

(An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 4, April 2014

# Corrosion Control by Aminoacetic acid (Glycine) an Overview

A.Sahaya Raja\*<sup>1</sup>, S. Rajendran<sup>2</sup>, J.Sathiyabama<sup>3</sup> and P. Angel<sup>4</sup>

Assistant Professor, PG and Research Department of chemistry, GTN Arts College, Dindigul, TamilNadu, India<sup>1</sup> Professor, Department of Chemistry, RVS School of engineering and Technology, Dindigul, TamilNadu, India<sup>2</sup> Associate Professor, PG and Research Department of chemistry, GTN Arts College, Dindigul, TamilNadu, India<sup>3</sup>

Research Scholar, PG and Research Department of chemistry, GTN Arts College, Dindigul, TamilNadu, India<sup>4</sup>

**Abstract:** Glycine has the ability to control corrosion of various metals such as carbon steel, zinc, tin and copper. It behaves as an inhibitor in acid medium, neutral medium and in descerated carbonated solution. Various techniques like weight loss method, polarization study and AC impedence spectra have been used to evaluate the corrosion inhibition efficiency of glycine. The protective film has been analysed by IR spectroscopy, atomic force microscopy, scanning electron microscopy and auger electron spectroscopy. Adsorption of glycine on metal surface obeys Langmuir, Flory-Huggins or Temkin isotherm, depending on nature of metal and corrosive environment. Polarization study reveals that glycine can function as anodic or cathodic or mixed type of inhibitor depending on nature of metal and corrosive environment.

Keywords: Corrosion inhibition, glycine, amino acids, metals and alloys.

I.

### INTRODUCTION

Corrosion is the deterioration of metal by chemical attack or reaction with its environment. It is a constant and continuous problem, often difficult to eliminate completely. Prevention would be more practical and achievable than complete elimination. Inhibitors are substance which when added in small quantity to a corrosive environment, lower the corrosion rate. They reduces the corrosion by either acting as a barrier, by forming an adsorbed layer or retarding the cathodic and / or anodic process. Amino acids form a class of non-toxic organic compounds which are completely soluble in aqueous media and produced with high purity at low cost. These properties would justify their use as corrosion inhibitors. The literature presents some studies involving Glycine on the corrosion prevention [8-63]. The adsorption of amino acid on carbon steel in acidic environment have been investigated by Akiyama and Nobe [1].Copper dissolution behaviour in EDTA and glycine was first examined by producing potential –pH diagrams for the copper-water-EDTA and Copper-water-glycine systems[2]. Many researchers investigated the inhibition effect of environment friendly inhibitors like amino acids on metal corrosion[3,4], which exhibit excellent properties such as good water solubility and rapid biodegradability[5]. Various amino acids have been used to inhibit the corrosion of metals and alloys[6,7]Corrosion control of metal is of technical, economical, environmental and aesthetical importance. The use of inhibitor is the best way to prevent metal and alloys from corrosion. Glycine H2N CH2 COOH has two polar groups, namely, one amino group and one carboxyl group. It can coordinate with metals through the nitrogen atom and oxygen atom of the carboxyl group. So it has been widely used as corrosion inhibitor. It has the ability to control the corrosion of a wide variety of metals such pure iron, carbon steel, zinc and tin. It behaves as corrosion inhibitor in acid medium, neutral medium and in deaerated carbonate solution. Various techniques have been used to evaluate the corrosion inhibition efficiency of glycine and to analyse the nature of protective film formed on the metal surface. Depending on the nature of metal and nature of corrosive environment glycine obeys different types of isotherms and behaves as different type of inhibitor, namely anodic, cathodic or mixed type.



(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2014



Structure of Glycine at different pH

### 1.1. Metals

Glycine and derivatives of glycine have been used to prevent the corrosion of a wide variety of metals. Glycine and its derivatives have the ability to prevent the corrosion of carbon steel (mild steel) [11,15,22,24,25,26,28,32,34,36,37,49,51,52,54,57,58,60,61,63],Cu-Ni alloys [33], Aluminium [14,35,41,48,50], Aluminium 6063 alloy [13], aluminium silicon carbide composite [31,38], pure iron [19,27], steel [20,25,32,42,44,56], tungsten stainless steel [12],316 stainless steel [55], AI SI 304 stainless steel [9], Brass [47], Al-Mn alloy [41], hematite [21], copper [29,30,33,40,43,46,53,56,59,62], zinc [10,20,23,41], tin [16,17,18], vanadium[39], cadmium [8], cobalt [45].

### 1.2. Environment

Glycine and its derivatives have been used as inhibitor to prevent corrosion of metals in various environments-acidic, used neutral solution. The mainly acid hydrochloric and deaerated carbonate is acid [8,12,22,23,25,28,31,32,36,38,42,44,53,56,58] and rarely rsed acids are sulphuric acid [35,45,46,51,55,57], citric acid [16,27], and acetic acid [10]. It was observed that glycine accelerated the corrosion of electrodeposited cadmium in 1.0m acetic acid [8]. In citric acid, the corrosion of pure iron has been prevented by glycine, leucine, DL-aspartic acid, arginine and methionine [27]. In neutral medium the chloride ion is used as corrosive agent[9,24,26,33-35,37,49,52,63]. Synergistic influence of metal ions such as  $Ca^{2+}$  and  $Zn^{2+}$  on the inhibition efficiency of N-phosphonomethyl glycine, in controlling corrosion of carbon steel in neutral solution has been reported [11]. In deaerated carbonate solution, the corrosion of aluminium 6063 alloy has been prevented by addition of alanine, glycine, serine and methionine [13]. Methionine was adsorbed on the aluminium surface according to a Temkin isotherm model [13]. Corrosion of aluminium in acid-chloride solution has been prevented by amino acids. The acidic amino acids were able to inhibit aluminium corrosion [35].

### II. TECHNIQUES

Even though several modern techniques are on the anvil, the mainly used methods in evaluation of inhibition of metals are weight loss method[11,20,22,23,25,27,28,34-36,40,57,60,61], elecrochemical studies such as polarization and AC impedence spectra [9,13,15,18,19,23,17,24,26,27,32,23,39-41,42,44,46,47,50-53] and cyclic voltametry [14,53].

XPS has been used to analysed the film formed on carbon steel surface immersed in neutral chloride solution in presence of N-phosphonomethyl glycine (NPMG)-Zn2+ system. The study revealed that the protective film consisted mainly of hydrous ferric oxides (Fe(OH)3 and FeOOH), with small amounts of Fe-NPMG complex, ZnO and corrosion products [26]. SEM technique has been used to study the morphology of the corroded surface of zinc in HCl medium in the presence of glycine and methionine [23]. Hilden et. Al [19] have used XPS and insitu Atomic Force Microscopy (AFM) technique to study the surface morphology of the film formed on iron/electrolyte interphase in presence of N,N-di(phosphonomethyl) glycine. Section analysis (AFM) revealed the degree of deterioration of the passive layer.



(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Issue 4, April 2014

Infrared spectroscopy has been used analysed the protective film formed on aluminium 6063 alloy, in deaerated carbonate solution containing amino acids such as glycine and alanine[13]. Shaban et al [26] have investigated the corrosion behaviour of carbon steel in neutral solutions in presence of N-phosphonomethyl glycine. The layers formed on carbon steel were sputtered by an argon beam to obtain a depth profile using Auger Electron Spectroscopy (AES).

#### 2.1. Adsorption isotherms

The protective nature of glycine is attributed to its adsorption on the metal surface. Various adsorption isotherms have been proposed. The adsorption isotherms include Langmuir isotherms [25,28,34,36], Flory-Huggins isotherm [17,32] and Temkinisotherm[13,23,27,31,35,42,51,62].

### 2.2. Langmuir adsorption isotherm

This type of isotherm is observed when mild steel is immersed in HCl, in the presence of isatin glycine and isatin. First order type of mechanism has been proposed from the kinetic treatment of the result [36]. Similar observation has been made when mild steel was immersed in HCl, in the presence of 2-hydroxy-1-naphthaldehyde glycine and 2- hydroxy-1-naphthaldehyde [34], and also when mild steel was immersed in HCl, in presence of anisaldehyde glycine and anisaldehyde [28].

### 2.3. Flory-Huggins isotherm

This type of isotherm is obeyed when carbon steel is immersed in HCl, in the presence of decylamides of  $\alpha$ -amino acid derivatives [32]. Sayyah et al [17] observed that Flory-Huggins isotherm is obeyed when tin was immersed in 1M NaCl in the presence of poly (propenoyl glycine).

### 2.4. Temkin isotherm

This type of isotherm is obeyed when pure iron is immersed in citric acid in the presence of amino acids such as glycine, leucine, DL-aspartic acid, arginine and methionine [27]. Rajappa and Venkathsha observed Temkin isotherm when zinc was immersed in HCl, in the presence of glycine and methionine [23]. Temkin isotherm was observed when aluminium 6063 alloy was immersed in deaerated carbonate solution in the presence of amino acids such as glycine, alanine, serine and methionine[13].

This type of adsorption very much depends on the nature of metal, environment and amino acids used.

### III. MECHANISM OF CORROSION INHIBITION

Glycine H2NCH2COOH, has two polar groups, namely, one amino group and one carboxyl group. It can coordinate with metals through nitrogen atom and oxygen atom. Inhibition of corrosion of metals by glycine is attributed to the adsorption of glycine on the metal surface. The adsorption obeys Langmuir isotherm or Flory-Huggins isotherm or Temkin isotherm depending on the nature of metal and corrosive environment. Adsorption may be physisorption or chemisorption[33]; film formation is also attributed [19]. Hilden et al [19] have detecte the presence of iron-N,N-di(phosphonomethyl) glycine complex. The degree of inhibition efficiency depends on molecular structure of glycine and its solubility rather than difference in molecular weights alone[32,34,36]. Strength of the inhibitor by glycine[34]. Olivares et al [32] while studying the amino acid derivatives suggested that organic molecules were adsorbed and displaced water molecule from the metal surface.Pech-Canul and Echeverria while studying, in the presence of N-phosphonomethyl glycine-Zn2+ system. Observed that the corrosion products-corrosion inhibitor porous layer[26].

Polarization study reveals that glycine functions as anodic inhibitor or cathodic inhibitor or mixed type of inhibitor depending on the nature of environment and nature of metal.

### 3.1. Anodic inhibitor

Decylamides of tyrosine and glycine function as anodic inhibitor in controlling corrosion of carbon steel in HClmedium[32].



(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Issue 4, April 2014

#### 3.2. Cathodic inhibitor

Glycine, leucine, DL-aspartic acid, arginine and methionine behaved as cathodic inhibitors in controlling corrosion of pure iron in citric acid [13]. Glycine functioned as cathodic inhibitor in controlling corrosion of tin in three fruit juices, namely, orange, mango and pine apple[10].

#### 3.3. Mixed type inhibitor

N-phophonomethyl glycine- $Zn^{2+}$  system retarded both the anodic and cathodic partial reactions of carbon steel in neutral chloride solutions[24,26]. This view is supported by the study of Chi-Canul [15]. N-acetyl glycine functioned as mixed type inhibitor in controlling corrosion of zinc and steel in an acid sulphate and chloride electroplating bath[19].

#### 3.3. Mixed type inhibitor

N-phophonomethyl glycine- $Zn^{2+}$  system retarded both the anodic and cathodic partial reactions of carbon steel in neutral chloride solutions [24,26]. This view is supported by the study of Chi-Canul [15]. N-acetyl glycine functioned as mixed type inhibitor in controlling corrosion of zinc and steel in an acid sulphate and chloride electroplating bath [20].

| S.N | Metal     | Medium     | Inhibitor            | Additive           | Method              | Findings                                     | Reference |
|-----|-----------|------------|----------------------|--------------------|---------------------|----------------------------------------------|-----------|
| 0   | Cadmium   | 1 OM       | Chloral hydrata      | Dotassium          |                     | Cathodic current                             | Q         |
| 1   | Cauinnunn |            | chiorai fiyurate,    | diaharmata         |                     | danaity of and mium                          | 0         |
|     |           | Acetic     | annine, r-anisiume   | alvoiro I          |                     | density of cadillium                         |           |
|     |           | acid       |                      | giycine, L-        |                     | deposition rate of                           |           |
|     |           |            | thiodemicarbazide.   | Valia              |                     | electrolytic cadmium                         |           |
| 2   | A TOT 204 | 0.1 N CI   | N 1. 1 1             | vanne              | <b>F1</b>           | Takes place.                                 | 0         |
| 2   | AISI 304  | 0.1 N CI   | Na p-n-dodecyl       | -                  | Electrochemical     | Pitting potential is 0.7 v                   | 9         |
|     | Stainless |            | benzene              |                    | measurements        | throughout the pH                            |           |
|     | steel     |            | sulphonate(DBS),     |                    |                     | range                                        |           |
|     |           |            | Na                   |                    |                     |                                              |           |
|     |           |            | dodecylsulphate,     |                    |                     |                                              |           |
|     |           |            | Na N-n-              |                    |                     |                                              |           |
|     |           |            | dodecanoyIsareosi    |                    |                     |                                              |           |
|     |           |            | ne and N-            |                    |                     |                                              |           |
|     |           |            | (Carboxymethyl)-     |                    |                     |                                              |           |
|     |           |            | N-                   |                    |                     |                                              |           |
|     |           |            | dodecyl.glycine(L    |                    |                     |                                              |           |
|     |           |            | ADA)                 |                    |                     |                                              |           |
| 3   | Zinc      | Gelatine,  | Glycine, L-alanine   | -                  | Pitting corrosion   | Glycine can be used at                       | 10        |
|     |           | soluble    | and L-valine         |                    | current             | low concentration also.                      |           |
|     |           | starch and |                      |                    | measurements        |                                              |           |
|     |           | poly vinyl |                      |                    |                     |                                              |           |
|     |           | alcohol    |                      | <u> </u>           |                     |                                              |           |
| 4   | Carbon    | Water      | N-Phosphono          | $Ca^{2+}, Zn^{2+}$ | Auger electron      |                                              | 11        |
|     | Steel     |            | methyl glycine.      |                    | spectroscopy and    |                                              |           |
|     |           |            |                      |                    | weight loss         |                                              |           |
|     |           |            |                      |                    | methods .           |                                              |           |
| 5   | Tungsten  | HC1        | Methionine,          | -                  | Potentiodynamic     | Intermetallic compound                       | 12        |
|     | Steel     |            | Citrulline, Alanine, |                    | polarization and    | Fe <sub>3</sub> W <sub>2</sub> form galvanic |           |
|     |           |            | Glycine,             |                    | Polarization        | cell with matrix around                      |           |
|     |           |            | Hydroxyproline       |                    | resistance methods. | Fe <sub>3</sub> W <sub>2</sub> phase.        |           |
| 6   | Aluminium | Deaerated  | Alanine(ALAOH),      | -                  | IR and Electro      | METOH is the best                            | 13        |

### 3.4. Corrosion Inhibition by Glycine



(An ISO 3297: 2007 Certified Organization)

|    | 6063        | carbonated         | Glycine(GLYOH),        |                        | chemical             | inhibitor, it's a mixed   |     |
|----|-------------|--------------------|------------------------|------------------------|----------------------|---------------------------|-----|
|    |             | solution           | Serine(SEROH)          |                        | polarization         | type inhibitor and        |     |
|    |             |                    | and                    |                        |                      | obeys temkin              |     |
|    |             |                    | Methionine(METO        |                        |                      | adsorption isotherm       |     |
|    |             |                    | Н).                    |                        |                      |                           |     |
| 7  | Aluminium   | 0.1MNaCl           | $\alpha$ – Amino acids | -                      | Potentiodynamic      | Argenine is the best      | 14  |
|    |             |                    |                        |                        | polarization         | inhibitor                 |     |
|    |             |                    |                        |                        | technique and        |                           |     |
|    | ~ .         |                    |                        | - 2+                   | cyclic voltammetry   |                           |     |
| 8  | Carbon      | Neutral            | N-Phospho-no-          | Zn <sup>2</sup>        | Electrochemical      | Mixed type inhibitor      | 15  |
|    | Steel       | solution           | methyl glycine         |                        | impedence studies.   |                           | 1.5 |
| 9  | Tin         | Citric acid        | Glycine                | Nitrate,               | Potentiodynamic      | Glycine gives 90%         | 16  |
|    |             |                    |                        | Sucrose                | polarization         | inhibition efficiency     |     |
|    |             |                    |                        |                        |                      | and citric acid acts as a |     |
| 10 | <b>T</b> .  |                    |                        |                        |                      | cathodic inhibitor.       | 17  |
| 10 | 11n         | IM NaCI            | Poly(Propenoy)         | -                      | Potentiodynamic      | Obeys Flory-nuggins       | 17  |
|    |             |                    | glycine), Polyacryl    |                        | polarization         | adsorption isotherm       |     |
| 11 | Tim         | 2.50/              | Classing Sering        |                        | Detentie demonsione  | Mathianina ia             | 10  |
| 11 | 1 111       | 5.5%<br>NoCl       | Mathianina             | -                      | larization Electroch | Metholine Is              | 18  |
|    |             | INACI              | Vitemin C              |                        | amigalimnadanaa      | transfer and diffusion    |     |
|    |             |                    | v italiili C           |                        | studios and SEM      | control is dominant       |     |
| 12 | Iron        | Flootrolyto        | N N di(phosphono       | $P_{0}^{2+}Sr^{2+}$    | VDS AFM and          | Rivelent                  | 10  |
| 12 | non         | Liecuolyte         | methyl                 | $Da^{,51}$ , $Ca^{2+}$ | electrochemical      | cationssynergitically     | 19  |
|    |             |                    | glycine)(DPMG)         | $7n^{2+}$              | impedence studies    | improve activity of       |     |
|    |             |                    | grycnic)(Dr WO)        | 2.11                   | impedence studies    | DPMG and $Zn2+$           |     |
|    |             |                    |                        |                        |                      | influence both anodic     |     |
|    |             |                    |                        |                        |                      | and cathodic processes    |     |
| 13 | Steel&Zinc  | Acid               | N-Acetyl               | Sodium                 | Weight loss          | SLS shows the             | 20  |
| 10 | Steeneeline | sulphate           | glycine(NAG)           | Larvlsulpha            | method and           | maximum inhibition        | -0  |
|    |             | and                | 8.5                    | te(SLS)                | potentiodynamic      | than NAG and both         |     |
|    |             | chloride           |                        |                        | polarization.        | anodic and cathodic       |     |
|    |             |                    |                        |                        | I · · · · · ·        | processes are inhibited   |     |
| 14 | Hematite    | NaClO <sub>4</sub> | Inorganic and          | -                      | Indirect radiotracer | Displacement of           | 21  |
|    |             |                    | organic                |                        | technique            | sulphatespecies takes     |     |
|    |             |                    | compounds              |                        | 1                    | place.                    |     |
| 15 | Mild Steel  | 2M HCl             | Cp-                    | -                      | Weight loss          | Glutaraldehyde, methio    | 22  |
|    |             |                    | Glutaraldehyde,        |                        | method and           | nine has better           |     |
|    |             |                    | Glycine and            |                        | galvanostatic        | inhibition efficiency     |     |
|    |             |                    | Glutaraldehyde ,m      |                        | polarization         | than glutaraldehyde       |     |
|    |             |                    | ethionine              |                        | technique            | glycine.                  |     |
| 16 | Zinc        | HC1                | Glutaraldehyde,        | -                      | Weight loss          | Cp of glutaraldehyde,     | 23  |
|    |             |                    | glycine, methionine    |                        | method,Electroche    | methionine is a good      |     |
|    |             |                    | and Cp of              |                        | micalimpedence       | inhibitor than            |     |
|    |             |                    | glutaraldehyde,gly     |                        | studies and SEM      | glutaraldehyde,           |     |
|    |             |                    | cine and Cp of         |                        |                      | glycine, Cp of            |     |
|    |             |                    | glutaraldehyde,met     |                        |                      | glutaraldehyde            |     |
|    |             |                    | hionine.               |                        |                      | methionine has            |     |
|    |             |                    |                        |                        |                      | inhibition efficiency of  |     |
|    |             |                    |                        |                        |                      | 92.56% and obeys          |     |
|    |             |                    |                        |                        |                      | Temkin adsorption         |     |
| 17 | Carbon      | Neutral            | N-Phosphono-           | $Zn^{2+}$              | Electrochemical      | NPMG/Zn2+inhibits         | 24  |



# International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

|    | Steel      | Chloride                          | methyl.glycine(NP                       |           | impedence studies                   | both anodic and          |    |
|----|------------|-----------------------------------|-----------------------------------------|-----------|-------------------------------------|--------------------------|----|
|    |            | solution                          | MG)                                     |           | 1                                   | cathodic reactions       |    |
| 18 | Steel      | HC1                               | Alanine, Glycine                        | _         | Weight loss                         | Inhibition efficiency    | 25 |
| 10 |            |                                   | and Leucine                             |           | method and                          | ranges from 28%-91%      |    |
|    |            |                                   | und Louonne                             |           | notentiodynamic                     | and it obeys I angmuir   |    |
|    |            |                                   |                                         |           | potentiouynamic                     | adsorption isotherm      |    |
|    |            |                                   |                                         |           | method                              | adsorption isotherm      |    |
| 19 | Carbon     | Neutral                           | N-Phosphono-                            | $7n^{2+}$ | Flectrochemical                     | Inhibition efficiency is | 26 |
| 19 | staal      | chlorido                          | mothyl                                  | ZII       | impodonço studios                   | up to 85 05% and         | 20 |
|    | SICCI      | solution                          | alvoino(NDMG)                           |           | VPS and Augor                       | protective film contains |    |
|    |            | solution                          | grychie(INFINIC)                        |           | AFS allu Augel                      | budrous formio           |    |
|    |            |                                   |                                         |           | electron spectra                    | invertice (OLD)2 and     |    |
|    |            |                                   |                                         |           |                                     | oxides(Fe(OH)3 and       |    |
|    |            |                                   |                                         |           |                                     | FeOOH), Fe-NPMG          |    |
| •  | -          |                                   |                                         |           |                                     | complex ,ZnO             |    |
| 20 | Iron       | Citric acid                       | Glycine, Leucine,                       | -         | Electrochemical                     | Inhibition efficiency is | 27 |
|    |            |                                   | DL aspartic acid,                       |           | impedence studies,                  | upto                     |    |
|    |            |                                   | Arginine and                            |           | potentiodynamic                     | 96%,ObeysTemkin          |    |
|    |            |                                   | Methionine                              |           | polarization and                    | adsorption and it's a    |    |
|    |            |                                   |                                         |           | weight loss                         | cathodic inhibitor.      |    |
|    |            |                                   |                                         |           | methods                             |                          |    |
| 21 | Mild steel | HCl                               | Anisaldehyde                            | -         | Weight loss                         | Inhibition efficiency is | 28 |
|    |            |                                   | glycine and                             |           | method                              | 89% for anisaldehyde     |    |
|    |            |                                   | anisaldehyde                            |           |                                     | glycine and 82% for      |    |
|    |            |                                   |                                         |           |                                     | anisaldehyde and both    |    |
|    |            |                                   |                                         |           |                                     | obey Langmuir            |    |
|    |            |                                   |                                         |           |                                     | adsorption isotherm      |    |
| 22 | Copper     | Glycine,                          | Ammonium                                | -         | Electrochemical                     | ADS is superior          | 29 |
|    |            | $H_2O_2$                          | dodecyl                                 |           | mechanical                          | inhibitor to             |    |
|    |            |                                   | sulphate(ADS)                           |           | planarization                       | benzotriazole and its an |    |
|    |            |                                   | <b>•</b> • • • •                        |           | method                              | environmentally safe     |    |
|    |            |                                   |                                         |           |                                     | surfactant.              |    |
| 23 | Copper     | 1%glycine                         | Ammonium                                | -         | Chemical,                           | ADS,SDS is superior      | 30 |
|    |            | and H <sub>2</sub> O <sub>2</sub> | Dodecyl sulphate                        |           | mechanical                          | inhibitor to             |    |
|    |            | 5%                                | surfactant                              |           | planarization                       | benzotriazole and it     |    |
|    |            |                                   |                                         |           | (CMP)                               | suppresses polishing     |    |
|    |            |                                   |                                         |           |                                     | rate of Copper           |    |
| 24 | Al-SiC     | 0.01.0.1                          | Glycyl glycine                          | _         | Polarization                        | Its an anodic type       | 31 |
|    |            | and 1 N                           | - , , , , , , , , , , , , , , , , , , , |           | techniques                          | inhibitor and it obeys   | -  |
|    |            | HC1                               |                                         |           |                                     | temking adsorption       |    |
|    |            | 1101                              |                                         |           |                                     | isotherm                 |    |
| 25 | Steel      | HCl                               | Dodecylamides of                        | _         | Electrochemical                     | Tyrosine and valine      | 32 |
| 20 | Bieer      | 1101                              | $\alpha$ – Amino acid                   |           | impedence studies                   | have 80% inhibition      | 32 |
|    |            |                                   | derivative                              |           | gravimetric                         | efficiency Tyrosine      |    |
|    |            |                                   | derivative                              |           | techniques                          | and glycine have 90%     |    |
|    |            |                                   |                                         |           | notentiodynamic                     | inhibition efficiency    |    |
|    |            |                                   |                                         |           | potentiouynamic<br>polarization and | they obey Flory          |    |
|    |            |                                   |                                         |           |                                     | Huggins adsorption       |    |
|    |            |                                   |                                         |           | лгэ.                                | isotherm Tyrosing and    |    |
|    |            |                                   |                                         |           |                                     | aluoine ere ere dite     |    |
|    |            |                                   |                                         |           |                                     | givenne are anodic       |    |
|    |            |                                   |                                         |           |                                     | innibitors ,alanine and  |    |
| 1  | 1          | 1                                 | 1                                       |           |                                     | value are cathodic       |    |
|    |            |                                   |                                         |           |                                     | 1.1.1.1.1                |    |



# International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

| 26 | Cu-Ni<br>Mild steel                                    | Neutral<br>chloride<br>HCl                         | Glycine, Cysteine<br>2-hydroxy-1-                                           | -                               | Electrochemical<br>impedence studies<br>and<br>potentiodynamic<br>polarization.<br>Weight loss      | Glycine have 85%<br>inhibition efficiency at<br>a concentration of<br>0.1mM, cysteine have<br>inhibition efficiency of<br>96% at a concentration<br>2.0mM and physical<br>adsorption takes place<br>on alloy surface<br>HNG have higher | 33 |
|----|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    |                                                        |                                                    | napthaldehyde<br>glycine(HNG) and<br>2-hydroxy -1-<br>napthaldehyde(HN<br>) |                                 | method                                                                                              | inhibition efficiency<br>than HN and obeys<br>Langmuir adsorption<br>isotherm                                                                                                                                                           |    |
| 28 | Aluminium                                              | 1N HCl<br>and 1N<br>H <sub>2</sub> SO <sub>4</sub> | Glycine                                                                     | -                               | Weight loss<br>method and<br>potentiodynamic<br>polarization.                                       | It obeys temkin<br>adsorption isotherm<br>and it's a mixed type<br>inhibitor.                                                                                                                                                           | 35 |
| 29 | Mild Steel                                             | HCI                                                | Isatin and Isatin<br>glycine                                                | -                               | Weight loss<br>method                                                                               | Obeys Langmuir<br>adsorption isotherm<br>and inhibition<br>efficiency of isatin<br>glycine is 87% and that<br>of Isatin is 84%.                                                                                                         | 36 |
| 30 | Carbon<br>Steel                                        | Low<br>chloride<br>solution                        | N,N-<br>bis(phosphonomet<br>hyl) glycine                                    | Zn <sup>2+</sup> ,<br>Ascorbate | XPS and FTIR                                                                                        | Inhibition efficiency is<br>upto 94% and it's a<br>mixed type inhibitor                                                                                                                                                                 | 37 |
| 31 | 6061 Al-<br>Si(Cp)                                     | HCl                                                | AllylThiorea,<br>glycyl glycine                                             | -                               | Potentiodynamic<br>polarization                                                                     | Both of them are<br>anodic inhibitor and<br>moderately inhibits<br>corrosion                                                                                                                                                            | 38 |
| 32 | Vanadium                                               | Water                                              | Glycine, Alanine,<br>Valine, Histidine,<br>Glutamic acid and<br>Cystein     | -                               | Potentiodynamic<br>polarization and<br>electrochemical<br>impedence studies                         | All follow Freundlich<br>adsorption isotherm,<br>glutamic acid and<br>histidine show high<br>inhibition efficiency at<br>low concentration.                                                                                             | 39 |
| 33 | Copper                                                 | Nitric acid                                        | Arginine, Lysine<br>and Cysteine                                            | -                               | Weight loss<br>method and<br>electrochemical<br>impedence studies                                   | Cystien is the best<br>inhibitor and inhibition<br>efficiency is upto 61%                                                                                                                                                               | 40 |
| 34 | Carbon<br>steel Zn/Al<br>Galvanised<br>steel Al-<br>Mn | Alkaline<br>solution                               | POD oils and thiol compounds                                                | Glycine                         | Scanning vibrating<br>electrode<br>technique,optical<br>and<br>electrochemical<br>impedence studies | POD oils are anodic<br>inhibitors                                                                                                                                                                                                       | 41 |
| 35 | ASTM<br>A213<br>grade T22<br>boiler steel              | 0.5 M HCl                                          | Glycine                                                                     | -                               | Potentiodynamicpo<br>larization,EIS,SEM<br>, X-ray EDX and<br>Electrochemical                       | It's a mixed type<br>inhibitor and it obeys<br>temkin adsorption                                                                                                                                                                        | 42 |



# International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

|    |                      |                                                               |                                                                                                                                                                                                  |   | frequency                                                                                                                                                                         |                                                                                                                                                                                                                       |    |
|----|----------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 36 | Copper               | Water                                                         | Glycine, alanine,<br>methionine,glutami<br>cacid,formic,acetic<br>,n-butyric,gluraric<br>acid                                                                                                    | - | EMF<br>measurements                                                                                                                                                               | Amino acids are good<br>inhibitors than aliphatic<br>acids                                                                                                                                                            | 43 |
| 37 | Cold rolled<br>steel | 1 M HCl                                                       | Glycine and 2-<br>bis(2-aminoethyl<br>amino) acetic acid                                                                                                                                         | - | Tafel and linear<br>polarization, EIS,<br>EFM, inductively<br>coupled plasma<br>atomic emission<br>spectroscopy,<br>Quantum chemical<br>method and<br>Density function<br>theory. | They are mixed type<br>inhibitors and by<br>adsorption studies<br>oxide film and NH<br>linkages of inhibitor are<br>found                                                                                             | 44 |
| 38 | Cobalt               | Sulphuric<br>acid                                             | Glycine, Alanine,<br>valine, leucine,<br>isoleucine,<br>serine,threonine,m<br>ethionine,phenylan<br>ine, tyrosine,<br>tryptophan,<br>aspartic acid,<br>asparagine<br>glutamic acid and<br>lysine | - | Quantum chemical<br>methods and<br>Density functional<br>method                                                                                                                   | They exhibit good<br>inhibition efficiency                                                                                                                                                                            | 45 |
| 39 | Copper               | O <sub>2</sub><br>saturated<br>H <sub>2</sub> SO <sub>4</sub> | Glycine,alanine,<br>valine, tyrosine                                                                                                                                                             | - | Tafel and linear<br>polarization,EIS,<br>EFM, ICP-AES                                                                                                                             | Alanine and valine<br>have inhibition<br>efficiency of 75%,<br>Tyrosine and glycine<br>show inhibition<br>efficiency of 98%<br>&91% and $O_2$<br>reduction at copper<br>electrode is 4 electron<br>process.           | 46 |
| 40 | Brass                | 0.6 M<br>aqueous<br>NaCl                                      | Glycine, L-aspartic<br>acid, L-glutamic<br>acid and their<br>benzenesulphonyl<br>derivatives                                                                                                     | - | Potentiodynamic<br>polarization and<br>electrochemical<br>impedence studies                                                                                                       | Benzenesulphonyl<br>derivative of glycine is<br>best inhibitor, $C_6H_5$ -<br>$SO_2$ increases<br>inhibition efficiency<br>due to high molecular<br>size and inhibition<br>efficiency is about<br>81.2% and $85.5%$ . | 47 |
| 41 | Aluminium            | SCN <sup>-</sup><br>solution                                  | glycine                                                                                                                                                                                          | - | ICP-AES, linear<br>and cyclic<br>polarization, SEM,<br>EDX and open<br>circuit potential is                                                                                       | Due to adsorption of<br>SCN- in glycine<br>decreases the corrosion<br>rate.                                                                                                                                           | 48 |



# International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

|    |                 |                                        |                                                                                                                               |                                     | monitored                                                                                                                                              |                                                                                                                                                                                                                                                                       |    |
|----|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 42 | Carbon<br>steel | Low<br>chloride<br>aqueous<br>medium   | N,N-bis(phosphor-<br>no-methyl)glycine                                                                                        | Tungstate,<br>Zn <sup>2+</sup>      | Potentiodynamic<br>polarization, XPS,<br>FTIR and SEM                                                                                                  | It's a mixed type<br>inhibitor, and surface<br>film has iron<br>oxides/hydroxides, zinc<br>hydroxide,<br>heteropolynuclearcomp<br>les [Fe(III), Zn(II)-<br>BPMG]& WO <sub>3</sub>                                                                                     | 49 |
| 43 | Aluminium       | 0.5M<br>KSCN                           | 2(4-<br>dimethylamino)<br>benzylamino)<br>acetic acid<br>hydrochloride<br>glycine                                             | -                                   | Tafel and linear<br>polarization, EIS,<br>SEM, ICP-AES,<br>Cyclic polarization,<br>potentiodynamic<br>polarization and<br>galvanostatic<br>measurement | The glycine derivative<br>has a inhibition<br>efficiency of 97%                                                                                                                                                                                                       | 50 |
| 44 | Mild steel      | 4.0M<br>H <sub>2</sub> SO <sub>4</sub> | 2(4-<br>dimethylamino)<br>benzylamino)<br>acetic acid<br>hydrochloride)<br>glycine derivative1<br>and glycine<br>derivative 2 | -                                   | Linear polarization<br>resistance, EIS and<br>ICP-AES,                                                                                                 | Both are mixed type<br>inhibitor and obey<br>temkin adsorption                                                                                                                                                                                                        | 51 |
| 45 | Carbon<br>steel | Low<br>chloride<br>solution            | N,N-<br>bis(phosphono-<br>methyl) glycine                                                                                     | Phosphonic<br>acid,Zn <sup>2+</sup> | EIS,<br>Potentiodynamic<br>polarization, XPS,<br>SEM and FTIR                                                                                          | By<br>Deconvolutionpresence<br>of<br>iron(III)oxides/hydroxi<br>des, Zn(OH) <sub>2</sub> and<br>Zn(II)-BPMG complex<br>and XPS shows the<br>presence of Fe,P,N,C,O<br>and Zn.                                                                                         | 52 |
| 46 | Copper          | 0.5 HCl                                | Glutamic acid,<br>glycine and<br>cystiene                                                                                     | -                                   | EIS, Cyclic<br>voltammetry and<br>Parametric method.                                                                                                   | Inhibition efficiency of<br>glutathione is 96.4%,<br>inhibition efficiency of<br>cysteine is 92.9% and<br>glutathione has high<br>inhibition efficiency<br>than cysteine                                                                                              | 53 |
| 47 | Carbon<br>steel | Crude oil                              | Dipeptide<br>benoylalanyl<br>glycine methyl<br>ester and<br>benzoylalanyl<br>glycine                                          | -                                   | IR, MS, NMR<br>spectroscopy and<br>tafel extrapolation                                                                                                 | Inhibition efficiencies<br>are 63.34%,35-86%,<br>68-40% and 27-72%,<br>Results showed<br>formation of dipeptide<br>from carboxylic<br>protected glycine,<br>amine protected alanine<br>and corrosion inhibition<br>increases due to acidity<br>centre in structure of | 54 |



## International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

### Vol. 3, Issue 4, April 2014

|    |                        |                                                 |                                                                          |                                   |                                                                                                  | glycine and L-alanine.                                                                                                                                                              |    |
|----|------------------------|-------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 48 | 315L Stain             | 1.0                                             | Glycine, leucine                                                         | -                                 | Open circuit                                                                                     | Glycine has inhibition                                                                                                                                                              | 55 |
|    | less steel             | Sulphuric                                       | and valine                                                               |                                   | potential and                                                                                    | efficiency 84.2% and                                                                                                                                                                |    |
|    |                        | acid                                            |                                                                          |                                   | potentiodynamic                                                                                  | its anodic type                                                                                                                                                                     |    |
|    |                        |                                                 |                                                                          |                                   | polarization.                                                                                    | inhibitor.                                                                                                                                                                          |    |
| 49 | M3 Copper<br>and Steel | 0.5 M HCl                                       | Glycine, threonine,<br>Phenylalanine and<br>glutamic acid                | -                                 |                                                                                                  |                                                                                                                                                                                     | 56 |
| 50 | Mild steel             | H <sub>2</sub> SO <sub>4</sub>                  | Leucine, alanine<br>and glycine                                          | -                                 | Weight loss<br>method, gasometric<br>method and<br>chemical methods.                             | Physical adsorption<br>takes place and<br>electrophilic attack is at<br>carboxyl functional<br>group and inhibitors.                                                                | 57 |
| 51 | Mild steel             | 0.1 N HCl                                       | Cystein, glycine,<br>leucine, and<br>alanine                             | -                                 | Quantum chemical,<br>gravimetric,gasome<br>tric, thermometric<br>methods, FTIR,<br>QSAR and DFT. | Cystein has high<br>inhibition efficiency<br>and physisorption takes<br>place                                                                                                       | 58 |
| 52 | Copper                 | Nitric acid                                     | Arginine, Cysteine,<br>Glycine, Lysine,<br>Valine.                       | -                                 | Austine model                                                                                    | Cystein is the best<br>inhibitor out of all and<br>the functional groups<br>are (NH3+HS,COOH)                                                                                       | 59 |
| 53 | Carbon<br>steel        | Well<br>water                                   | Glycine                                                                  | Zn <sup>2+</sup>                  | Weight loss<br>method and<br>potentiodynamic<br>polarization.                                    | Inhibition efficiency is<br>upto 86% and its mixed<br>type inhibitor.                                                                                                               | 60 |
| 54 | Mild steel             | Well<br>water                                   | Glycine                                                                  | Zn <sup>2+</sup>                  | Weight loss<br>method and<br>potentiodynamic<br>polarization                                     | Inhibition efficiency is<br>86% and it's a mixed<br>type inhibitor.                                                                                                                 | 61 |
| 55 | Copper                 | 8M<br>phosphori<br>c acid                       | Proline, cysteine,<br>phenyl alanine,<br>alanine, histidine,<br>glycine. | -                                 | Potentiodynamicpo<br>larizationand<br>Quantum chemical<br>methods                                | They follow Tempkin<br>adsorption, amino acids<br>are good inhibitors and<br>physical adsorption<br>takes place.                                                                    | 62 |
| 56 | Carbon<br>steel        | Low<br>chloride<br>neutral<br>aqueous<br>medium | N,N-<br>bis(phosphono<br>methyl)<br>glycine(BPMG)                        | Zn <sup>2+</sup> , citrate<br>ion | Potentiodynamic<br>polarization, EIS,<br>XPS and SEM                                             | Mixed type inhibitor<br>and deconvolution<br>spectra shows presence<br>of oxides/hydroxides of<br>[ Iron(III), Zn(II)-<br>BPMG-citrate]<br>Heteropolynuclearmulti<br>ligand complex | 63 |

### IV. ACKNOWLEDGEMENT

The authors are thankful to their managements and University Grants Commission, India, for their help and support.



(An ISO 3297: 2007 Certified Organization)

#### Vol. 3, Issue 4, April 2014

#### REFERENCES

- [1] Akiyama, A and Nobe.N., "Electrochemical Characteristics of Iron in Acidic Solutions Containing Ring-Substituted Benzoic Acids", J.Electrochem.Soc, vol.117(8), pp.999-1003,1970.
- Sksu,S. and Doyle,F.M., "The Role of EDTA and Glycine in the Chemical Mechanical Planarization (CMP) of Copper" [2]
- Proceedings of the Second International Conference on Processing Materials for Properties, eds. B. Mishra and C. Yamauchi, TMS, Warrendale, PA, pp. 225-230, 2000.
- Ghasemi,Z., Tizpar,A., "The inhibition effect of some amino acids towards Pb-Sb-Se-As alloy corrosion in sulfuric acid solution", [3] Appl.Surf.Sci.,vol.252(10) ,pp.3667-3672,2006.
- Oguzie, E., Li, Y., and Wang, F., "Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic [4] effect of iodide ion," Journal of Colloid and Interface Science, vol. 310(1), pp. 90-98, 2007.
- [5] Moretti,G., Guidi,F., and Grion,G., "Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid," Corrosion Science, vol. 46(2), pp. 387-403, 2004.
- Varvara,S.,Rotaru,I,Popa,M.,and Muresan,L.M., " Inhibition of bronze corrosion in aerated acidic solution using amino acids as [6] environmentally friendly inhibitors", Revue Roumaine de Chimie, vol. 56(7), pp793-801, 2011.
- Helal,N.H., and Badawy,W.A., "Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino [7] acids", Electrochimica Acta, vol. 56(19), pp. 6581-6587, 2011
- Noubi, G.A., Ghaly, H., El-Cheikh, E.M., Mansour, H, "Role of surface properties of electrodeposited cadmium in its corrosion and inhibition", [8] Journal of the electrochemical society of India , vol.30(4), pp. 341-344, 1981.
- Zucchi, F., Hashi Omar, I., Trabanelli, G "Inhibitors of pitting corrosion of stainless steel", 1985.
- [10] Mohammed, N.S., Ibrahim, M.B., El-Sabbah, M.M.B., El-Mataal, S.M.Abd, "Pitting corrosion current measurements on Zn-Electrode",
- Journal of the electrochemical society of India, vol. 35(3), pp. 189-191, 1986.
- [11] Shaban, A., Kalman, E., Biczo, I., Corrosion Science "Inhibition mechanism of carbon steel in neutral solution by N-phosphono-methylglycine", vol.35(5-8), pp. 1463-1470, 1993.
- [12] Madkour, L.H., Ghoneim, M.M., "Inhibition of the corrosion of 16/14 austenitic stainless steel by oxygen and nitrogen containing compounds, Bulletin of Electrochemistry ,vol.13(1), pp. 1-7 1997.
- Salghi, R., Hammouti, B., Kertit, S., Bazzi, L.,"Some aminoacid compounds as non-toxic inhibitors for the corrosion of aluminium 6063 alloy [13] in dearated carbonated solution", Bulletin of Electrochemistry, vol. 13(10-11), pp. 399-404, 1997.
- El-Shafei, A.A., Moussa, M.N.H., El-Far, A.A, "Inhibitory effect of amino acids on Al pitting corrosion in 0.1 M NaCl", Journal of Applied [14] Electrochemistry ,vol.27(9), pp. 1075-1078, 1997.
- Chi-Canul, L.P., "Investigation of the inhibitive effect of n-phosphono-methyl-glycine on the corrosion of carbon steel in neutral solutions by [15] electrochemical techniques",,Corrosion, vol. 55(10), pp. 948-956,1999
- [16] Quraishi, M.A., Rawat, J., "Corrosion of Tin cans and its inhibition", Journal of Food Science and Technology, vol. 37(5), pp. 529-532, 2000.
- Sayyah, S.M., Abd El-Rehim, S.S., El-Deeb, M.M., "The effect of some polymers on the corrosion behavior of tin in 1M NaCl solution", International journal of polymeric materials,vol. 49(1), pp. 59-80,2001. [17]
- [18] Morad, M.S.S., Hermas, A.A.A., "Influence of some amino acids and vitamin C on the anodic dissolution of tin in sodium chloride solution",
- Journal of Chemical Technology and Biotechnology, vol.76(4), pp. 401-410,2001. [19] Hilden, J., Virtanen, J., Forsen, O., Aromaa., "Influence of cations on the corrosion inhibition efficiency of amino phosphonic acid",
- J,ElectrochimicaActa, vol. 46(24-25), pp. 3791-3799,2001. Rajappa, S.K., ArthobaNaik, Y., Venkatesha, T.V., "A study on the corrosion of steel and zinc in an electroplating acid baths", [20]
- Bulletin of Electrochemistry, vol.17 (11), pp. 489-494, 2001. Kalman, E., Horanyi. G., "Indirect radiotracer study of the adsorption of corrosion inhibitors on hematite", Journal of Solid State [21]
- Electrochemistry, vol.6(4), pp. 253-258.2002. Rajappa, S.K., Venkatesha, T.V., "New condensation products as corrosion inhibitors for mild steel in hydrochloric acid medium", Indian [22]
- Journal of Engineering and Materials Sciences ,vol.9(3), pp. 213-217,2002. [23] Rajappa, S.K., Venkatesha, T.V, Turkish., "Inhibition studies of a few organic compounds and their condensation products on the corrosion of
- zinc in hydrochloric acid medium", Journal of Chemistry ,vol.27(2), pp. 189-196,2003.
- Pech-Canul, M.A., Echeverria, M., "Corrosion inhibition of steel in neutral chloride solutions by mixtures of N-phosphono-methyl-glycine [24] with zinc ions", Corrosion Engineering Science and Technology, vol. 38(2), pp. 135-138, 2003.
- [25] Ashassi-Sorkhabi, H., Majidi, M.R., Seyyedi, K., "Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution", Applied Surface Science ,vol.225(1-4), pp. 176-185,2004
- Pech-Canul, M.A., Bartolo-Perez, P., "Inhibition effects of N-phosphono-methyl-glycine/Zn<sup>2+</sup> mixtures on corrosion of steel in neutral [26] chloride solutions", Surface and Coatings Technology, vol.184(2-3), pp. 133-140, 2004. Zerfaoui, M., Oudda, H., Hammouti, B., Kertit, S., Benkaddour, M., "Inhibition of corrosion of iron in citric acid media by amino acids",
- [27] Progress in Organic Coatings, vol. 51(2), pp. 134-138, 2004.
- Ita, B.I., "Inhibition of mild steel corrosion in hydrochloric acid by anisaldehyde and anisaldehyde glycine", Bulletin of Electrochemistry, vol. [28] 21(7), pp. 319-323,2005.
- Hong, Y., Roy, D., Babu, S.V., "Ammonium dodecyl sulfate as a potential corrosion inhibitor surfactant for electrochemical mechanical [29] planarization of copper", Electrochemical and Solid-State Letters, vol. 8(11), pp. G297-G300, 2005.
- Hong, Y., Patri, U.B., Ramakrishnan, S., Roy., Babu, S.V., "Utility of dodecyl sulfate surfactants as dissolution inhibitors in chemical [30] mechanical planarization of copper" Journal of Materials Research ,vol.20(12), pp. 3413-3424,2005.
- [31] Rao, S.A., Padmalatha, Nayak, J., Shetty, A. N., "Glycyl glycine as corrosion inhibitor for aluminium silicon carbide composite in hydrochloric acid", Transactions of the SAEST (Society for Advancement of Electrochemical Science and Technology), vol.41(1), pp. 01-04,2006.



(An ISO 3297: 2007 Certified Organization)

- [32] Olivares, O., Likhanova, N.V., Gomez, B., Navarrete, J., Llanos-Serrano, M.E., Arce, E., Hallen, J.M., "Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment", Applied Surface Science, vol. 252(8), pp. 2894-2909, 2006.
- Badawy, W.A., Ismail, K.M., Fathi, A.M., "Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids" Electrochimica [33] Acta, vol.51(20), pp. 4182-4189.2006.
- [34] Ita, B.I., "Inhibitory action of 2-hydroxyl-1-naphthaldehyde glycine and 2-hydroxyl-1-naphthaldyde on the corrosion of mild steel in hydrochloric acid", Indian Journal of Chemical Technology, vol. 13(5), pp. 510-514, 2006.
- [35] Chandrasekaran, V., Dhiraviyaraj, M., "Corrosion inhibition of aluminium in acidic medium by glycine", Bulletin of electrochemistry, vol. 22(10-12), pp. 423-430,2006.
- Ita, B.I., "Inhibition of the corrosion on mild steel in hydrochloric acid by isatin and isatin glycine", Bulletin of the Chemical Society of [36] Ethiopia, vol. 20(2), pp. 253-258, 2006.
- AppaRao, B.V., SrinivasaRao, S., VenkateswaraRao, M., "Environmentally friendly ternary inhibitor formulation based on N,N-[37] bis(phosphonomethyl) glycine", Corrosion Engineering Science and Technology, vol. 43(1), pp. 46-53, 2008.
- Nayak, J., Hebbar, K.R., "Corrosion inhibition of T-6 treated 6061 Al-SiC(p) composite in hydrochloric acid", Transactions of the Indian [38] Institute of Metals ,vol.61(2-3), pp. 221-224, 2008.
- El-Rabiee, M.M., Helal, N.H., El-Hafez., Gh.M.A., Badawy, W.A., "Corrosion control of vanadium in aqueous solutions by amino acids", [39] Journal of Alloys and Compounds ,vol.459(1-2), pp. 466-471,2008.
- [40] Barouni, K., Bazzi, L., Salghi, R., Mihit, M., Hammouti, B., Albourine, A., El Issami, S., "Some amino acids as corrosion inhibitors for copper in nitric acid solution", Material letters, vol. 62(19), pp. 3325-3327, 2008.
- [41] ECS Transactions-Corrosion (General)-213th ECS Meeting, ECS Transactions, vol. 13(27), 2008.
- Amin, M.A., Abd El Rehim, S.S., Abdel-Fatah, H.T.M., "Electrochemical frequency modulation and inductively coupled plasma atomic [42] emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel<sup>7</sup>, Corrosion Science, vol. 51(4), pp. 882-894,2009. [43] Spah, M., Spah, D.C., Deshwal, B., Lee, S., Chae, Y.-K., Park, J.W., "Thermodynamic studies on corrosion inhibition of aqueous solutions of
- amino/carboxylic acids toward copper by EMF measurement", Corrosion Science, vol.51(6) pp. 1293-1298, 2009. Amin, M.A., Khaled, K.F., Fadl-Allah, S.A., "Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel
- [44] in HCl solutions-Experimental and theoretical studies", Corrosion Science, vol. 52(1), pp. 140-151,2010.
- Gece, G., Bilgic, S., Turksen, O., "Quantum chemical studies of some aminoacids on the corrosion of cobalt in sulfuric acid solution", Materials and corrosion, vol. 61(2), pp. 141-146, 2010. [45]
- Amin, M.A., Khaled, K.F., "Copper corrosion inhibition in O2 saturated H2SO4 solutions", Corrosion Science, vol.52(4), pp. 1194-1204,2010. [46]
- Ranjana Banerjee., R., Nandi, M.M., "Inhibition effect of amino acid derivatives on the corrosion of brass in 0.6M aqueous sodium chloride solution", Indian journal of Chemical Technology, vol. 17(3), pp. 176-180,2010. [47]
- [48] Amin, M.A., Mohsen, Q., Mersal, G.A.M., "Inhibition of uniform and pitting corrosion processes of Al induced by SCN-anions-Part I. Effect of glycine", PortugaliaeElectrochimicaActa, vol. 28(2), pp. 95-112,2010.
- Rao, B.V.S., Rao, M.V., Rao, S.S., Sreedhar, B., "Tungstate as a synergist to phosphonatte-based formulation for corrosion control of carbon [49] steel in nearly neutral aqueous environment", Journal of Chemical Sciences, vol. 122(4), pp. 639-649,2010.
- [50] Amin, M.A., "A newly synthesized glycine derivative to control uniform and pitting corrosion processes of Al induced by SCN-anionschemical, electrochemical and morphological studies", Corrosion Science, vol.52(10), 3243-3257,2010.
- [51] Amin, M.A., Ibrahim, M.M., "Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative", Corrosion Science , vol. 53(3), pp. 873-885, 2011.
- Rao,B.V.S.,Rao,M.V.,Rao,S.S.,Sreedhar, B., "Synergistic effect of N,N-Bis(phosphonomethyl) glycine and zinc ions in corrosion control of [52] carbon steel in cooling water systems", Chemical Engineering Communications, vol. 198(12), pp. 1505-1529,2011
- Zhang, D.-Q., Xie, B., Gao, L.-X., Cai, Q.-R., Joo, H.G., Lee, K.Y., "Intramolecular synergistic effect of glutamic acid, cysteine and glycine [53] against copper corrosion in hydrochloric acid solution", Thin Solid Films, vol. 520(1), pp. 356-361, 2011.
- Abdurrahman, J., Wahyuningrum, D., Achmad, S., Bundjali, B., "Synthesis of dipeptide benzoylalanylglycine methyl ester and corrosion inhibitor evaluation by tafel equation", SainsMalaysiana ,vol.40(9), , pp. 973-976,2011. [54]
- Abdel Ghany, N.A., El-Shenawy, A.E., Hussien, W.A.M., "The inhibitive effect of some amino acids on the corrosion behavior of 316L [55] stainless steel in sulfuric acid solution", Modern Applied Science, vol. 5(4), pp. 19-29,2011.
- Makarenko, N.V., Kharchenko, U.V., Zemnukhova, L.A., "Effect of amino acids on corrosion of copper and steel in acid medium", Russian [56] Journal of Applied Chemistry, vol. 84(8), pp. 1362-1365, 2011.
- Eddy, N.O., Ibok, U.J., Ita,B.I., "QSAR and quantum chemical studies on the inhibition potentials of some amino acids for the corrosion of [57] mild steel in H<sub>2</sub>SO<sub>4</sub>", Journal of Computational Methods in Sciences and Engineering ,vol.11(1-2), pp. 25-43,2011.
- [58] Eddy, N.O., Awe, F.E., Gimba, C.E., Ibisi, N.O., Ebenso, E.E., "QSAR, experimental and computational chemistry simulation studies on the inhibition potentials of some amino acids for the corrosion of mild steel in 0.1M HCl", International Journal of Electrochemical Science ,vol.6(4), pp. 931-957,2011.
- Barouni, K., Bazzi, L., Albourine, A., "Quantum chemical studies of inhibition effect of some amino acids on corrosion of corport [59] in nitric acid", Annales de Chimie: Science des Materiaux, vol.35(6), pp. 333-343,2010.
- Sahaya Raja.A,Rajendran.S, Nagalakshmi.R, AngelinThangakani.J and Pandiarajan.M., "Eco-Friendly inhibitor glycine-Zn2+ system [60] controlling corrosion of carbon steel in well water", Eur. Chem. Bull.vol. 2(3), pp. 130-136, 2013.
- AngelinThangakani.J, Rajendran.S, Sathiyabama.J, Lydia Christy.J, SuriyaPrabha .A and ,Pandiarajan.M., "Polarization study of corrosion [61] inhibition by glycine-Zn2+ system", Eur. Chem. Bull, vol. 1(5), pp. 265-271, 2013. Abdel Rahman. H. H, Moustafa. A. H, E, Awad. M. K., "Potentiodynamic and Quantum studies of some amino acids as corrosion inhibitors for
- [62] copper" Int.J.Electorchem. Sci,vol.7, pp. 1266-1287,2012.
- [63] BoyapatiVenkataAppaRao, MadalaVenkateswaraRao, SiruguduSrinivasaRao, BojjaSreedhar., "Surface analysis of carbon steel protected from corrosion by a new ternary inhibitor formulation containining phosphonated glycine, Zn2+ and citrate", Journal of Surface Engineered Materials and Advanced Technology, vol. 3, pp. 28-42, 2013.



# International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)