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ABSTRACT: Output constraints usually occur when the number of manipulated variables is smaller than the number of 
output variables. In this case, every output cannot have its own set point. Some of the outputs can then only be constrained 
to a specific range of values instead of being associated to a specific set point value. The respect of the constraints for these 
outputs has priority over the other outputs with set points. One of the objective of this section is to develop methods 
applicable to a one-input and multiple-output processes where one output must reach a given set point as long as the other 
outputs lie between their lower and upper limits. 
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I.INTRODUCTION 
 
 

A possible solution is override control (Shinskey, 1984). This method is a selective control strategy where the 
manipulated variable is selected as the largest or the smallest output value of the PID controllers. One controller is tuned to 
make the process output reach its set point while the other controllers are each set to bring the process output to a constraint 
limit without overshooting. To prevent reset windup, the integration part of the controllers is achieved by a positive 
feedback of the effective manipulated variable. Some authors (Giles and Gaines, 1978) have suggested that, instead of 
making both controller outputs track the effective manipulated variable, better results are achieved by making both 
controller integrators tracking each other. 
 

This section studies properties of cascaded control loop to achieve constrained control. Cascade controllers (Boyce 
and Brosilow, 1996) are described and their qualities and drawbacks are highlighted. A variation of this controller, called 
pseudo-cascade (Lestage et al.,1997), is presented. A simulated example compares both methods.  
 

II.SERIAL CASCADE CONTROLLER 
 

Serial cascade controllers are well known and widely used. A serial cascade controller is shown in figure 1. The 
final control variable is y2 but an intermediate measurement y1 is available. Controller GC1(s) regulates output y1. The 
controller GC2(s) manipulates the first controller set point r1 to regulate the final control variable y2. The main quality of 
this controller structure is the ability to cancel disturbance p1 faster than a single loop controller (Caldwell, 1959). The 
saturation block is a device used to constrain the amplitude of the intermediate output variable y1 through its set point r1. 
Due to possible controller output saturation, both controllers must feature anti-reset wind-up protection. 

 
Fig.1 Serial cascade controller 
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III.PARALLEL CASCADE CONSTRAINT HANDLING METHOD 

 
Serial process representation is not always possible due to the physical nature of the process. Figure 2 shows the 

same controller as the one of fig.1 with a different process represented by parallel transfer functions. The goal of the system 
is to make y2 reach the set point r2 as long as the constraints on y1 are respected. The inner-loop controller, GC1(s), is used 
to regulate the constrained output, y1. GC1(s) is tuned to avoid overshooting of the constrained variable y1. The saturation 
insures that the inner loop set point respects the constraint imposed to y1. The second controller, GC2(s), is tuned to regulate 
the output y2 to its set point. Because of the saturation, controllers must again have the ability to prevent integral wind-up. 
When more than one output is constrained, additional cascade loops are nested. Constraints are then respected with the 
priority given from the inner loop toward the outer loops. 

In open-loop, the disturbance p1 does not affect the output y2. However, in closed loop, the output y2 becomes 
sensitive to the disturbance p1. The transfer function from p1 to y2, calculated is 

 
Fig.2 Parallel cascade method 
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The closed-loop transfer function from r2 to y2 is then: 
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The previous equations state that the tuning of GC2(s), based on y2(s)/r2(s) is function of GC1(s), G1(s) and G2(s). Thus 
any modification of the inner control loop requires a new tuning for GC2(s). The outer control loop is sensitive to 
uncertainties on both G1(s) and G2(s). If more than two loops are cascaded, complexity raises since the outer controllers are 
dependent of the transfer functions of every other inner controllers and their associated process transfer functions. 
 

IV.PSEUDO-CASCADE CONSTRAINT HANDLING METHOD 
 

An innovative and simple cascade strategy is depicted in figure 3. Again, a first controller GC1(s) is used to 
control the constrained output. The set point of this controller is limited to the permissible value of the output y1. In this 
structure, it can be seen that when the saturation is not active, the positive feedback y1 cancels the negative one. The 
method is called pseudocascade since the inner feedback loop is not effective unless saturation occurs. The transfer function 
of the second controller is GC2(s) GC1

-1(s). Since GC1
-1(s) cancels GC1(s), then GC2(s) is tuned with respect to the process 

G2(s). The resulting closed-loop transfer function is : 
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The tuning of GC2(s) is independent of the inner loop controller GC1(s) and inner loop process G1(s). This property 
allows the nesting of a great number of control loops with simple and independent tuning of each loop. This provides easier 
maintenance since the tuning of an inner loop does not require any correction to the other loops. Another advantage of this 
structure over the parallel cascade is that, when the saturation is not active, disturbances p1 and noise occurring on y1 are 
cancelled and are not fed back into the inner loop. This property makes the pseudo-cascade strategy less prone to react to 
disturbances on y1 when the constraint is not active. This property will be later illustrated by an example. 

 
Since the system contains saturating elements, care must be taking to prevent nonlinear phenomena such as 

integrator windup, limit cycles operation or signal saturation due to noise. The integrator windup problem is easily solved 
when both GC2(s) and GC1(s) have an integrator. No anti-reset windup feature is required in the GC2(s)GC1 -1(s) 
controller because the integrator of the controller GC2(s) is cancelled by GC1 -1(s). It is however important to implement 
the minimum (simplified) realization of GC2(s)GC1 -1(s) into the process computer. The presence of noise in the system 
can result in unexpected behavior due to signal clipping by the saturation element. The noise makes the system 
continuously switch between the inner and outer loop control. The stationary response is then different from the noiseless 
steady-state behavior. 
  

V.SENSITIVITY TO DISTURBANCES 
 

In order to compare the responses of the parallel cascade and the pseudo-cascade methods to a disturbance p1, a 
simulated process with the following parallel transfer functions is used: 
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For both methods, controllers are tuned to get the following closed loop transfer functions: 
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Pole-zero cancellation method led to the following controllers for the parallel cascade method: 
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Similarly, pseudo-cascade controllers are: 
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Simulations shown in figure 3 illustrate a set point change from r2=0 to r2=1 at time 0. This set point is achieved without 
error or constraint problem. At time 100 sec, a disturbance p1=0.25 step change occurs. The parallel cascade configuration 
takes action on this disturbance even if there is no constraint violation. Since there is no constraint violation, pseudo-
cascade saturation is not active and the pseudo-cascade algorithm takes no unnecessary action. In this case, the 
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pseudocascade method is less sensitive to disturbance. At time 150 sec., the set point value is changed to 2. The set point is 
not reached due to the constraint on y1. Both methods achieve the same set point and constraints dynamics when same 
closed-loop specifications are specified. The pseudo-cascade is however less sensitive to the disturbance p1 when the 
constraint is not active. 

 
Fig.3 comparison of cascade, parallel cascade, pseudo cascade for set point 

  
VI.CONCLUSION 

 
The problem of maintaining an output to a set point while keeping another output constrained within a given limit 

has been assessed. A first method based on cascade control has shown to be sensitive to disturbances on the constrained 
variable even when there is no limit transgression. A modification to the cascade method in order to correct this problem 
has led to the pseudo-cascade method. The pseudo-cascade method allows the nesting of a large number of control loops 
with simple and independent tuning for each loop.  

 
Pseudo-cascade can also be applied to multivariable processes with perfect inverted decoupling. Decouplers and 

feedback controllers can be cancelled when no constraints are active in order to reconstruct the manipulated variables. 
These reconstructed manipulated variables can then be used to achieve other control objectives. 
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