
Volume 1, No. 4, November 2010

Journal of GloJournal of GloJournal of GloJournal of Global Research in Computer Sciencebal Research in Computer Sciencebal Research in Computer Sciencebal Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 1

COMPARISON OF SOFTWARE ARCHITECTURE EVALUATION METHODS

FOR SOFTWARE QUALITY ATTRIBUTES

L. S. Maurya
*1

 and Himanshu Hora
2

*1Associate Professor, 2Assistant Professor

Shri Ram Murti Smarak College of Engineering & Technology, Bareilly (U.P.) India

lsmaurya@yahoo.com1

himanshuhora@gmail.com2

Abstract: Since the architecture of a software system constrains the quality attributes, the decisions taken during architectural design have a large

impact on the resulting system. An architectural design method is presented that applies iterative evaluation of the software architecture in order

to the quality requirements. Architecture evaluation is performed by using scenarios, simulation, mathematical modeling and experience-based

reasoning. The software architecture has been keyed as an important part of a software system. Further, the software architecture impacts the

quality attributes of a system, e.g., performance and maintainability. Therefore, methods for evaluating the quality attributes of software

architectures are important. In this paper, we present a survey of software architecture evaluation methods. We concentrate on methods for

evaluating one or several of the quality attributes performance, maintainability, testability, and portability. Based on a literature search and

review of 76 articles, we present and compare ten evaluation methods. We have found that most evaluation methods only address one quality

attribute, and very few can evaluate several quality attributes simultaneously in the same framework or method. Further, only one of the methods

includes trade-off analysis. Therefore, our results suggest an altered research focus on software architecture evaluation methods than can direct

several quality attributes and the possible trade-offs between different quality attributes.

Keywords: Software architecture, quality attributes, software system

INTRODUCTION

The software engineering discipline is becoming more

widespread in industry and organizations due to the increased

presence of software and software-related products and

services in all areas. Simultaneously, this demands for new

concepts and innovations in the development of the software.

During the last decades, the notion of software architecture has

evolved and today, software architecture is a key asset for any

organization that builds complex software- intensive systems

[5, 8, 34]. A software architecture is created early in the

development and gives the developers a means to create a high

level design for the system, making sure that all requirements

that has to be fulfilled will be possible to implement in the

system. There exist a number of definitions of software

architecture with minor differences depending on domain and

people’s experience. However, most definitions share common

characteristics that can be exemplified by looking at the

definition by Bass et al. [5]:

“The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.” [5]

This means that the architecture describes which high level

components a software system consists of as well as which

responsibilities that these components have towards other

components in the system. It also describes how these

components are organized, both on a conceptual level as well

as a decomposed detailed level since there can be an

architectural structure inside components as well. Finally the

architecture defines which interfaces the components present to

other components and which interfaces and components that

they use.

The architecture is created based on a set of requirements that it

has to fulfill. These requirements are collected from the

stakeholders of the system, e.g., users and developers. The

functional requirements describe what the system should do,

e.g., the functions that the system should provide to the users.

Quality requirements describe a set of qualities that the

stakeholders want the systems to have, e.g., how long time it

may take to complete a certain operation, how easy it is to

maintain the system. Other examples of quality attributes are

availability, testability, and flexibility. In order to help software

developers make sure that software architecture will be able to

fulfill the quality requirements; several methods for evaluating

software architectures have been proposed. In this paper we

present a survey of software architecture evaluation methods.

We focus our survey on methods that address one or more of

the quality attributes performance, maintainability, testability,

and portability. We think that this selection of quality attributes

is relevant for development of software systems that will be

used and maintained over a long period of time.

The methods are described and compared based on a set of

criteria. There are related evaluations methods that we have

chosen to exclude from our survey. One class of related

evaluation methods are targeted for components and

middleware, e.g., i-Mate [27]. These methods are excluded

since they do not evaluate the whole architecture of a system.

Further, we have exclude many formal methods, e.g.,

Promela/SPIN [16, 27], which are more targeted for evaluating

correctness and consistency of an architecture but not those

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 2

quality attributes that we are interested in. In addition, there are

other factors then quality requirements that influence the

architecture such as organizational, technical and product

factors as well as risk management and project management

issues. These factors and issues are not addressed since the

majority of the found articles do not address these issues.

SOFTWARE ARCHITECTURE EVALUATION

Architecture evaluations can be performed in one or more

stages of the software development process. They can be used

to compare and identify strengths and weaknesses in different

architecture alternatives during the early design stages. They

can also be used for evaluation of existing systems before

future maintenance or enhancement of the system as well as for

identifying architectural drift and erosion.

Software architecture evaluation methods can be divided into

four main categories, i.e., experience-based, simulation-based,

mathematical modeling based. Methods in the categories can

be used independently but also be combined to evaluate

different aspects of software architecture, if needed [8].

Experience-based evaluations are based on the previous

experience and domain knowledge of developers or consultants

[2]. People who have encountered the requirements and domain

of the software system before can based on the previous

experience say if a software architecture will be good enough

[8].

Simulation-based evaluations rely on a high level

implementation of some or all of the components in the

software architecture. The simulation can then be used to

evaluate quality requirements such as performance and

correctness of the architecture. Simulation can also be

combined with prototyping, thus prototypes of architecture can

be executed in the intended context of the completed system.

Examples of methods in this group are Layered Queuing

Network (LQN) [1] approaches and event-based methods such

as RAPIDE [28, 29].

Mathematical modeling uses mathematical proofs and

methods for evaluating mainly operational quality requirements

such as performance and reliability [34] of the components in

the architecture. Mathematical modeling can be combined with

simulation to more accurately estimate performance of

components in a system.

Scenario-based architecture evaluation tries to evaluate a

particular quality attribute by creating a scenario profile that

forces a very concrete description of the quality requirement.

The scenarios from the profile are then used to step through the

software architecture and the consequences of the scenario are

documented. Several scenario based evaluation methods have

been developed, e.g., Software Architecture Analysis Method

(SAAM) [19], Architecture Trade-off Analysis Method

(ATAM) [21], and Architecture Level Modifiability Analysis

(ALMA) [6, 7].

QUALITY ATTRIBUTES

Software quality is defined as the degree to which software

possesses a desired combination of attributes [17]. According

to [8] the quality requirements that software architecture has to

fulfill are commonly divided in two main groups based on the

quality they are requesting, i.e., development and operational

qualities. A development quality requirement is a requirement

that is of importance for the developers work, e.g.,

maintainability, understandability, and flexibility. Operational

quality requirements are requirements that make the system

better from the users point of view, e.g. performance and

usability. Depending on the domain and priorities of the users

and developers, quality requirements can become both

development and operational, such as performance in a real-

time system.

A quality attribute can be defined as a property of a software

system [5]. A quality requirement is a requirement that is

placed on a software system by a stakeholder; a quality

attribute is what the system actually presents once it has been

implemented. During the development of the architecture it is

therefore important to validate that the architecture has the

required quality attributes, this is usually done using one or

more architecture evaluations.

QUALITY ATTRIBUTES IN FOCUS

This survey focuses on software architecture evaluation

methods that address one or more of the following quality

attributes: performance, maintainability, testability, and

portability. The IEEE standard 610.12-1990 [17] defines the

four quality attributes as:

Maintainability: This is defined as:

“The ease with which a software system or component can be

modified to correct faults, improve performance or other

attributes, or adapt to a changed environment.”

Maintainability is a multifaceted quality requirement. It

incorporates aspects such as readability and understandability

of the source code. Maintainability is also concerned with

testability to some extent, as the system has to be re-validated

during the maintenance.

Performance: Performance is defined as:

“The degree to which a system or component accomplishes its

designated functions within given constraints, such as speed,

accuracy, or memory usage.”

There are many aspects of performance, e.g., latency,

throughput, and capacity.

Testability: Testability is defined as:

“The degree to which a system or component facilitates the

establishment of test criteria and the performance of tests to

determine whether those criteria have been met.”

We interpret this as the effort needed to validate the system

against the requirements. A system with high testability can be

validated quickly.

Portability: Portability is defined as:

“The ease with which a system or component can be

transferred from one hardware or software environment to

another.”

We interpret this as portability not only between different

hardware platforms and operating systems, but also between

different virtual machines and versions of frameworks.

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 3

These four quality attributes are selected, not only for their

importance for software developing organizations in general,

but also for their relevance for organizations developing

software in the real-time system domain in a cost effective

way, e.g., by using a product-line approach. Performance is

important since a system must fulfill the performance

requirements, if not, the system will be of limited use, or not

used. The long-term focus forces the system to be maintainable

and testable, it also makes portability important since the

technical development on computer hardware technology

moves quickly and it is not always the case that the initial

hardware is available after a number of years.

RELATED WORK

Surveying software architecture evaluation methods has, as far

as we know, been done in four previous studies. In two of the

cases, Dobrica and Niemelä [11] and Babar et al. [3], the

software architecture evaluation methods are compared with

each other in a comparison framework, specific for each study.

The survey by Etxeberria and Sagardui [13] compares

architecture evaluation methods with respect to the context of

architectures in software product lines. The last survey, by

Kazman et al. [20], does not address a large number of

architecture evaluation methods but uses two evaluation

methods as examples for illustrating how the methods fulfill a

number of criteria the authors argue are highly needed for an

architecture evaluation method to be usable.

The Dobrica and Niemelä survey [11], the earliest one, presents

and compares eight of the “most representative”, according to

themselves, architecture evaluation methods. The discussion of

the evaluation methods focus on 1) discovering differences and

similarities and 2) making classifications, comparisons and

appropriateness studies. The comparison and characterization

framework in the survey comprises the following elements; the

methods goal, which evaluation techniques are included in the

method, quality attributes (what quality attributes and what

number of quality attributes is considered), the software

architecture description (what views are the foci and in which

development phase), stakeholders’ involvement, the activities

of the method, support for a reusable knowledge base and the

validation aspect of the evaluation method.

The objective of the Babar et al. survey [3] is to provide a

classification and comparison framework by discovering

commonalities and differences among eight existing scenario-

based architecture evaluation methods. To a large extent, the

framework comprises features that are either supported by most

of the existing methods or reported as desirable by software

architecture researchers and practitioners. The framework

comprises the following elements; the method’s Maturity stage,

what definition of software architecture is required, process

support, the method’s activities, goals of the method, quality

attributes, applicable project stage, architectural description,

evaluation approaches (what types of evaluation approaches are

included in the method?), stakeholders involvement, support

for non-technical issue, the method’s validation, tool support,

experience repository, and resources required. The survey by

Etxeberria and Sagarduia [13] addresses an evaluation

framework for software architecture evaluation methods

addressing software product-line architectures. Since the life

span of a product-line architecture is longer than for ordinary

software architectures evolution is one prioritized quality

attribute that deserves extra

attention in an evaluation. There exist other quality attributes as

well, e.g. variability. The context of software product lines

imposes new requirements on architecture evaluation methods

and this is discussed by Etxeberria and Sagarduia and reflects

their classification framework. The framework comprises the

following elements; The goal of the method, attribute types

(what domain engineering and application engineering quality

attributes are addressed), evaluation phase (in the product line

context the evaluation can take place on different phases in

application engineering and domain engineering, respectively,

as well as in a synchronization phase between the two),

evaluation techniques, process description, the method’s

validation and relation to other evaluation methods.

The purpose of the last survey, by Kazman et al. [20], is

primary to provide criteria that are important for an evaluation

method to address, and not to compare existing evaluation

methods. The authors argue for criteria addressing what it

means to be an effective method, one that produces results of

real benefit to the stakeholders in a predictable repeatable way,

and a usable method one that can be understood and executed

by its participants, learned reasonably quickly, and performed

cost effectively. Thus, the survey ends up with the following

four criteria: 1) Context and goal identification, 2) Focus and

properties under examination, 3) Analysis Support, and 4)

Determining analysis outcomes. The survey by Dobrica and

Niemelä [11] provides an early, initial overview of the software

architecture evaluation methods. This was followed up by the

survey by Babar et al. [3] that presents a more detailed break-

down (including requirements on detailed method activities

etc.) and a more holistic perspective, e.g., process support, tool

support. The survey by Kazman et al. [20] presents additional

requirements on what a software architecture method should

support. The software product-line context survey by

Etxeberria and Sagarduia [13] addresses evaluation methods

from a prescribed way of developing software. This perspective

opened up some additional phases where an evaluation can take

place and put product-line important quality attributes more in

focus, e.g., variability and maintainability.

Our survey takes the perspective from a set of quality attributes

that are of general importance for software developing

organizations. This means that we are taking a more solution-

oriented approach, i.e., we are focusing on finding knowledge

about what existing evaluation methods can provide with

respect to the identified quality attributes. We are not aiming at

obtaining knowledge about general software architecture

evaluation methods or pose additional requirements on the

methods due to some completeness criteria or specific way of

developing the software, as in the four performed surveys. We

may add additional requirements on the evaluation method, but

if that is the case, the requirements will have its origin from the

four quality attributes addressed, performance, testability,

maintainability and portability.

 ARCHITECTURE EVALUATION METHODS

In this survey each of the software architecture evaluation

methods will be described according to a pre-defined template.

The template structures the description of the architecture

according to the following elements: Name and abbreviation (if

any), Category of method, Reference(s) where the method are

described in detail, Short description of the method, Evaluation

goal of the method, How many quality attributes the method

addresses, (one, many, or many where trade-off approaches

exist), What specific quality attributes the method address (or if

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 4

it is a more general evaluation method) and finally, the usage of

the method. Table 1 summarizes the template with indication of

potential values for each element. The initial selection of

research papers was made by searching through Compendex,

Inspec, and IEEE Xplore. The search Compendex and Inspec

resulted in 194 papers, and the search in IEEE Xplore produced

an additional 46 papers. The query used for the searched used

the following keywords, “software architecture” and “any of

evaluation, assessment or analysis” and “at least one of

performance, maintainability, testability, or portability”. The

keywords where truncated and stemmed when possible. In

total, we had 76 papers found from the database searches. We

then eliminated duplicate papers and papers that did not fulfill

our criteria of addressing one or more of the quality attributes

performance, maintainability, testability, or portability.

After the screening we had about 25 papers that contained

architecture evaluation methods and experience reports from

their use. From these papers we have identified 10 methods and

approaches that can be applied for architecture-level evaluation

of performance, maintainability, testability, or portability.

Table-1: Method Description Template

SAAM — SOFTWARE ARCHITECTURE ANALYSIS

METHOD

Software Architecture Analysis Method (SAAM) [19] is a

scenario-based software architecture evaluation method,

targeted for evaluating a single architecture or making several

architectures comparable using metrics such as coupling

between architecture components. SAAM was originally

focused on comparing modifiability of different software

architectures in an organization’s domain. It has since then

evolved to a structured method for scenario-based software

architecture evaluation. Several quality attributes can be

addressed, depending on the type of scenarios that are created

during the evaluation process. Case-studies where

maintainability and usability are evaluated have been reported

in [18], and modifiability, performance, reliability, and security

are explicitly stated in [21].

The method consists of five steps. It starts with the

documentation of the architecture in a way that all participants

of the evaluation can understand. Scenarios are then developed

that describe the intended use of the system. The scenarios

should represent all stakeholders that will use the system. The

scenarios are then evaluated and a set of scenarios that

represents the aspect that we want to evaluate is selected.

Interacting scenarios are then identified as a measure of the

modularity of the architecture. The scenarios are then ordered

according to priority, and their expected impact on the

architecture. SAAM has been used and validated in several

studies [10, 12, 18, 19, 25]. There also exist methods that are

extensions and/or further evolutions of SAAM, which are

surveyed by Dobrica and Niemelä [11].

ATAM — ARCHITECTURE TRADE-OFF ANALYSIS

METHOD

Architecture Trade-off Analysis Method (ATAM) [21] is a

scenario-based software architecture evaluation method. The

goals of the method are to evaluate an architecture- level design

that considers multiple quality attributes and to gain insight as

to whether the implementation of the architecture will meet its

requirements. ATAM builds on SAAM and extends it to handle

trade-offs between several quality attributes. The architecture

evaluation is performed in six steps. The first one is to collect

scenarios that operationalize the requirements for the system

(both functional and quality requirements). The second step is

to gather information regarding the constraints and

environment of the system. This information is used to validate

that the scenarios are relevant for the system. The third step is

to describe the architecture using views that are relevant for the

quality attributes that were identified in step one. Step four is to

analyze the architecture with respect to the quality attributes.

The quality attributes are evaluated one at a time. Step five is to

identify sensitive points in the architecture, i.e., identifying

those points that are affected by variations of the quality

attributes. The sixth and final step is to identify and evaluate

trade-off points, i.e., variation points that are common to two or

more quality attributes. ATAM has been used and validated in

several studies [21, 32].

ALMA — ARCHITECTURE-LEVEL MODIFIABILITY

ANALYSIS

Architecture-Level Modifiability Analysis (ALMA) [6, 7] is a

scenario-based software architecture evaluation method with

the following characteristics: focus on modifiability,

distinguish multiple analysis goals, make important

assumptions explicit, and provide repeatable techniques for

performing the steps. The goal of ALMA is to provide a

structured approach for evaluating three aspects of the

maintainability of software architectures, i.e., maintenance

prediction, risk assessment, and software architecture

comparison. ALMA is an evaluation method that follows

SAAM in its organization. The method specifies five steps: 1.

Determine the goal of the evaluation, 2. Describe the software

architecture, 3. Elicit a relevant set of scenarios, 4. Evaluate the

scenarios, and 5. Interpretation of the results and draw

conclusions from them. The method provides more detailed

descriptions of the steps involved in the process than SAAM

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 5

does, and tries to make it easier to repeat evaluations and

compare different architectures. It makes use of structural

metrics and base the evaluation of the scenarios on

quantification of the architecture. The method has been used

and validated by the authors in several studies [6, 7, 24].

RARE/ARCADE

RARE and ARCADE are part of a toolset called SEPA

(Software Engineering Process Activities) [4]. RARE

(Reference Architecture Representation Environment) is used

to specify the software architecture and ARCADE is used for

simulation-based evaluation of it. The goal is to enable

automatic simulation and interpretation of a software

architecture that has been specified using the RARE

environment. An architecture description is created using the

RARE environment. The architecture descriptions together

with descriptions of usage scenarios are used as input to the

ARCADE tool. ARCADE then interprets the description and

generates a simulation model. The simulation is driven by the

usage scenarios. RARE is able to perform static analysis of the

architecture, e.g., coupling. ARCADE makes it possible to

evaluate dynamic attributes such as performance and reliability

of the architecture. The RARE and ARCADE tools are tightly

integrated to simplify an iterative refinement of the software

architecture. The method has, as far as we know, only been

used by the authors.

ARGUS-I

Argus-I [37] is a specification-based evaluation method. Argus-

I makes it possible to evaluate a number of aspects of an

architecture design. It is able to perform structural analysis,

static behavioral analysis, and dynamic behavioral analysis, of

components. It is also possible to perform dependence analysis,

interface mismatch, model checking, and simulation of

architecture. Argus-I uses a formal description of a software

architecture and its components together with state charts that

describe the behavior of each component. The described

architecture can then be evaluated with respect to performance,

dependence, and correctness. There is no explicit process

defined that the evaluation should follow, but some guidance is

provided. The evaluation results in a quantification of the

qualities of the architecture. The performance of the

architecture is estimated based on the number of times that

components are invoked. The simulation can be visualized

using logs collected during the simulation. The method has, as

far as we know, only been used by the authors.

LQN — LAYERED QUEUING NETWORKS

Layered queuing network models are very general and can be

used to evaluate many types of systems. Several authors have

proposed the use of queuing network models for software

performance evaluation [14, 15, 22, 30, 33]. Further, there also

exist many tools and toolkits for developing and evaluating

queuing network models, e.g., [14, 15]. A queuing network

model can be solved analytically, but is usually solved using

simulation. The method relies on the transformation of the

architecture into a layered queuing network model. The model

describes the interactions between components in the

architecture and the processing times required for each

interaction. The creation of the models requires detailed

knowledge of the interaction of the components, together with

behavioral information, e.g., execution times or resource

requirements. The execution times can either be identified by,

e.g. Measurements, or estimated. The more detailed the model

is the more accurate the simulation result will be.

The goal when using a queuing network model is often to

evaluate the performance of software architecture or a software

system. Important measures are usually response times,

throughput, resource utilization, and bottleneck identification.

In addition, some tools not only produce measures, but also

have the ability to visualize the system behavior.

SAM

SAM [38] is a formal systematic methodology for software

architecture specification and analysis. SAM is mainly targeted

for analyzing the correctness and performance of a system.

SAM has two major goals. The first goal is the ability to

precisely define software architectures and their properties, and

then perform formal analysis of them using formal methods.

Further, SAM also supports an executable software architecture

specification using time Petri nets and temporal logic. The

second goal is to facilitate scalable software architecture

specification and analysis, using hierarchical architectural

decomposition. The authors have as far as we know, only used

the method.

EBAE — EMPIRICALLY-BASED ARCHITECTURE

EVALUATION

Lindvall et al. describe in [26] a case study of a redesign/

reimplementation of a software system developed more or less

in-house. The main goal was to evaluate the maintainability of

the new system as compared to the previous version of the

system. The paper outlines a process for empirically based

software architecture evaluation. The paper defines and uses a

number of architectural metrics that are used to evaluate and

compare the architectures. The basic steps in the process are:

select a perspective for the evaluation, define/select metrics,

collect metrics, and evaluate/compare the architectures. In this

study the evaluation perspective was to evaluate the

maintainability, and the metrics were structure, size, and

coupling. The evaluations were done in a late development

stage, i.e., when the systems already were implemented. The

software architecture was reverse engineered using source code

metrics.

ABAS — ATTRIBUTE-BASED ARCHITECTURAL

STYLES

Attribute-Based Architectural Styles (ABASs) [23] build on the

concept of architectural styles [9, 35], and extend it by

associating a reasoning framework with an architectural style.

The method can be used to evaluate various quality attributes,

e.g., performance or maintainability, and is thus not targeted at

a specific set of quality attribute. The reasoning framework for

an architectural style can be qualitative or quantitative, and are

based on models for specific quality attributes. Thus, ABASs

enable analysis of different quality aspects of software

architectures based on ABASs. The method is general and

several quality attributes can be analyzed concurrently, given

that quality models are provided for the relevant quality

attributes. One strength of ABASs is that they can be used also

for architectural design. Further, ABASs have been used as part

of evaluations using ATAM [21].

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 6

SPE — SOFTWARE PERFORMANCE ENGINEERING

Software performance engineering (SPE) [36, 39] is a general

method for building performance into software system. A key

concept is that the performance shall be taken into

consideration during the whole development process, not only

evaluated or optimized when the system already is developed.

SPE relies on two different models of the software system, i.e.,

a software execution model and a system execution model. The

software execution model models the software components,

their interaction, and the execution flow. In addition, key

resource requirements for each component can also be

included, e.g., execution time, memory requirements, and I/O

operations. The software execution model predicts the

performance without taken contention of hardware resources

into account.

The system execution model is a model of the underlying

hardware. Examples of hardware resources that can be modeled

are processors, I/O devices, and memory. Further, the waiting

time and competition for resources are also modeled. The

software execution model generates input parameters to the

system execution model. The system execution model can be

solved by using either mathematical methods or simulations.

The method can be used to evaluate various performance

measures, e.g., response times, throughput, resource utilization,

and bottleneck identification. The methods are primarily

targeted for performance evaluation. However, the authors

argue that their method can be used to evaluate other quality

attributes in a qualitative way as well [39].

SUMMARY OF ARCHITECTURE EVALUATION

METHODS

Table 2 summarizes the most important characteristics (see

Table 1) of our survey of software architecture evaluation

methods. As we can see, most of the methods address only one

quality attribute of those that we consider in this survey, and

the most common attribute to address is performance.

Surprisingly, no method was found that specifically address

portability or testability. Further, we can observe that only one

method exists that support trade-off analysis of software

architectures. Finally, we also observe that only two methods

seem to have been used by others than the method inventor.

DISCUSSION

Despite the promising number of primary studies found, i.e.,

76, it turned out that only 10 software architecture evaluation

methods were possible to identify that addressed one or more

of the performance, maintainability, testability, or portability

quality attributes. There exist several reasons for this large

reduction of the number of articles. First, there were some

duplicate entries of the same article since we searched several

databases. Second, a large portion of the papers evaluated one

or several quality attributes in a rather ad hoc fashion. As a

result, we excluded those papers from our survey since they did

not document a repeatable evaluation method or process. Third,

several papers addressed both hardware and software

evaluations, thus they did not qualify in our survey with its

focus on methods for software architecture evaluation.

Table-2: Summary of evaluation method characteristics.

Continuing with the ten remaining articles, we found that five

of the methods addressed only one single quality attribute.

Only one (ATAM) of the remaining five methods addressing

multiple attributes provides support for trade-off analysis

between the quality attributes. No specific methods evaluated

testability or portability explicitly. These quality attributes

could be addressed by any of the three evaluation methods that

are more general in their nature, i.e., that could address more

arbitrary selected quality attributes, ATAM [21], SAAM [19],

or the method by Lindvall et al. [26].

Many of the methods have been used several times of the

authors. Multiple use of the method indicates an increase in

validity of the method. However, only two methods have been

used by others than the original authors of the method. We

believe that external use of a method is an indication of the

maturity of the method. These two methods are SAAM and

ATAM. However, experience papers that use a method in

whole or part are particularly difficult to identify, since the

evaluation method that has been used is not always clearly

stated.

CONCLUSIONS

The architecture of a software system has been identified as an

important aspect in software development, since the software

architecture impacts the quality attributes of a system, e.g.,

performance and maintainability. A good software architecture

increases the probability that the system will fulfill its quality

requirements. Therefore, methods for evaluating the quality

attributes of software architectures are important.

In this paper, we present a survey of evaluation methods for

software architecture quality attribute evaluation. We focus on

methods for evaluating one or several of the quality attributes

performance, maintainability, testability, and portability.

Methods that evaluate several quality attributes and/or trade-off

analysis are especially interesting. Based on a broad literature

search in major scientific publication databases, e.g., Inspec,

and reviewing of 76 articles, we present and compare ten

evaluation methods. We have found that many evaluation

methods only address one quality attribute, and very few can

evaluate several quality attributes simultaneously in the same

framework or method. Specifically, only one of the methods

includes trade-off analysis. Further, we have identified that

many methods are only used and validated by the method

inventors themselves.

In summary, our results suggest

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 7

•An increased research focus on software architecture

evaluation methods than can address several quality attributes

simultaneously,

•An increased research focus on software architecture

evaluation methods than can address the possible tradeoffs

between different quality attributes, and

•An increased focus on validation of software architecture

evaluation methods by people other than the method inventors.

REFERENCES

[1] Aquilani, F., Balsamo, S., and Inverardi, P., “Performance

Analysis at the Software Architectural Design Level,”

Performance Evaluation, vol. 45, pp. 147-178, 2001.

[2] Avritzer, A. and Weyuker E. J., “Metrics to Assess the Likelihood

of Project Success Based on Architecture Reviews,” Empirical

Software Engineering, 4(3):199-215, 1999.

[3] Babar, M. A., Zhu, L., and Jeffery, R., “A framework for

classifying and comparing software architecture evaluation

methods,” Proc. Australian Software Engineering Conference,

pp. 309-318, 2004.

[4] Barber, K. S., Graser, T., and Holt, J., “Enabling iterative software

architecture derivation using early non-functional property

evaluation,” Proc. 17th IEEE International Conference on

Automated Software Engineering, pp. 23-27, 2002.

[5] Bass, L., Clements, P., and Kazman, R., Software Architecture in

Practice, ISBN 0-631-21304-X, Addison-Wesley, 2003.

[6] Bengtsson, PO., Architecture-Level Modifiability Analysis, ISBN

91-7295-007-2, Blekinge Institute of Technology, Dissertation

Series No 2002-2, 2002.

[7] Bengtsson, PO., Lassing, N., and Bosch, J., “Architecture Level

Modifiability Analysis (ALMA),” Journal of Systems and

Software, vol. 69, pp. 129-147, 2004.

[8] Bosch, J., Design & Use of Software Architectures – Adopting and

evolving a product-line approach, ISBN 0-201- 67494-7, Pearson

Education, 2000.

[9] Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P , and

Stal, M., Pattern-Oriented Software Architecture – A System of

Patterns, ISBN 0-471-95869-7, Wiley, 1996.

[10] Castaldi, M., Inverardi, P., and Afsharian, S., “A case study in

performance, modifiability and extensibility analysis of a

telecommunication system software architecture,” Proc. 10th

IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems, pp.

281-290, 2002.

[11] Dobrica, L. and Niemelä, E., “A Survey On Architecture Analysis

Methods,” IEEE Transactions on Software Engineering,

28(7):638-653, 2002.

[12] Eikelmann, N. S. and Richardson, D. J., “An Evaluation of

Software Test Environment Architectures,” Proc. 18th

International Conference on Software Engineering, pp. 353-364,

1996.

[13] Etxeberria, L. and Sagardui, G., “Product-Line Architecture: New

Issues for Evaluation,” Lecture Notes in Computer Science,

Volume 3714, ISBN 3-540-28936-4, Springer-Verlag GmbH,

2005.

[14] Franks, G., Hubbard, A., Majumdar, S., Petriu, D., Rolia, J., and

Woodside C.M., “A Toolset for Performance Engineering and

Software Design of Client-Server Systems,” Performance

Evaluation, 24(1-2):117-136, November 1995.

[15] Gunther, N., The Practical Performance Analyst, ISBN 0- 07-

912946-3, McGraw-Hill, 1998.

[16] Holzmann, G.J., “The Model Checker SPIN,” IEEE Transactions

on Software Engineering, 23(5):279-295, May 1997.

[17] IEEE std 610.12-1990 (n.d.). IEEE Standard Glossary of

Software Engineering Terminology, 1990. Retrieved January 19,

2006. Web site: http://ieeexplore.ieee.org/

[18] Kazman, R., Abowd, G., Bass, L., and Clements, P., “Scenario-

based analysis of software architecture,” IEEE Software,

13(6):47-55, November 1996.

[19] Kazman, R., Bass, L., Abowd, G., and Webb, M., “SAAM: A

Method for Analyzing the Properties of Software Architectures,”

Proc. 16th International Conference of Software Engineering, pp.

81-90, 1994.

[20] Kazman, R., Bass, L., Klein, M., Lattanze, T., and Northrop, L.,

“A Basis for Analyzing Software Architecture Analysis

Methods,” Software Quality Journal, 13(4):329-355, 2005.

[21] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H.,

and Carriere, S. J., “The Architecture Tradeoff Analysis

Method,” Proc. 4th IEEE International Conference on

Engineering of Complex Computer Systems, pp. 68-78, 1998.

[22] King, P., Computer and Communication Systems Performance

Modelling, ISBN 0-13-163065-2, Prentice Hall, 1990.

[23] Klein, M. and Kazman, R., “Attribute-Based Architectural

Styles,” CMU/SEI-99-TR-22, Software Engineering Institute,

Carnegie Mellon University, 1999.

[24] Lassing, N., Bengtsson, P., Van Vliet, H., and Bosch, J.,

“Experiences with ALMA: Architecture-Level Modifiability

Analysis,” Journal of Systems and Software, 61(1):47-57, March

2002.

[25] Lassing, N., Rijsenbrij, D., and van Vliet, H., “Towards a Broader

View on Software Architecture Analysis of Flexibility,” Proc.

Sixth Asia-Pacific Software Engineering Conference, pp. 238-

245, 1999.

[26] Lindvall, M., Tvedt, R. T., and Costa, P., “An empiricallybased

process for software architecture evaluation,” Empirical Software

Engineering, 8(1):83-108, 2003.

[27] Liu, A. and Gorton, I., “Accelerating COTS Middleware

Acquisition: The i-Mate Process,” IEEE Software, 20(2): 72- 79,

March/April 2003.

[28] Luckham, D. C., “Rapide: A Language and Toolset for

Simulation of Distributed Systems by Partial Orderings of

Events,” Proc. DIMACS workshop on Partial order methods in

verification, pp. 329-357, Princeton, 1997.

[29] Luckham, D., John, K., Augustin, L., Vera, J., Bryan, D., and

Mann, W., “Specification and Analysis of System Architecture

using RAPIDE,” IEEE Transactions on Software Engineering,

21(4):336-335, 1995.

[30] Menascé, D., Almeida, V., and Dowdy, L., Capacity Planning and

Performance Modelling, ISBN 0-13-035494-5, Prentice Hall,

1994.

[31] Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G.J.,

“Implementing Statecharts in PROMELA/SPIN,” Proc. 2nd IEEE

Workshop on Industrial Strength Formal Specification

Techniques, pp. 90-101, October 1998.

[32] Mukkamalla R., Britton M., and Sundaram P., “Scenario- Based

Specification and Evaluation of Architectures for Health

Monitoring of Aerospace Structures,” Proc. 21st Digital Avionics

Systems Conference, Vol 2, pp. 12E1-1-12E1- 12, October 2002.

[33] Petriu, D., Shousha, C., and Jalnapurkar, A., “Architecture- Based

Performance Analysis Applied to a Telecommunication System,”

IEEE Transactions on Software Engineering, 26(11):1049-1065,

November 2000.

[34] Reusner, R., Schmidt, H.W., and Poernomo, I. H., “Reliability

prediction for component-based software architectures,” Journal

of Systems and Software, 66(3):76-252, 2003.

[35] Shaw, M. and Garlan, D., Software Architecture: Perspectives on

an Emerging Discipline, ISBN 0-13-182957-2, Prentice-Hall,

1996.

[36] Smith, C. and Williams, L., Performance Solutions, ISBN 0- 201-

72229-1, Addison-Wesley, 2002.

[37] Vieira, M. E. R., Dias, M. S., and Richardson, D. J., “Analyzing

software architectures with Argus-I,” Proc. 22nd International

Conference on Software Engineering, pp. 758- 761, 2000.

[38] Wang, J., He, X., and Deng, Y., “Introducing Software

Architecture Specification and Analysis in SAM Through an

L. S. Maurya et al, Journal of Global Research in Computer Science, 1 (4), November 2010 ,1-8

© JGRCS 2010, All Rights Reserved 8

Example,” Information and Software Technology, 41(7):451-

467, May 1999.

[39] Williams, L. G. and Smith, C. U., “Performance Evaluation of

Software Architectures,” Proc. 1st International Workshop on

Software and Performance, pp. 164-177, 1998.

