
Volume 4, No. 1, January 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 38

COMPARISON OF SIX PRIORITIZATION TECHNIQUES FOR SOFTWARE

REQUIREMENTS

Manju Khari*1, Nikunj Kumar2

*1 Department of Computer Science & Engineering, AIACT&R, Delhi, India

manjukhari@yahoo.co.in
2 Department of Computer Science & Engineering, AIACT&R, Delhi, India

nikunjkumar14@gmail.com

Abstract: There are many requirements prioritization techniques and selecting the most appropriate one is a decision problem in its own rights.

This paper takes a closer look at the six requirement prioritization techniques and put them in a controlled experiment with the objective of

understanding differences regarding ease of use, total time taken, scalability, accuracy, and total number of comparisons required to make

decisions. These five criteria combined will indicate which technique is more suitable. The result from the experiment shows that Value oriented

Prioritization (VOP) yields an accurate result, can scale up, and requires the least amount of time.

Keywords: Requirements, Requirements Prioritization, Prioritization Techniques, Comparison

INTRODUCTION

When requirements are elicited, it often yields more

requirements than can be implemented at once. The

requirements need to be prioritized so that the most

significant ones are met by the earliest product releases [1].

During a project, decision makers in software development

need to make many different decisions regarding the release

plan. Issues such as available resources, milestones,

conflicting stakeholder views, available market opportunity,

risks, product strategies, and costs need to be taken into

consideration when planning future releases. Unfortunately,

there is a lack of simple and effective techniques for

requirement’s prioritization, which could be used for release

planning [2].

Our goal in this paper is to compare six techniques for

prioritizing software requirements. The chosen techniques

are Analytic Hierarchy Process (AHP), Value Oriented

Prioritization (VOP), Cumulative Voting (CV), Numerical

Assignment Technique (NAT), Binary Search Tree (BST)

and Planning Game (PG). To study these techniques, we

systematically applied all techniques to prioritize a set of

thirteen quality requirements. We then categorized the

techniques from a user’s perspective according to five

criteria such as ease of use, total time taken, scalability,

accuracy, and total number of comparisons required to make

decisions.

MOTIVATION

In a review of the state of the practice in requirements’

engineering, Lubars et al found that many organizations

believe that it is important to assign priorities to

requirements and to make decisions about them according to

rational, quantitative data [3]. Still it appeared that no

company really knew how to assign priorities or how to

communicate these priorities effectively to project members.

There is a growing acknowledgment in industrial software

development that requirements are of varying importance.

However, there has been little progress to date, either

theoretical or practical, on the mechanisms for prioritizing

software requirements.

A sound basis for prioritizing software requirements is the

approach provided by the analytic hierarchy process, AHP

[4]. In AHP, decision makers pair-wise compare the

requirements to determine which of the two is more

important, and to what extent. AHP has a fundamental

drawback which impedes its industrial institutionalization.

Since all unique pairs of requirements are to be compared,

the required effort can be substantial. In small-scale

development projects this growth rate may be acceptable,

but in large-scale development projects the required effort is

most likely to be overwhelming. Karlsson et al identified

five complementary approaches to challenge AHP [5]. All

of these methods involve pair wise comparisons, since

previous studies indicate that making relative judgments

tend to be faster and still yield more reliable results than

making absolute judgments [6].

Such pair-wise comparisons are time-consuming and suffer

from explosive growth as the number of requirements

increases. Wiegers recommends a less rigorous approach

that is based on weighted assessments of perceived value,

relative penalty, anticipated cost, and technical risks [7].

The

fundamental difficulty with Wiegers’ approach is that the

value assigned to a given requirement lacks the granularity

necessary to determine whether or not the requirement

meets key business core values. To overcome these

limitations, there is a Value-Oriented Prioritization (VOP)

process. VOP takes the form of an additive weighting

method as described by Vetschera and expressed in the

spreadsheet model of Wiegers [7, 8]. Paetsch et al claims

that agile software development has become popular during

the last few years and in this field, one of the most popular

methods is the extreme programming, which has a

prioritization technique called Planning Game (PG) [9].

Next section gives a brief description of each technique.

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 39

PRIORITIZATION TECHNIQUES

This section enlightens the prioritization techniques

examined in this paper.

Numerical Assignment Technique (NAT):

The numeral assignment technique is based on the principle

that each requirement is assigned a symbol representing the

requirement’s perceived importance. This approach is

common in Quality Function Deployment (QFD) where

prioritizing of candidate requirements is required [10].

Several variants based on the numeral assignment technique

exist. A straightforward approach to the technique is

presented by Brackett [11], who suggest that requirements

should be classified as mandatory, desirable, or inessential.

An approach using finer granularity is to assign each

requirement a number on a scale ranging from 1 to 5, where

the numbers indicate:

 5. Mandatory (the customer cannot do without it).

4. Very important (the customer doesn’t want to be without

it).

3. Rather important (the customer would appreciate it).

2. Not important (the customer would accept its absence).

1. Does not matter.

Analytical Hierarchical Process (AHP):

The Analytic Hierarchy Process (AHP) was first developed

and explained by Saaty [4] in 1980. Regnell et al [12] claim

that even though this is a promising technique, the technique

itself is not adapted to distributed prioritization with

multiple stakeholders; hence it has to be modified in one

way or another. However, at present time there have not

been published any research how that kind of modification

would function.

In AHP the candidate requirements are compared pair wise,

and to which extent one of the requirements are more

important than the other requirement. Saaty [4] states that

the intensity of importance should be according to Table 1.

Table 1. Basic scale according to Satty for pairwise comparison in AHP

Since this technique prescribes pair-wise comparisons of all

candidate requirements, the required number of comparisons

grows polynomial. For a software system with n candidate

requirements, n. (n - 1)/2 pair-wise comparisons are needed.

Value Oriented Prioritization (VOP):

VOP uses a framework that gives requirement engineers a

foundation for prioritizing and making decision about

requirements [13]. It provides visibility for all stakeholders

during decision making, eliminating lengthy discussions and

arguments over individual requirements by emphasizing the

core business values. The first step in setting up a value

oriented prioritization process is to establish a framework

for identifying the business’s core values and the relative

relationships among those values. VOP uses the

relationships that exist between core business values to

assess and prioritize requirements and ensure their

traceability. The VOP framework establishes a mechanism

for quantifying and ordering requirements for an application

increment, a prototype, or a software requirements

specification. Company executives identify the core

business values and use a simple ordinal scale to weight

them according to their importance to the organization.

Table 2. Value Oriented Prioritization matrix

Requireme

nts Business Values (V1…..Vn) Score

V1=

7 V2=6 Vi =9 VI+1=5 Vn=8

R1

R2 Wij

….

RN

Table 2 shows an example of a matrix incorporating five

business values and. V
0,i

is the weight of business value i.

W
i,j

is the weight assigned to requirement r
i
with respect to

business value V
j
. Formally, we can express the score (S

r
)

for each requirement r, in the set, R of all possible

requirements, as:

Sr = (1)

Cumulative Voting (CV):

The Cumulative Voting (CV) or 100-Point Method or

Hundred-Dollar ($100) test, described by Leffingwell and

Widrig, is a simple, straightforward and intuitively

appealing voting scheme where each stakeholder is given a

constant amount (e.g. 100, 1000 or 10000) of imaginary

units (for example monetary) that he or she can use for

voting in favor of the most important issues [14]. In this

way, the amount of money assigned to an issue represents

the respondent’s relative preference (and therefore

prioritization) in relation to the other issues. The points can

be distributed in any way that the stakeholder desires. Each

stakeholder is free to put the whole amount given to him or

her on only one issue of dominating importance. It is also

possible for a stakeholder to distribute equally the amount to

many of, or even to all of the issues.

CV is sometimes known as “proportional voting” since the

amount of units assigned to an issue represents the relative

priority of the specific issue in relation to the other issues.

The term “proportional” in this case also reflects the fact

that if the amount of units assigned to an issue is divided by

the constant number of units available to each stakeholder,

the result becomes a proportion between zero and one. The

stakeholder’s ratings for a set of issues can be therefore

considered as the “composition” or “mixture” of a person’s

opinion towards the issues, in the abstract sense that each

issue occupies a certain proportion (or percentage) of

preference inside the person’s belief or judgment.

Sr.No. How Important Description

1 1 Equal Importance

2 3

Moderate difference in

importance

3 5

Essential difference in

importance

4 7 Major difference in importance

5 9

Extreme difference in

importance

6 Reciprocals

If requirement i has one of the

above numbers assigned to it

when compared with

requirement j, then j has the

reciprocal value when compared

with i.

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 40

The procedure may result to issues that are assigned zero

units showing that the specific stakeholder considers these

issues completely unimportant. The zeros are generally a

problem in this kind of data, because they make the notion

of relative preference or importance completely meaningless

and the computation of ratios impossible. Of course, a

questionnaire where zeros are not allowed could be

designed, but in general, the principle of CV is to allow

stakeholders to spread freely their total amount without

further restrictions.

Binary Search Tree (BST):

BST is a computer algorithm with the purpose to store

information, which then could be retrieved or sought after.

The BST Т usually is either empty, or has one or two child

nodes. The child nodes to the right (Тr) have greater

value/importance than the root node R, and the child nodes

to the left (Тl) have less value/importance then the root node

R. Each child node is in itself a root node to its child node. If

a node does not have any child nodes, it is called a leaf. This

makes it possible to search in the BST recursively. The

benefit for using BST, when prioritizing requirements, is

that with n requirements, it takes only n log n [15]

comparisons until all the requirements have been inserted in

order. That makes BST a fast candidate, which could be

good if there is a lot of requirement to prioritize among, i.e.

BST could easily scale up to thousands of requirements, and

still be a very fast candidate. There is one important thing to

know about the BST algorithm, which is that a tree needs to

be balanced to have the shortest insertion time.

A balanced BST is a BST where no leaf is more than a

certain amount farther from the root than any other leaf.

After a node has been inserted or deleted the tree might have

to be rebalanced if but only if the BST would reach an

unbalanced stated. The reason for this is that the insertion of

a node should be optimal, i.e. log n.

The scale between each requirement is on the ordinal scale.

That means that I only could find out if one requirement is

more important than another, but not to what extent.

Another negative problem with BST is that there is no

consistency ratio that we could calculate, hence we do not

know if we have done a precise prioritizing or not.

Planning Game (PG):

In extreme programming the requirements are written down

by the customer on a story card. Then the customer divides

the requirements into three different piles. According to

Beck, the piles should have the names; “those without which

the system will not function”, “those that are less essential

but provide significant business value” and “those that

would be nice to have” [16]. At the same time as that the

customer sorts the story cards, the programmer estimates

how long time each requirement would take to implement

and then begin to sort the requirements into three different

piles, i.e. sort by risk, with the names; “those that can be

estimated precisely”, “those that can be estimated

reasonably well” and “those that cannot be estimated at all”.

The customer or one or several representatives for the

customer could either decide on a fixed release date, or

decide which requirements that should be included in the

next release. The end result of this sorting is a sorted list of

requirements on an ordinal scale. Since PG takes one

requirement and then decides which pile the requirement

belongs to and each requirement is not being compared to

any other requirement, the time to prioritize n requirements

is n comparisons. This means that PG is very flexible and

can scale up to rather high numbers of requirements, without

taking too long time to prioritize them all.

EXPERIMENT FRAMEWORK

This section describes the experiment design and how the

experiment will be conducted.

Introduction:

The aim of the experiment is to compare the six prioritizing

techniques to evaluate which one of them seems to be the

better, i.e. which technique is the easiest to use, takes

shortest amount of time, scalable when adding more

requirements, accurate and takes fewer number of

comparisons. This is tested by letting the participants’

answer how they experience and believe that each technique

would be able to fulfill each criterion. This experiment is

highly influenced by the experimental approach outlined in

[17].

Design:

With the motivation of gaining a better understanding of

requirements prioritization techniques, we performed a

single project study with the aim of characterizing and

evaluating the six prioritizing techniques from the

perspective of users [17]. The experiment was populated

with seven graduate and post graduate students. They were

asked to prioritize thirteen quality requirements using the

prioritization techniques under consideration [18]. The

requirements were prioritized by the participants

independently, and to the best of their knowledge. The

quality requirements were prioritized without taking the cost

of achieving the requirements into account. That is, only the

importance for the customers was considered. Moreover, the

requirements were considered orthogonally, i.e. the

importance of one requirement is not interdependent on

another.

In order to minimize the risk that the participants remember

how they did the last prioritization, we spread the test over a

period of time with fixed intervals. Only one technique was

studied in a day. Every day, 20 minutes were allocated for

presenting the technique which was under observation on

that day and after getting the confirmation from each

participant whom the technique was understood clearly, 60

minutes were allocated for completion of the experiment of

that day. Each participant was supplied with necessary

papers and time taken by each participant to complete the

experiment was recorded separately.

Threats to Validity:

When reading a result from an experiment, one of the most

important questions is: How valid is the result? That makes

validity of the result an important question to consider when

an experiment is designed. The aim of the experiment was

the evaluation of six requirements prioritization techniques

by making comparisons among them. We do not argue that

the results obtained in this experiment can be generalized

and used by any user in any environment for any

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 41

application. Rather, we tried to illustrate the requirements

prioritization techniques to gain a better understanding of

them. The following threats have been identified:

Too few requirements: In the analysis of the data, it became

obvious that the experiment had too few requirements.

However, before the experiment, it was discussed whether it

would be possible to consider more than thirteen

requirements, but since there was a time limit, i.e. how

much time the participants could participate; the number of

requirements had to be limited. To really reflect a real

project, the number of requirements should be a couple of

hundred; this would be more or less impractical to handle

within the limited timeframe of this experiment. Therefore,

the decision was taken that the number of requirements

should only be thirteen.

Few persons involved in the experiment: The significance

of the results is limited due to involvement of few persons

(seven persons) with the experiment. That’s why the

outcomes were more inconclusive, and hence can be

regarded as a partial threat to the evaluation. However, if

requests to attend to the experiment are going to a large

population, there is a greater chance that the risk would be

minimized.

Offline Evaluation: The evaluation was carried out

independently from a real software project which may be

considered as a potential problem for this experiment.

However, it is not regarded as being a major threat as the

main objective of this evaluation was to gain understanding

and illustrate a number of possible methods for prioritizing

software requirements.

Only non functional requirements considered: This

experiment was only concerned with non functional

requirements. This limitation is, however, not believed to be

a major threat to the results from the experiment.

Requirements are interdependent: In practice, the

interdependence between the requirements must be

considered. None of the prioritizing techniques described in

this paper provides means for handling interdependence;

hence this limitation of the experiment is not believed to

influence the actual evaluation of the different methods.

It is always important to identify threats in an experiment in

order to allow for determining both the internal and external

validity of the results attained. Thus, the above potential

threats should be kept in mind when analyzing the results.

Analysis of collected data:

The testing begins with the first question of every technique;

followed by the second and third and so on. For each

question, participants ranked each method and finally mean

value was taken. Those questions that the participants were

asked after each technique were the following:

a. The first question that the participants were asked

was how easy the prioritization technique was to

apply. The answer of the question is shown in fig.

1.

Fig. 1 clearly indicates that participants thought that

Planning Game (PG) followed by VOP was the easiest

method to apply. NAT followed by AHP was most difficult

to handle. CV and BST were in the middle of these two

groups.

Figure 1. Comparison among the techniques for the criteria “Ease of use”

b. The second question that the participants were

asked was how long time it took for the participants

to perform the prioritization with the techniques

under consideration. The result of the question is

shown in fig. 2.

Figure 2. Comparison among the techniques for the criteria “Total time

taken to prioritize”

From the result in fig. 2, clearly NAT took the longest time

to execute, followed by AHP. The fastest technique was

VOP and PG. Between fastest group of techniques and

slowest group of techniques was CV.

c. The third question was to arrange the methods

according to how the participants believed that the

methods would work with many more requirements

than the 13 that were in the experiment. The result

is presented in fig. 3.

Figure 3. Comparison among the techniques for the criteria “Scalability”

The result in fig. 3 indicates most of the participants thought

VOP, and BST were the prioritization techniques that were

more suited as candidates to handle much more

0

2

4

6

8

10

NAT AHP VOP CV BST PG

A
ve

ra
ge

 R
an

k

Prioritization Techniques

Ease of use

0

20

40

60

NAT AHP VOP CV BST PGA
ve

ra
ge

 T
im

e
 (

m
in

u
te

s)

Prioritization Techniques

Total Time Taken

0
2
4
6
8

10

NAT AHP VOP CV BST PG

A
ve

ra
ge

 R
an

k

Prioritization Techniques

Scalability

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 42

requirements. The participants found that AHP followed by

NAT would be the worst candidate to scale up for more

requirements. In the middle was PG.

d. The fourth question was that the participants were

asked to arrange the techniques according to their

opinion about accuracy of the result produced by

each method. The result is shown in fig. 4

Figure 4. Comparison among the techniques for the criteria “Accuracy”

The result in fig. 4 clearly indicates that most of the

participants thought that BST and VOP were the best

techniques. NAT followed by AHP yields less accurate

result. CV and PG were located between these two groups.

It was expected that AHP would produce the most accurate

result as in this method requirements were prioritized

according to mathematical rules. An explanation to why

AHP more or less did so poorly here can be that the

participants did not understand how to read out, the matrix

that presented the prioritization results.

e. Finally the participants were asked to keep records

of how many comparisons were required for each

technique. The result is shown in fig. 5.

Figure 5. Comparison among the techniques for the criteria “Total Number

of Comparisons”

The result in fig. 5 clearly indicates that AHP was required

the highest number of comparisons because the number of

comparisons in AHP is n(n-1)/2. NAT, VOP, CV, and PG

were required the lowest number of comparisons because

they only require n comparisons. BST was in the middle of

these two groups, because it require n(logn) comparions.

FINDING THE OVERALL BEST PRIORITIZATION

TECHNIQUE

After collecting data based on above motioned criteria, we

assigned weight for each criterion and then applied formula

(2) and (3) to find out the overall best requirements

prioritization technique. Each of the above criteria was

assigned weight according to Table III.

Table 3. Weight table for each criterion

Then following formulae were used to calculate overall

score by each of the prioritization techniques under

consideration.

Where,

N = Number of techniques used

Si,j = Score of technique j in criteria i

W (Ci) = Weight of criteria i

NC = Number of criteria’s

Ri (Tj) = Ranking of technique j in criteria i

OS(Tj) = Overall score of technique j

The result after calculation is shown in fig. 6

Fig. 6 clearly indicates that among all the requirement

prioritization techniques under consideration, VOP is

supposed to be the best one based on the mentioned

evaluation criteria.

This order of the requirement prioritization techniques

obtained from this experiment, however, is not a global one

as rankings can be reordered if criterion weights are

assigned differently. Nevertheless, the technique and

formulae used here to compare among different

prioritization techniques can be used in any scenario with

appropriate criterion weights suitable for that scenario.

Figure 6. Comparison among the techniques on the basis of weighted value

of criteria’s

CONCLUSION

Outcome of the experiment says that VOP is supposed to be

the best method for prioritizing software requirements. It is

an easy method, it gives one of the most accurate results,

and it is rather comfortable to handle even if there are many

0

2

4

6

8

10

NAT AHP VOP CV BST PG

A
ve

ra
ge

 R
an

k

Prioritization Techniques

Accuracy

0
20
40
60
80

100

NAT AHP VOP CV BST PGN
u

m
b

e
r

o
f

C
o

p
m

ar
io

n
s

Prioritization Techniques

Total Number of Comparisons

0

10

20

30

40

50

60

70

NAT AHP VOP CV BST PG

O
ve

ra
ll

SC
o

re

Prioritization Techniques

Criteria Weight

Ease of Use 9

Total time taken 7

Scalability 8

Accuracy 8.5

Total number of comparisons 8

Sij = W (Ci)*((N+1) - Ri (Tj)).... (2)

OS (Tj) = ….. (3)

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 43

more requirements. In most questions’ PG and BST were

located in the middle, neither the best nor the worst

techniques. However, the test subjects thought that PG was

the next-best method of these six techniques to be used

when prioritizing. The worst candidate according to result is

NAT. The reasons for worst performance of NAT are

determining the absolute information is difficult than

relative information, participants’ subjective opinions

regarding a number differ widely, it is not effective when

numbers of requirements are low, less accurate and

informative, it takes maximum time to prioritize. However,

this order of the requirement prioritization techniques

obtained from this experiment, however, is not a global one

as rankings can be reordered if criterion weights are

assigned differently. Nevertheless, the technique and

formulae used here to compare among different

prioritization techniques can be used in any scenario with

appropriate criterion weights suitable for that scenario.

The generalisability of the paper is limited due to the small

sample and the specific context. A real project has

requirement’s interdependencies, and time and budget

pressure to consider, which cause the decision-making to be

far more difficult. However, we believe that VOP is valid as

prioritization technique. The main disadvantage of the

experiment being the difficulty to generalize to industrial

projects, it would be valuable to try the experiment out in a

case study. The participating organization would then get

knowledge about prioritization and perhaps find a technique

that suits their needs.

REFERENCES

[1]. J. Siddiqi and M.C. Shekaran, “Requirements engineering:

the emerging wisdom,” IEEE Software 13 (2), pp. 15–19,

1996.

[2]. J. Karlsson and K. Ryan, “Prioritizing requirements using a

cost-value approach,” IEEE Software 14 (5), pp. 67–74,

1997.

[3]. M. Lubars, C. Potts, and C. Richter, “A review of the state

of the practice in requirements modeling,” in: Proceeding

of the IEEE International Symposium on Requirements

Engineering, pp. 2–14, 1993.

[4]. T.L. Saaty, The Analytic Hierarchy Process: Planning,

Priority Setting, Resources, Allocation, McGraw-Hill, Inc.

1980.

[5]. J. Karlsson, C. Wohlin and B. Regnell, “An evaluation of

methods for prioritizing software requirements,”

Information and Software Technology, pp. 939-947, 1998.

[6]. J. Karlsson, “Software requirements prioritizing,” in:

Proceeding of 2nd IEEE International Conference on

Requirements Engineering, pp. 110–116, 1996.

[7]. K. Wiegers, Software Requirements, 2nd ed., Microsoft

Press, 2003.

[8]. R. Vetschera, Preference-Based Decision Support in

Software Engineering, in Value-Based Software

Engineering, S. Biffl, A. Aurum, B. Boehm, H. Erdogmus,

and P. Grünbacher eds, Springer, pp. 67- 89, 2006.

[9]. F. Paetsch, A. Eberlein and F. Maurer, “Requirements

engineering and agile software development,” Proceedings

of the 12 IEEE International workshop, IEEE Computer

society, pp. 1-6, 2003.

[10]. L. Sullivan, Quality function deployment: A system to

assure that customer needs derive the product design and

production process, Quality Progress, pp. 39-50, 1986.

[11]. J.W. Brackett, Software Requirements Technical Report

SEI-CM-19-1.2, Software Engineering Institute, Camegie

Mellon University, USA, 1990.

[12]. B. Regnell, M.J. Höst, P. Beremark and T. Hjelm,”An

Industrial Case Study on Distributed Prioritization in

Market-Driven Requirements Engineering for Packaged

Software,” Requirements Engineering, vol. 6, pp. 51-62,

2001.

[13]. J. Azar, R. K. Smith and D. Cordes, “Value Oriented

Requirements Prioritization in a Small Development

Organization,” IEEE Software, pp. 32-73, 2007.

[14]. D. Leffingwell and D. Widrig, Managing Software

Requirements: A Use Case Approach, 2nd ed., Addison-

Wesley, Boston, USA, 2003.

[15]. T. Standish, Data Structures in Java, Addison-Wesley,

Boston, USA, 1997.

[16]. K. Beck, Extreme programming: explained, 7th ed.,

Addison-Wesley, Boston, USA, 2001.

[17]. V.R. Basili, R.W. Selby, and D.H. Hutchens,

“Experimentation in software engineering,” IEEE Trans.

Software Engineering 12 (7), pp. 733- 743, 1986.

[18]. S.E. Keller, L.G. Kahn, and R.B. Panara, “Specifying

software quality requirements with metrics,” in: R.H.

Thayer and M. Dorfman (Eds.), System and Software

Requirements Engineering, pp. 145–163, 1990.

Short Bio Data for the Author

Ms. Manju Khari has received her M.Tech in

Computer Science from Guru Gobind Singh Indraprastha

University, Delhi. Currently she is pursuing P.HD from

Delhi Technological University, Delhi. Her research interest

encompasses network security, and different sector of

software engineering mainly software testing. She has

coauthored in various research papers published in various

International journals and conferences proceedings. She is

working as Assistant Professor in Department of Computer

Science and Engineering of AIACT&R, geeta colony, Delhi.

Nikunj Kumar has received his B.Tech in Information

Technology form USIT, Guru Gobind Singh Indraprastha

University, Delhi in 2011. He is pursuing M.Tech in

Information Security from AIACT&R, Guru Gobind Singh

University, Delhi. His area of interest encompasses internet

security, and various areas of software engineering include

requirement engineering, software testing.

