresponds to configuration of M. 

Let c1 and c2 be configuration of M, then the entry corresponds 

to c2 row and c1 column of M6 is δ evaluated at the tuples 

which transforms c1 and c2 in a single step. If no such tuples 

exists, then the corresponding entry will be Zero. We call this 

matrix M6 a time evolution matrix of M. With a Quantum 

Turing machine, δ associates with each state and symbol, and 

each possible next move, a complex probability amplitude 
(which we require to be a feasible complex number). We also 

require that the linear transformation defined by the machine 

is unitary. BQP is the collection of languages L recognized by 

a Quantum Turing machine, running in polynomial time, 

under the bounded probability rule. The class BQP is not 

changed if we restrict the set of possible amplitudes to {0, 

±2/3, ±4/5, 1} BPP ⊆ BQP. Shor has shown that the 

factorization problem is in BQP. It is not known to be in BPP. 

QTM can be considered as a physical model:  

A quantum Turing machine is a quantum system consisting of 

a processor, a bilateral infinite tape, and a head to read and 

write a symbol on the tape. Its configuration is determined by 

the processor configuration q from a finite set Q of symbols, 

the tape configuration T is represented by an infinite string 

from a finite set Q of symbols, the tape configuration T is 

represented by an infinite string from a finite set Ʃ  symbols, 
and the discretized head position ᶓ. Figure 10 is a sample 

example of QTM considered as a physical system [6,7,8]. 
 

 

Figure 10: QTM as a physical model 

However, various researches are going on throughout the globe 

to make this hypothesis of Quantum computing to implement it 

practically like development of a quantum computer. It is still 

in its infancy stage. 

CONCLUSION 

This paper presents a comparative analysis on the two 

computational models, „Turing Machine‟ and „Quantum 

Turing Machine‟. The study is based on computational power 

of both the models. It shows that a Turing machine can be 

modified according to application. Based on this, some models 

have been proposed viz. single-tape, multi-tape, k-headed, 

multiple etc. However, Quantum Turing machine is better than 
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any other computing models based on its computational speed 

and number of languages accepted. As future works, it would 

be interesting to work in depth of the Quantum Turing 

machine and find out its more advantages over traditional 

computational models. 
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