
Volume 3, No. 5, May 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 51

COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING

MACHINE

Tirtharaj Dash
*1

 and Tanistha Nayak
2

*1, 2Department of Information Technology

National Institute of Science and Technology Berhampur-761008, India

tirtharajnist446@gmail.com
tanisthanist213@gmail.com

Abstract— Now-a-days every computing device is based on the Turing Machine. It is known that classical physics is sufficient to explain

macroscopic phenomena, but is not to explain microscopic phenomena like the interference of electrons. In these days, speed-up and down-sizing of
computing devices have been carried out using quantum physical effects; however, principles of computation on these devices are also based on
classical physics. This paper tries to analyze mathematically a possibility that the Universal Quantum Turing Machine (UQTM) is able to compute
faster than any other classical models of computation. Basically we focused on comparative study on computation power of Universal Turing
Machine (UTM) and UQTM. Namely, in the equal, we tried to show that the UQTM can solve any NP-complete problem in polynomial time. The
result analysis showed that UQTM is faster for any computation.

Keywords- Quantum; Quantum Computer; Quantum Turing Machine; Universal Turing machine; Universal Quantum Turing Machine.

INTRODUCTION

Quantum is a discrete quantity of energy proportional in

magnitude to the frequency of the radiation it represents [1].

An analogous discrete amount of any other physical quantity,

such as momentum or electric charge is known as Quantum

[1,3]. Bit (Binary Digit) is the smallest unit of information

within computer, the only thing that computer can understand

Bit is basic unit of Classical Computer. Classical Computer

only works binary values called Bits, each having a value

usually denoted by 0 or 1. One of the most intuitive
representation of bit is an open or closed switch or by

extension, and „on‟ or „off‟ portion of the circuit .In today‟s

modern computer ,this representation remains in transistors,

with a high voltage possibly denoting a 1 and low voltage

possibly denoting a zero. A two state system (0 →1) is the

building block of classical computational device. Quantum bit

(Qubit) is a unit of quantum information. Qubit represents

both the state memory and the state of entanglement in a

system. Quantum entanglement is experimentally verified

property of nature.

Quantum Entanglement occurs when the particles such as

electron, photon, molecules interacts physically and then

become separated. This interaction is called entanglement.

Quantum bit (Qubit) can exist in a superposition of states

which can be represented as α|0>+β|1> where α, β represents

complex number satisfying |α|2 +|β|2=1.Any state measurement

results in |0> with probability |α|2 and |1> with probability

|β|2.A n-Qubit system can exist in any superposition of the 2

basis states. Quantum entanglement is a form of quantum

superposition. A Quantum Computer also works with two

Eigen values, a 0 and 1, but these units are termed as Qubit or

Quantum Bits due to their non classical behavior. A Qubit can
take any value i.e. linear combination of Qubit 0 or Qubit 1.

Therefore while classical bits can take any value of north and

south and any orientation would be illegal. A Quantum bits

(Qubit) can take the value of northeast [2]. However upon

measurement, only one of these values, north or south is read.

To determine the coefficient of the linear combination of the
relative portions of the amount read being north and south

must be found out through repeated measurements of the

original Qubit state. Only something that exhibit quantum

phenomena that can be used to hold a Qubit. It is impossible

for a simple on/off switch to hold a linear combination of on

or off. On the other hand electron or nuclear spin and

polarization state of photon make natural candidates. These

quantum states either spin or polarization must also somehow

be able to manipulate so that that value could be assigned to

each bit [3]. Figure1 shows a binary transition of states

incorporating physical phenomenon.

Figure 1 Transition of states in an atom

TURING MACHINE

We are interested in designing an automaton (machine) that

can solve our two objectives. (i)Recognizing (ii) Computation.

A Turing Machine (TM) is a generalization of Pushdown

Automata (PDA) a tape instead of a tape and stack. The

Tirtharaj Dash et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 51-56

© JGRCS 2010, All Rights Reserved 52

potential length of the tape is assumed to be infinite and

divided into cells, and one cell hold one input symbol. The

head of TM is capable to read as well as write on the tape and

can move left or right or can remain static. Turing

Machine(TM) is an abstract version of a computer; this has

been used to define formally what is computable. The

Church‟s Thesis [4] is supported the fact that a Turing

Machine(TM) can stimulate the behavior of general purpose

computer system. Alan Turing, an English mathematician in

1936, suggests the concept of Turing Machine. Turing

Machine accepts the language defined by the grammars that
are called Type 1 languages or Recursively Enumerable

languages. Turing Machine is idealized in that they have an

infinite memory, which comes in the form of an “infinite tape”

(infinite on both the sides). The idea is that this tape consists

of cells each of which can take one symbol from some

underlying alphabet Σ, and that there is a „read/write head‟

which moves over the tape one position at a time and can

either read from or write to the tape. It is practical to assume

that the input string is written on the tape (from left to right).

When the machine starts the read/write head is positioned on
the cell holding the first symbol of the input string. We further

assume that the tape contains no further symbols that are all

remaining cells are empty. In order to describe what the

machine does (that is, under which circumstances it moves the

head one position to the left or the right, or it reads from the

tape, or writes to the tape) we need to have a notion of state,

just as we had with the other automata. As before there is a

specific start state, and this time we need an action stop to tell

us when the machine has finished its computation.

Abstract Model of a UTM:

A Turing Machine (TM) consists of a finite control, which can

be in any of a finite set of states. There is a tape divided into

square or cells; each cell can hold any one of a finite number

of symbols. Figure 2 shows a model of TM and its

components.

.

Figure 2: Turing Machine Model

Initially, the input, which is a finite-length string of symbols

chosen from the input alphabet, is placed on the tape. All

other tape cells, extending infinitely to the left and right,

initially hold a special symbol called the blank. The blank is a

tape symbol but not an input symbol, and there may be other

tape symbols besides the input symbols and the blank, as well.

There is a tape head symbol scanned. In one move, the Turing

Machine will work as following steps.

a. The next state optionally may be the same as the current
state.

b. Write a tape symbol in the cell scanned. This tape

symbol replaces whatever symbol was in that cell.

Optionally, the symbol written may be the same as the

symbol currently there.

c. Move the tape head left or right. In our formalism we

require a move, and do not allow the head to head to

remain stationary. This restriction does not constrain what

a Turing Machine(TM) can compute, since any sequence

of moves with a stationary head could be condensed,

along with the next tape head could be condensed, along

with the next tape Head move, into a single state change,

a new tape symbol, and a move left or right.

Mathematical Description of Turing Machine:

Turing Machine has seven tuples and is defined as,

M = (Q, Ʃ , Γ, δ, q0, B, F)

Where,

 Q = the finite set of state the finite control.

 Ʃ = the finite set of state the input symbols.
 Γ = the complete set of tape symbols; Ʃ is always a subset

of Γ.

 δ: The Transition Function. The arguments of δ(q, X) are a

state q and a tape symbol X. The value of δ(q, X) ,if it is

defined, is a triple(p, Y, D) where

a. p is the next state in Q.

b. Y is the symbol, in Γ, written in the cell being scanned,

replacing whatever symbol was there.

c. D is a direction, either L or R, standing for „left‟ or 'right'

respectively, and telling us the direction in which the

head moves.

 q0 = a start State, a member of Q, in which the finite
control is found initially.

 B = blank symbol.

 F = a set of final or accepting states, a subset of Q.

Depending upon the number of moves in transition, a TM may

be deterministic or non-deterministic. If TM has at most one

move in transition, then it is called Deterministic Turing

Machine (DTM). If one or more than one move is possible for

single symbol then the TM is Nondeterministic (NDTM).

Figure-3 shows a possible NDTM model where each state

gives rise to more than one state for a single input symbol
[4,5,6].

Figure 3: An abstract model of NDTM

 A standard TM reads one cell of the tape and moves left or

right one cell. The difference between TM and two way

automatons is writing capability, not in the movement of the

control head.

The transition function δ is defined as δ(p, a) =(q, b, D), where

P is present state; q is next state; a,b Γ and D is the

movement (left or right).

Tirtharaj Dash et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 51-56

© JGRCS 2010, All Rights Reserved 53

a) After reading an input a Γ. TM does the following

thing. (i) Replace a by b and move right (R) as δ(p, a) =(q,

b, R)

b) Without writing move right (R) as δ(p, a) =(q, b, R)

c) Replace a by b and move left(L) as δ(p, a) =(q, b, L)

d) Without write, move left(L) as δ(p, a) =(q, a, L).

Computational power of UTM:

If c0 is the configuration in the starting state, with w on the

tape and the tape head at the left end of the string, w is

accepted if the computation c0 → c1 → · · · → cf eventually

reaches an accepting state. If the length of the computation is

bounded by a polynomial in the length of x, the language

accepted by the machine is in P. The action of the Turing

machine can equivalently be described as a linear operator M

on an infinite-dimensional space. The set of configurations

form a basis for the space.

X1 q X2 is the instantaneous description or configuration of a

TM which is in state q with X1 being the contents of the tape

to the left of the read write head and X2 being the contents of

the tape to the right of and including the current read write

head tape position.

Representation of Language L = {a
n
b

n
c

n
| n>=0}

Transition state of the above language is given below.

δ (q0,a)= (q1,x,R);

δ (q1,a)= (q1,a,R);

δ (q1,y)= (q1,y,R);

δ (q1,z)= (q1,z,R);
δ (q1,b)= (q2,y,R);

δ (q2,b)= (q2,b,R);

δ (q2,z)= (q2,z,R);

δ (q2,c)= (q3,z,L);

δ (q3,a)= (q3,a,L);

δ (q3,y)= (q3,y,L);

δ (q3,b)= (q3,b,L);

δ (q3,z)= (q3,z,L);

δ (q3,x)= (q0,x,R);

δ (q0,y)= (q4,y,R);

δ (q4,y)= (q4,y,R);
δ (q4,z)= (q5,z,R);

δ (q5,z)= (q5,z,R);

δ (q5,$)= (q6,$,R);

The transition diagram for the language L is given in Figure 4

below.

Figure 4: Transition diagram for L = {a
n
b

n
c

n
| n>=0}

Probabilistic Machine:

With a probabilistic machine, δ defines, for each current state

and symbol, a probability distribution over the possible next

moves. The action of the machine can be defines as an infinite

matrix, where the rows and columns are configuration, and
each column adds up to 1.However, how much information

can be encoded in a single entry? We require the entries α to

be feasibly computable. That is, there is a feasibly computable

f such that: |f(n) − α| < 2
−n

BPP:

BPP is collection of languages L for which there is a
probabilistic machine M, running in polynomial time with

The class of languages is unchanged if we replace 2/3 and 1/3

by 1- ϵ and ϵ for any error indeed the set of all feasibly

computable probabilities with {0, 1/2, 1}. The only inclusion

relations we know are P⊆NP and P⊆BPP. Primality testing,

long known to be in BPP was recently shown to be in P.

The Language Recognization and Turing Machine:

TM can be used as a language recognizer. Turing Machine

recognizes all the languages, CFL, CSL, and Type 0. A string

W is written on the tape, with blanks filling out the unused

portions. The machine enters a initial state q0, with the read

write head position on the left most symbol of W. If after a

sequence of moves, the Turing Machine enters the final state

and halts, then w is considered to be accepted. A language is

accepted by Turing Machine is known as Recursively

enumerable language (RE), being enumerable means, TM

precisely list all the strings of that language. Although TM
may precisely list all the strings of RE (Type 0) language, it

may not be able to decide every such language. Deciding a

language requires that TM halt on a final state for every w L.

And also halts on a non final state for every w L. Therefore

we select subclass of type 0 languages, which are decidable by
TM, are known as Recursive set of language. For a recursive

language, a TM always halts in a final state for all its member

strings and accepts them and also halts in a non final state and

rejects others which are not member strings. Recursive sets

Recursively enumerable sets (RE). We have designed a TM

for L = {w; w (a + b)* ending in substring abb}. Figure 5

shows a TM which recognizes the language L.

Figure 5: Turing machine for L

Tirtharaj Dash et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 51-56

© JGRCS 2010, All Rights Reserved 54

TM can perform computation like addition, subtractions,

multiplication, and division. Number on the tape is

represented in form of Zero. Suppose i is a positive integer,

then oi represents this integer. It is assumed that a 1 separates

two integer numbers. Suppose f is a computable function and

has arguments a1,a2,a3 such that f (a1,a2,a3) =m, where a1,a2,a3

and m are some natural numbers then f is said to be computed

by TM M .Such a function f is said to be Turing Computable

or simply computable. TM computes integer function as

defined below.f1 (a1, a2, a3......,an)→m. If f1 is defined for all

arguments a1, a2, a3......an then total function is analogous to
recursive language. A function f1(a1, a2, a3......,an) computed

by a TM is known as partial recursive function, if f is defined

for some, not for all values of a1, a2, a3......,an. The TM that

compute this function halts for some and may not halts for

other input like n!, log2n etc... total recursive function. Figure-

6 shows a sample difference between Total Recursive

Function and Partial Recursive Function.

Figure 6: Computational ability of TM

Modification of Turing Machine:

There are many modification of Turing Machine.

a. Two-way infinite TM. L is recognized by a Turing

Machine with a two-way infinite tape if and only if it is
recognized by one-way infinite tape. Figure 7 shows this

machine model.

Figure 7: Two-way infinite TM

b. Multiple TM: If a language L is accepted by multiple

tape Turing Machine, it is accepted by single tape Turing

Machine. Figure 8 shows a theoritical structure of this

type of TM.

Figure 8: Multiple TM

c. Non-deterministic TM: If L is accepted by a non-

deterministic Turing Machine(TM) M1, then L is

accepted by some deterministic Turing Machine M2 (See

Figure 3).
d. Multi Dimensional Turing Machine: In k-dimensional

TM the tape consists of k-dimensional array to cells

infinite in all 2k direction for some fixed k. If L is

accepted by k-dimensional Turing Machine M1, then L is
accepted by some single tape Turing Machine M2.

Multi Head Turing Machine:

A k-head TM has some fixed number k of head are numbered

I through K and a move of TM depends on the state and on the

symbol scanned by each head in one move the head may

move independently left right or remain stationary. If L is
accepted by some k-head by some k-head TM M1, it is

accepted by one head TM M2. Figure 9 refers to K-Headed

turing machine.

. Figure 9: K-head TM

Multi Track Turing Machine:

In this type of Turing machine the rope of the Turing Machine

TM is divided into k tracks, for any finite k.

Turing Machine with stay option:

In these TM‟S the read-write head can stay at the current
position upon reading an input symbol without moving Left or

right.

Off-line Turing Machine:

An off line Turing Machine(TM) is a multiple TM whose

input tape is read-only. Usually we surround the input tape by

end marker c on the left and s on right. The Turing
Machine(TM) is not allowed to move the input tape head off

Tirtharaj Dash et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 51-56

© JGRCS 2010, All Rights Reserved 55

the region between c and s, it should be obvious that the

offline TM is just special case of multiple TM. An offline TM

can simulate any TM by using one more tape than M. The first

thing of offline TM does is copy its own input onto the extra

tape and it then stimulates M as if extra tape were M‟s input.

QUANTUM TURING MACHINE

The Quantum Turing Machine (QTM) was defined by David

Deutsch in 1985.QTM is a precise model of a quantum

physical computer. There are two ways of thinking about

QTM, (i)the quantum physical analogue of a Probabilistic

Turing Machine; (ii) computation as transformation in a space

of complex superposition of configuration. The QTM is the

most general model for a computing device based on Quantum

physic. Like an ordinary Turing machine. A Quantum Turing
Machine M consists of a finite control, an infinite tape, and a

tape head. a quantum Turing machine is defined to be a

quantum system consisting of a processor, a moving head, and

a tape, obeying a unitary time evolution determined by local

interactions between its components, and allowing to be in a

superposition of computational configuration. Deutsch pointed

out that the global transition function between computational

configurations should be determined by a local transition

function which depends only on local configurations..

Bernstein and Vazirani found a simple characterization of the

local transition functions for the restricted class of quantum

Turing machines in which the head must move either to the
right or to the left at each step. Since the above characterization

constitutes an alternative definition of quantum Turing

machines more tractable in the field of theoretical computer

science, it is an interesting problem to find a general

characterization valid even when the head is not required to

move or more generally when the machines has more than one

tape [7,8].

Mathematical Definition of QTM:

A Quantum Turing Machine (QTM) is a 7-tuples

M= (Q, ∑, Γ, U, 0q B, F)

Where,

Q is a Finite number of states.

Γ is tape symbols.

∑ is an input symbol.

B ϵ Γ is a blank symbol.

δ is a state transition function and is a q mapping from Q

× Γ × Γ × Q × {L,R} to C.

q 0 ϵ Q is a initial state.

F Q is a set of final states.

An expression δ(p, a, b, q, d)= C represents the following:
If M reads a symbol a in a state a, p (let c1 be this

configuration of M), M writes a symbol on the square under

the tape head, changes the state into q , and moves the head

one square in the direction denoted by d {L, R} (let c2 be

this configuration of M), and c is called an amplitude of this

event. Then we define the probability that M changes its
configuration from c1 to c2 to be |C|

2
. This state transition

function δ defines a linear mapping in a linear space of

superposition of M‟s configuration. This linear mapping is

specified by the following matrix M‟s configuration. This

linear mapping is specified by the following matrix M6. Each

row and column of M6 is corresponds to configuration of M.

Let c1 and c2 be configuration of M, then the entry corresponds

to c2 row and c1 column of M6 is δ evaluated at the tuples

which transforms c1 and c2 in a single step. If no such tuples

exists, then the corresponding entry will be Zero. We call this

matrix M6 a time evolution matrix of M. With a Quantum

Turing machine, δ associates with each state and symbol, and

each possible next move, a complex probability amplitude
(which we require to be a feasible complex number). We also

require that the linear transformation defined by the machine

is unitary. BQP is the collection of languages L recognized by

a Quantum Turing machine, running in polynomial time,

under the bounded probability rule. The class BQP is not

changed if we restrict the set of possible amplitudes to {0,

±2/3, ±4/5, 1} BPP ⊆ BQP. Shor has shown that the

factorization problem is in BQP. It is not known to be in BPP.

QTM can be considered as a physical model:

A quantum Turing machine is a quantum system consisting of

a processor, a bilateral infinite tape, and a head to read and

write a symbol on the tape. Its configuration is determined by

the processor configuration q from a finite set Q of symbols,

the tape configuration T is represented by an infinite string

from a finite set Q of symbols, the tape configuration T is

represented by an infinite string from a finite set Ʃ symbols,
and the discretized head position ᶓ. Figure 10 is a sample

example of QTM considered as a physical system [6,7,8].

Figure 10: QTM as a physical model

However, various researches are going on throughout the globe

to make this hypothesis of Quantum computing to implement it

practically like development of a quantum computer. It is still

in its infancy stage.

CONCLUSION

This paper presents a comparative analysis on the two

computational models, „Turing Machine‟ and „Quantum

Turing Machine‟. The study is based on computational power

of both the models. It shows that a Turing machine can be

modified according to application. Based on this, some models

have been proposed viz. single-tape, multi-tape, k-headed,

multiple etc. However, Quantum Turing machine is better than

Tirtharaj Dash et al, Journal of Global Research in Computer Science, 3 (5), May 2012, 51-56

© JGRCS 2010, All Rights Reserved 56

any other computing models based on its computational speed

and number of languages accepted. As future works, it would

be interesting to work in depth of the Quantum Turing

machine and find out its more advantages over traditional

computational models.

REFERENCES

[1] Nayak T., Dash T., A Comparative Study on Quantum

Pushdown Automata, Turing Machine and Quantum Turing

Machine, International Journal of Computer Science and

Information Technologies, Vol.-3(1), 2012, pp. 2932-2935.

[2] Nayak T., Dash T., Quantum Finite Automata, Quantum

Pushdown Automata & Quantum Turing Machine: A Study,

International Journal of Computer Science and Information

Technologies, Vol.-3(2), 2012, pp. 3765-3769.

[3] Feynman R. P., Simulating physics with computers,

International. J. Theoret. Phys., 21 (1982), pp. 467-488.

[4] Deutsch D., Quantum theory the Church-Turing principle and

the universal quantum computer, Proc. Roy. Soc. London Ser.

A, 400 (1985), pp. 97-117.

[5] Deutsch D., Quantum computational networks, Proc. Roy. Soc.

London Ser. A, 425 (1989), pp. 73-90.

[6] Benioff P., The computer as a physical system: A microscopic

quantum mechanical Hamiltonian model of computers as

represented by Turing machines, J. Stat. Phys., 22 (1980), pp.

563-591.

[7] Moore C., Crutchfield J.P., Quantum automata and quantum

grammars, Theoret. Comput. Sci. 237 (1–2) (2000) 275–306.

[8] Nielsen M., Chuang I., Quantum Computation and Quantum

Information, Cambridge University Press, 2000.

