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ABSTRACT 

 
 The propagation of diverging cylindrical shock waves in a low 

conducting gas under the influence of spatially variable axial and 

azimuthal components of magnetic induction, by using the method of 

self-similarity. The initial density of the medium is assumed either to be 

uniform or to obey a power law. Also, both the components of the initial 

magnetic induction are taken to vary as some power of the distance from 

the axis of symmetry. The total energy of the flow-field behind the shock 

is constant or increasing due to instantaneous or time dependent energy 

input. The effects of variation of the initial density and the ratio of 

specific heats of the gas, on the propagation of shock and the flow-field 

behind it are investigated. 

 

 

 

 

INTRODUCTION 

 

Lin [1] has extended the Taylor’s analysis [2] of the intense spherical explosion to the cylindrical case. The 

law of variation of the radius of a strong cylindrical shock wave produced by a sudden release of a finite amount of 

energy was obtained. Applying the results of this analysis to the case of hypersonic flight, it was shown that the 

shock envelope behind a meteor or a high speed missile is approximately a paraboloid. 

 

Since at high temperatures that prevail in the problems associated with shock waves a gas is ionized, 

electromagnetic effects may also be significant. A complete analysis of such a problem should therefore consist of 

the study of the gasdynamic flow and the electromagnetic field simultaneously. The study of the propagation of 

cylindrical shock waves in a conducting gas in presence of an axial or azimuthal magnetic induction is relevant to 

the experiments on pinch effect, exploding wires and so forth. This problem both in the uniform or non-uniform 

ideal gas was undertaken by many investigators, for example, Pai [3], Cole and Greifinger [4], Sakurai [5], Bhutani [6], 

Christer and Helliwell [7], Deb Ray [8], Vishwakarma and Yadav [9]. One of the basis assumptions of these works is 

that the shock wave is propagated in a gaseous medium as a result of an instantaneous release of energy along a 

line. 

 

While the assumption of instantaneous energy input is considered adequate for most problems, there are 

processes in which the energy input, though very rapid, can be considered to be time dependent. Examples of time 

dependent energy input are the arc discharges, exploding wire phenomena and chemical energy release (as might 

occur in two phase detonations). Freeman [10] has considered the propagation of shock waves resulting from 

variable energy input. He has paid special attention to the case of cylindrical symmetry in view of its particular 

application to the problem of cylindrical spark channel formation from exploding wires (Freeman and Craggs [11]).  

 

In the present work, we studied the propagation of diverging cylindrical shock waves in a low conducting 

and uniform or non-uniform gas as a result of time dependent energy input, under the influence of spatially variable 

axial and azimuthal components of magnetic induction. The medium ahead and behind the shock front are 

assumed to be an inviscid one and to behave as a thermally perfect gas. The initial density of the gas is assumed to 

be uniform or to vary as some power of distance. The total energy of the flow-field behind the shock is not constant, 
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but increasing due to time dependent energy input. The gas ahead of the shock is assumed to be at rest. Effects of 

viscosity, heat-conduction, radiation and gravitation are not taken into account. Distribution of the flow variables 

between the shock front and the inner expanding surface are obtained, and the effects of the variation of initial 

density and the ratio of specific heats are investigated.  

 

Fundamental Equations and Boundary Conditions   

 

The basic equations governing the unsteady and cylindrically symmetric motion of a low conducting gas in 

presence of axial and azimuthal components of magnetic induction are given by (Tyl [12], Sakurai [5] and 

Vishwakarma [13])  
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where , u, p, Bz, B are the density, velocity, pressure, axial magnetic induction and azimuthal magnetic induction, 

respectively, at distance r from the axis of symmetry and at the time t, B
z0

 is the initial axial magnetic induction, 

0
B  the initial azimuthal magnetic induction, γ the ratio of specific heats, μ the magnetic permeability, σ the 

electrical conductivity and ‘a’ the speed of sound given by  

     2 .
p

a



  

The internal energy per unit mass of the gas e is given by  

     .
( 1)

p
e

 



           (2.6) 

It is assumed that, due to explosion along the axis of symmetry, a cylindrical shock is produced and 

propagates into the low conducting gas of density 0 in presence of the axial magnetic induction B
z0

 and azimuthal 

magnetic induction 
0

B . 

The density of the gas and the axial and azimuthal components of magnetic induction ahead of the shock are 

assumed to be varying and obeying the laws:  

0 ,AR          (2.7) 

0
,m

zB SR             (2.8) 

0
,nB QR

          (2.9) 

where R is the shock radius and A, α, S, Q, m, n are constants. 
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Since σ is small, the magnetic induction may be taken continuous across the shock front (Sakurai [5]). 

Neglecting the counter pressure, the shock conditions may be written as  
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where the subscript s refers the conditions immediately behind the shock front and V= 
dR

dt
 denotes the velocity of 

the shock. 

Similarity Transformations   

To obtain similarity solutions, we write the unknown variables in the following form (Vishwakarma and Yadav 

[9])  
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where f, D, P, bz, and  b are the functions of the non-dimensional variable 
( )

r
x

R t
  only. The shock front is 

represented by x = 1. 

The total energy of the flow-field behind the shock is not constant, but assumed to be time dependent and 

varying as (Rogers [14], Freeman [10], Director and Dabora [15])  

     0 ,kE E t            (3.2) 

where E
0

 and k are constants. The positive values of k corresponds to the class in which the total energy increases 

with time. Since the flow is adiabatic and the shock is strong, this increase can only be achieved by the pressure 

exerted on the fluid by an expanding surface (a contact surface or a piston). The situation very much of the same 

kind may prevail in the formation of cylindrical spark channel from exploding wires. In addition, in usual cases of 

spark breakdown, time dependent energy input is a more realistic assumption than instantaneous energy input 

(Freeman [10]). 

 

The total energy of the flow between the shock front and the inner expanding surface (piston) is therefore 

expressed as  
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where r
p

 is the radius of the inner surface.  

Applying the similarity transformations (3.1) in the relation (3.3), we find that the motion of the shock front is 

given by the equation  
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 being the value of the x at the inner expanding surface. 

Equation (3.4), on integration, yields  
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After using the similarity transformations, the equations (2.1) to (2.5) change into the following set of ordinary 

differential equations  
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where R
m

, M
Az

 and AM  , are respectively, the magnetic Reynolds number, axial Alfven-Mach number and 

azimuthal Alfven-Mach number, and they are given by  
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Using the self-similarity transformations (3.1), the boundary conditions (2.10) can be written as  
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For the existance of similarity solutions magnetic Reynolds number R
m

, axial Alfven-Mach number M
Az

 and 

azimuthal Alfven-Mach number AM   should be constants. Therefore,  
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The condition to be satisfied at the inner expanding surface is that the velocity of the fluid is equal to the 

velocity of the surface itself. This kinematic condition, can be written as  

( )p pf x x .            (3.17)  

For exhibiting the numerical solutions it is convenient to write field variables in the following form:  
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The shock-boundary conditions in terms of these variables are  
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Now, the differential equations (3.10), (3.11) and (3.14) to (3.16) may be numerically integrated, with the 

boundary conditions (3.12) to obtain the flow-field between the shock front and the inner expanding surface. 

RESULTS AND DISCUSSION 

The reduced flow variables 
u

u
s
, 

s




, 

p

p
s
, 

B
z

B
zs

 and 

s

B

B





 are obtained by numerical integration of the differential 

equations (3.10), (3.11) and (3.14) to (3.16) with the boundary conditions (3.12). For the purpose of numerical 

integration, the values of the constant parameters are taken as (Vishwakarma and Singh [16]) γ = 1.4,1.66; 

M
−2

Az
=0.01, 

2 0.01AM 
  ; R

m
=0.01; α = 0, 0.5, 1.0, 1.5, 2.0. The value α = 0 corresponds to the case of shock 

wave generated by instantaneous energy release (k = 0) in a gas of uniform density. 

Figures 1-5 show the variation of the flow variables 
u

u
s
, 

s




, 

p

p
s
, 

B
z

B
zs

 and 

s

B

B





 with x at various values of the 

parameters α and γ. It is shown that, as we move inward from the shock front towards the inner expanding surface, 

the reduced fluid velocity 
u

u
s
 decreases for lower values of α (= 0,0.5), but it increases for comparatively higher 

values of α (= 1.5, 2.0); and the reduced density 

s




, reduced pressure 

p

p
s
 and reduced axial magnetic induction 

B
z

B
zs

 decrease for all acceptable values of α, whereas reduced azimuthal magnetic induction 

s

B

B





 increases. Table 

1 shows the dimensionless position of the inner expanding surface x
p

 at different values of α and γ.  

The effects of an increase in the density variation index α are (from figures 1-5):  

(i) to increase the velocity 
u

u
s
 and the pressure 

p

p
s
 at any point in the flow-field behind the shock;  

(ii)  to decrease the density 

s




 and the axial magnetic induction 

B
z

B
zs

;  

(iii) to decrease the slope of profiles of velocity and pressure and to increase that of the  profiles of the density 

and axial magnetic induction; and  

(iv) to decrease the distance (1−x
p

) of the inner expanding surface from the shock front (see table 1). This 

means that the ratio of the velocity of inner expanding surface to that of the shock front increases which 

results in more compression of gas behind the shock and an increases in the shock strength. 

 

In fact, by an increase in α, k is increased which increases the time dependent energy input (through equation 

(3.2)) causing an increase in the velocity of inner expanding surface and hence an increase in the shock strength. 

The effects of an increase in the γ are (from figures 1-5): 

(i) to decrease the velocity 
u

u
s
 and to increase the density 

s




 and the axial magnetic induction 

B
z

B
zs

 at any 

point in the flow-field behind the shock;  

(ii)  to decrease the slope of profiles of density and axial magnetic induction; and  
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(iii) to increase slightly the distance of inner expanding surface to the shock front (table 1).  

Variation in α or γ has no effect on the azimuthal magnetic field 

s

B

B





 
 
 
 

 in the flow-field behind the shock. 

Equations (3.5) and (3.13) show that the shock velocity ̇R decreases with time and varies as t
−1/2

. 

Table 1. Position of the inner expanding surface x
p

 at different values of α and γ for M
−2

Az
=0.01, 

2 0.01AM 
   and  

R
m

=0.01. 

 γ x
p

 

 α = 0 α = 0.5 α =1.0 α =1.5 α = 2.0 

 1.4 0.001 0.711 0.822 0.872 0.900 

 1.66 0.001 0.637 0.822 0.815 0.851 
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CONCLUSION 

In the present paper, the similarity solutions have been obtained for the propagation of cylindrical shock 

waves in a low conducting gas under the influence of variable initial axial and azimuthal components of magnetic 

induction. On the basis of the present study, one may draw the following conclusions: 

 

(i) The shock velocity decreases with time as t
−1/2

.  

(ii)  An increase in the value of density variation index α gives rise an increase in the velocity 
u

u
s
 and in the 

pressure 
p

p
s
, and a decrease in the density 

s




 and in the axial magnetic induction 

B
z

B
zs

 at any point in the 

flow-field behind the shock.  

(iii) An increase in α, increases the time dependent energy input, and hence increases the shock strength.  

(iv) An increase in the value of γ gives rise an increase in the density 

s




 and in the axial magnetic induction 

B
z

B
zs

, and a decrease in the velocity 
u

u
s
 at any point in the flow-field behind the shock. 
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