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ABSTRACT 

 

The complexation reactions between the metal cation (Ca2+) 

and ligand (ampicillin) was studied in water and in pure MeOH 

solvent at 293.15, 298.15, 303.15 and 308.15K by applying the 

conductometric method. Consequently, we will study the effect of 

solvent properties on stoichiometry, the selectivity between ligand 

and ions in various systems and thermodynamic parameters of 

complexation. On drawing the relation between molar conductance 

and the ratio of metal to ligand concentrations, different lines are 

obtained indicating the formation of 1:1, and 2:1 (M:L) 

stoichiometric complexes. The stability constant of the complexes 

were obtained from fitting the molar conductivity curves using a 

computer program. This research focused on the study of 

thermodynamic complexation reactions between the ligand, 

ampicillin, with Ca2+ metal cation in water and pure MeOH solvent.  

 

INTRODUCTION 

 

The study of the interactions involved in the complexation of different cations with ligand in 

solvent mixtures is important for a better understanding of the mechanism of biological transport, 

molecular recognition, and other analytical applications. 

 

Recently, there has been much research on complex formation. There are a number of physico-

chemical techniques that can be used in the study of these complexation reactions, for example, 

spectrophotometry, polarography, NMR spectrometry, calorimetry, potentiometry and conductometry [1]. 

Nevertheless of all these techniques, conductometric techniques are the most useful for studying this 

complexation of complexes. This is because conductometric techniques are highly sensitive and 

inexpensive, with a simple design of experimental arrangement for such investigations [2]. Therefore, it 

offers more benefits than the other methods.  

 

Transition metal ions have a strong role in bio-inorganic chemistry and redox enzyme systems and 

may provide the basis of models for active sites of biological systems [3]. The chemistry of β-lactam 

antibiotic is of interest due to their versatile application in medicine and biology. Ampicillin is a penicillin β -

lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive 

organisms. [4]. The pharmacology and clinical efficiency of ampicillin and amoxicillin were extensively 

studied by many worker [5].  

 

In this study, we discuss the complexation reaction between ampicillin that acts as a ligand with 

divalent  cations in water and in methanol at different temperatures (293.15, 298.15, 303.15 and 

308.15K). This study has been conducted at different temperatures by applying the conductometric 

http://www.rroij.com/jpps/index.php/jpps
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method. Consequently, we will study the effect of solvent properties on stoichiometry of complexes 

formation between ligand and ions in various systems. 

 

EXPERIMENTAL 

 

Material and methods  

 

All chemicals used were of the highest purity available and were purchased from Merck. 

 

The ligand  

 

Molecular Structure of Ampicillin sodium salt: 

 
 

 

Molecular Formula: C16H18N3NaO4S 

 

Conductometric titration  

 

In a typical experiment, 10 m; of the ampicillin solution (1.0 x 10-4 M) was placed in the titration 

cell, thermostated at the preset temperature and the conductance of the solution was measured after the 

solution reached thermal equilibrium. Then, a known amount of the CaCl2 solution (1.0 x 10-3 M) was 

added in a stepwise manner using a calibrated micropipette. The conductance of the solution was 

measured after each addition until the desired cation-to-ligand mole ratio was achieved. The specific 

conductance values were recorded using conductivity bridge HANNA, H1 8819N with a cell constant equal 

to 1. The conductometer was conducted with a thermostat of the type the Kottermann 4130 ultra 

thermostat. The temperature was adjusted at 293.15, 298.15, 303.15 and 308.15 K. 

 

RESULT AND DISCUSSION 

The molar conductance (Λm) values were calculated using equation (1): 

( ) 1000s solv cell
m

K K K

C

 
 

          (1) 

Where    Ks   and  Ksolv  are  the  specific  conductance  of  the solution  and the solvent, 

respectively ;  Kcell is the cell constant and C is the molar concentration of the CaCl2 solution. 

 

By drawing the relation between molar conductance (/\m) and the molar ratio of metal to ligand 

[M]/[L] concentrations different lines are obtained with sharp breaks indicating the formation of 1:1 and 

2:1 [M : L] stoichiometric complexes, Fig. (1-4).  

 

As is obvious from Fig. (1-4), in all cases studied, addition of the CaCl2 solution to the ligand 

(ampicillin ) solutions caused a continuous decrease in the molar conductance of the solutions, indicating 

the lower mobility of the complexed cations compared to the solvated ones. In all cases, the slope of the 

molar conductance-mole ratio plots change sharply at the point where the ligand to cation mole ratio 

indicate the formation of  stoichiometric complexes, indicating the formation of a relatively stable 1:1 and 

2:1 [M : L] complex between the ligand and the cation solutions used.  

 

The 1:1 binding of the Ca2+ cations with ampicillin ligand can be expressed by equilibrium: 

 

M2+      +    L                        ML2+ 

 

6-[(Aminophenylacetyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3,2,0]heptane-2-carboxylic acid sodium salt 

Kf 
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and the corresponding formation constants (Kf) for Ca2+-ampicillin complexes were calculated by using 

equation: 

      (2) 

where [ML2+],[M2+], [L] and f represents the equilibrium molar concentrations of complex, free 

cation , free ligand and the activity coefficients of the species indicated, respectively. 

 

Under the dilute conditions used, the activity coefficient of the uncharged ligand, fL can be 

reasonably assumed to as unity [6, 7]. The use of Debey-Hückel limiting law of electrolytes [8] leads to the 

conclusion that  & , so that the activity coefficients in Eq. 2 cancel out.  

 

Thus, the complex formation constant in terms of the molar conductance can be expressed as [9-11]: 

 

       (3) 

     (4) 

 

here, ΛM is the molar conductance of the CaCl2 solution before addition of the ligand, ΛML the molar 

conductance of the complex, Λobs the molar conductance of the solution during titration, CL the analytical 

concentration of the ligand, and CM2+, the analytical concentration of the CaCl2 solution. The complex 

formation constant, Kf, and the molar conductance of the complex, ΛML, were obtained by computer fitting 

of Eqs. (3) and (4) to the molar conductance- mole ratio data using a nonlinear least- squares [12]. 

 

The stability constants of the resulting 1:1 and 2:1 [M:L] complexes were determined from the 

computer fitting of Eqs. 3 and 4 to the molar conductance-mole ratio data. A sample computer fit of the 

mole ratio data is shown in Fig. (1-4) and all Kf values are summarized in Table 1. 

 

The Gibbs free energies of formation for each stoichiometric complex were calculated by: 

∆Gf = - RT ln Kf                (5) 

The calculated ∆Gf values are presented in tables (2). 

The enthalpy changes of complexation (ΔHf) were calculated from the plots of log Kf against 1/T, 

(slope = -H/2.303 R) (Fig. 5) using Van’t Hoff eqn .6:- 

(6)    constant      
T

1
  

2.303R

 ΔH
   K ogl 












 

Where R is the gas constant and T is the absolute temperature.  

Entropy change S were for complexes calculatd [13-85] by using Gibbs-Helmholtz equation (6)     

ΔGf = ΔHf – TΔSf                          (7) 

The calculated values of (ΔHf) and (ΔSf) for CaCl2-ampicillin stoichiometric complexes are presented in 

Table (3) 

 

In order to obtain a better understanding of the thermodynamics of the complexation reactions, it 

is useful to consider the enthalpic and entropic contributions to these reactions. The enthalpy and entropy 

of the complexation reactions were determined by measuring the formation constants as a function of 

temperature. Enthalpies and entropies of complexation reactions show that, in most cases, the reaction is 

entropic controlled although, in all cases, a negative value of enthalpic change is also obtained. 

http://en.wikipedia.org/wiki/Van_%27t_Hoff_equation
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Comparison of ΔHf values of complexation (Table 3) clearly revealed that the steric hindrance in organic 

ligand is an important factor in enthalpy changes in the process of complexation reactions. On the other 

hand, in most cases, the entropy changes during complexation reactions are quite favorable. The entropic 

change during the complex formation is in fact affected by several factors including the change in flexibility 

of the reactants in the course of complexation reaction and the differences between the extent of 

solvation– desolvation of the uncomplexed and complexed species. In the case of the complexation 

reactions of ligand with Ca2+ cations, a large positive ΔSf was obtained. This observation seems to be due 

to strong solvation of ligand by solvent alike MeOH [13–32]; during the process of complex formation with the 

ligand, these solvent molecules are liberated, causing a favorable entropic change. Interestingly to note, a 

comparison between the ΔSf, ΔHf and ΔGf values reported in Table 2&3 reveals that generally a decrease 

in ΔHf value is accompanied with an increase in ΔSf in such a way that the free energy change ΔGf will 

remain more or less constant. Such enthalpy-entropy compensation effect was observed earlier in the case 

of complexation reactions of ligands with cation and inorganic guest species [33-85]. 

 

Since  the  conductance  of  an  ion  depends mainly  on  its  mobility,  it  is  quite reasonable  to 

treat  the rate process taking place with the change of temperature on the basis of equation(8):    

Λo =A e-Ea/RT                       (8) 

RT

aE

o
303.2

loglog 
         

(9) 

where A  is  the  frequency  factor, R  is  the gas constant  and Ea   is  the Arrhenius activation energy of the  

transfer  process. Consequently, from the plot of log (Λo) vs. 1/T, the Ea values can be evaluated [50-85] as 

shown in Fig (5&6) for (1:1) M to L stoichiometric complexes of CaCl2 and ampicillin in water and in 

methanol, giving high activation energy value due to solvation behavior. 
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Figure 1: The relation between molar conductance ( m ) and the [M]/[L] molar ratio of CaCl2 to ampicillin  

in water at different  temperatures. 
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Figure 2: The relation between molar conductance ( m ) and the [M]/[L] molar ratio of CaCl2 to ampicillin  

in methanol at different  temperatures. 
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Figure 3: The relation between (log Kf) and (1/T) for (1:1) and (1:2) M to L stoichiometric complexes of 

CaCl2 and ampicillin  in water. 
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Figure 4: The relation between (log Kf) and (1/T) for (1:1) and (1:2) M to L stoichiometric complexes of 

CaCl2 and ampicillin  in methanol. 
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Figure 5: The relation between (log Λo) and (1/T) for (1:1) M to L stoichiometric complexes of CaCl2 and 

ampicillin in water. 
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Figure 6: The relation between (log Λo) and (1/T) for (1:1) M to L stoichiometric complexes of CaCl2 and 

ampicillin in methanol. 

 

Table 1: The formation constants (log Kf) of formation of CaCl2 and ampicillin  complexes in water and in 

methanol at different temperatures. 

 

Temp. 
log Kf in H2O log Kf in MeOH 

1:1 (M:L) 2:1 (M:L) 1:1 (M:L) 2:1 (M:L) 

293.15 K 6.693 5.017 5.755 5.079 

298.15 K 5.045 4.896 5.770 5.191 

303.15 K 5.004 4.831 6.101 4.941 

308.15 K 4.815 4.624 5.684 4.821 

 

 

Table 2: The Gibbs free energies (ΔGf) of formation of CaCl2 and ampicillin  complexes in water and in 

methanol at different temperatures. 

 

Temp. 
ΔGf in H2O (kJ mol-1) ΔGf in MeOH (kJ mol-1) 

1:1 (M:L) 2:1 (M:L) 1:1 (M:L) 2:1 (M:L) 

293.15 K -37.560 -28.160 -32.299 -28.0502 

298.15 K -28.922 -27.943 -32.935 -29.799 

303.15 K -29.039 -28.035 -35.407 -28.672 

308.15 K -28.401 -28.503 -33.533 -28.440 

 

Table 3: The enthalpies (ΔHf) and entropies (ΔSf) of formation of CaCl2 and ampicillin  complexes in water 

at different temperatures. 

 

M:L 
ΔSf (kJ mol-1 K-1) ΔHf 

(kJ mol-1) 
293.15 K 298.15 K 303.15 K 308.15 K 

1:1 
-0.5931 -0.6125 -0.6016 -0.5939 -211.416 

2:1 
-0.1319 -0.1304 -0.1279 -0.1295 -66.8204 

 

Table 4: The enthalpies (ΔHf) and entropies (ΔSf) of formation of CaCl2 and ampicillin  complexes in 

methanol at different temperatures. 

 

M:L 
ΔSf (kJ mol-1 K-1) ΔHf 

(kJ mol-1) 
293.15 K 298.15 K 303.15 K 308.15 K 

1:1 
-0.00379 -0.00586 -0.001392 -0.00761 -31.186 

2:1 
-0.1197 -0.11390 -0.11520 -0.11411 -63.602 
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Table 5: Activation energy (Ea), Gibbs free energy of activation (ΔG*) and entropy change of activation 

(ΔS*) for CaCl2 and ampicillin (1:1) complexes in water at different temperatures. 

 

Temp. ΔG*(kJ mol-1) ΔS*(kJ mol-1 K-1) Ea*(kJ mol-1) 

293.15 K -14.5412 6.607E-02 

4.8276 
298.15 K -14.9708 6.640E-02 

303.15 K -15.2277 6.616E-02 

308.15 K -15.5454 6.611E-02 

 

Table 6: Activation energy (Ea), Gibbs free energy of activation (ΔG*) and entropy change of activation 

(ΔS*) for CaCl2 and ampicillin (1:1) complexes in methanol at different temperatures. 

 

Temp. ΔG*(kJ mol-1) ΔS*(kJ mol-1 K-1) Ea*(kJ mol-1) 

293.15 K -13.8931 1.033E-01 

16.3859 
298.15 K -14.4373 1.034E-01 

303.15 K -14.9452 1.034E-01 

308.15 K -15.2165 1.026E-01 

 

CONCLUSION 

 

This research focused on the study of thermodynamic complexation reactions between the ligand, 

ampicillin , with Ca2+ metal cation. The stability constants of the complex formation between ligand and 

metal cations was investigated by applying the conductometric method at different temperatures. Based 

on the results, the stability constant for the complexation reaction of Ca2+–ampicillin  shows a decrease 

with increasing temperatures.  

 

In this thermodynamic study, the negative sign of the ΔGf shows that the ligand is capable of 

forming stable complexes and that the process will proceeding spontaneously, while the positive sign of 

the entropy shows that ΔSf is the driving force of the complexation reaction in this complex formation. 

These facts mean that ΔGf is always negative and ΔSf is always positive. 
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