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Abstract: To provide a comprehensive survey, we not only categorize existing modeling techniques but also present detailed descriptions of representative 

methods within each category. In addition, relevant topics such as biometric modalities, system evaluation, and issues of illumination and pose variation are 

covered. 3D models hold more information of the face, like surface information, that can be used for face recognition or subject discrimination. This paper, gives 

the survey based techniques or methods for 3D face modeling, in this paper first step namely Model Based Face Reconstruction, secondly Methods of 3d Face 

models divided into three parts Holistic matching methods, Feature-based (structural) matching methods, Hybrid methods thirdly Other methods categorized into 

again three parts 2D based class, 3D Based class and 2D+3D based class are discussed. There are two underlying motivations for us to write this survey paper: the 

first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces 

.  

Keywords-Biometric modalities, 3D face model, bootstrapping algorithm, morphable model, 3D Shape based methods. 

INTRODUCTION  

Reliable personal recognition techniques play a critical role 

in our everyday and social activities. In access control, 

authorized users should be allowed for entrance with high 

accuracy while unauthorized users should be denied. In 

welfare benefit disbursement, people not only should verify 

whether the identity of a person is whom he/she claimed to 

be, but also should avoid the occurrence that one person 

claims to be another person to receive the welfare benefit 

twice (double dipping).  

 

Traditionally, there are two categories of personal 

recognition approaches, token-based and knowledge-based 

(Miller, 1994). In the token-based approach, the identity of a 

person is verified according to what they have. Anyone 

possessed a certain physical object (token), e.g., keys or ID 

cards, is authorized to receive the associated service. The 

knowledge-based approaches authenticate the identity of an 

individual according to what they know. Any individuals 

with certain secret knowledge, such as passwords and 

answers to questions, would receive the associated service. 

Both the token-based and the knowledge-based approaches, 

however, have some inherent limitations. In the token-based 

approach, the “token” could be stolen or lost. In the 

knowledge-based approach, the “secret knowledge” could 

be guessed, forgotten, or shared. Biometric recognition is an 

emerging personal recognition technology developed to 

overcome the inherent limitations of the traditional personal 

recognition approaches (Jain, Bolle, & Pankanti, 1999a; 

Zhang, 2000, 2002, & 2004; Wayman, 2005; Bolle, 2004). 

The term biometrics, which comes from the Greek words 

bios (life) and metrikos (measure), refers to a number of 

technologies to authenticate persons using their physical 

traits such as fingerprints, iris, retina, speech, face and palm 

print or behavior traits such as gait, handwritten signature 

and keystrokes. In other words, biometric recognition 

recognizes the identity of an individual according to who 

He/she is. Compared with the token-based and the 

knowledge-based methods, biometric identifiers cannot be 

easily forged, shared, forgotten, or lost, and thus can provide 

better security, higher efficiency, and increased user 

convenience.  

 

Biometric recognition lays the foundation for an extensive 

array of highly secure authentication and reliable personal 

verification (or identification) solutions. The first 

commercial biometric system, Identimat, was developed in 

1970s, as part of an employee time clock at Shearson 

Hamill, a Wall Street investment firm (Miller, 1994). It 

measured the shape of the hand and the lengths of the 

fingers. At the same time, fingerprint-based automatic 

personal authentication systems were widely used in law 

enforcement by the FBI and by US government 

departments. Subsequently, advances in hardware such as 

faster processing power and greater memory capacity made 

biometrics more feasible and effective. Since the 1990s, iris, 

retina, face, voice, palm print, signature and DNA 

technologies have joined the biometric family (Jain et al., 

1999a; Zhang, 2000).  

 

With the increasing demand for reliable and automatic 

solutions to security systems, biometric recognition is 

becoming ever more widely deployed in many commercial, 

government, and forensic applications. After the 911 

terrorist attacks, the interest in biometrics-based security 

solutions and applications increased dramatically, especially 

in the need to identify individuals in crowds. Some airlines 

have implemented iris recognition technology in airplane 

control rooms to prevent any entry by unauthorized persons. 

In 2004, all Australian international airports implemented 

passports using face recognition technology for airline crews 

and this will eventually became available to all Australian 

passport holders (Jain et al., 1999a). Several governments 

are now using or will soon be using biometric recognition 

technology. The U.S. INSPASS immigration card and the 

Hong Kong ID card, for example, both store biometric 

features for reliable and convenient personal authentication.  
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Generally speaking, any situation that allows an interaction 

between human and machine is capable of incorporating 

biometrics. Such situations may fall into a range of 

application areas. Biometrics is currently being used in areas 

such as computer desktops, networks, banking, immigration, 

law enforcement, telecommunication networks and 

monitoring the time and attendance of staff. Governments 

across the globe are tremendously involved in using and 

developing biometrics. National identity schemes, voting 

registration and benefit entitlement programs involve the 

management of millions of people and are rapidly 

incorporating biometric solutions. Fraud is an ever-

increasing problem and security is becoming a necessity in 

many walks of life. Biometric applications can be simply 

categorized as follows (Zhang, 2000):  

LAW ENFORCEMENT- 

The law enforcement community is perhaps the largest user 

of biometrics. Police forces throughout the world use 

Automated Fingerprint Identification System (AFIS) 

technology to process suspects, match finger images and to 

process accused individuals. A number of biometric vendors 

are earning significant revenues in this area, primarily using 

AFIS and palm-based technologies.  

BANKING-  

Banks have been evaluating a range of biometric 

technologies for many years. Automated Teller Machines 

(ATMs) and transactions at the point of sale are particularly 

vulnerable to fraud and can be secured by biometrics. Other 

emerging markets such as telephone banking and Internet 

banking must also be totally secure for bank customers and 

bankers alike. A variety of biometric technologies are now 

striving to prove themselves throughout this range of diverse 

market opportunities.  

COMPUTER  SYSTEMS  (ALSO  KNOWN AS 

LOGICAL  ACCESS  CONTROL)- 

Biometric technologies are proving to be more than capable 

of securing computer networks. This market area has 

phenomenal potential, especially if the biometric industry 

can migrate to large-scale Internet applications. As banking 

data, business intelligence, credit card number, medical 

information and other personal data become the target of 

attack, the opportunities for biometric vendors are rapidly 

escalating.  

PHYSICAL ACCESS- 

Schools, nuclear power stations, military facilities, theme 

parks, hospitals, offices and supermarkets, across the globe 

employ biometrics to minimize security threats. As security 

becomes more and more important for parents, employers, 

governments and other groups - biometrics will be seen as a 

more acceptable and therefore essential tool. The potential 

applications are infinite. Cars IGI Global, distributing in 

print or electronic forms without written permission of IGI 

Global is prohibited. For example, the sanctuary of the 

ordinary citizen, are under constant threat of theft. 

Biometrics - if appropriately priced and marketed - could 

offer the perfect security solution. 

 

BENEFIT SYSTEMS- 

Benefit systems like welfare especially need biometrics to 

struggle with fraud. Biometrics is well placed to capitalize 

on this phenomenal market opportunity and vendors are 

building on the strong relationship currently enjoyed with 

the benefits community.�

IMMIGRATION- 

Terrorism, drug running, illegal immigration and an 

increasing throughput of legitimate travellers is putting a 

strain on immigration authorities throughout the world. It is 

essential that these authorities can quickly and automatically 

process law-abiding travellers and identify law-breakers. 

Biometric technologies are being employed in a number of 

diverse applications to make this possible. The US 

Immigration and Naturalization Service is a major user and 

evaluator of a number of state-of-the-art biometric systems. 

Systems are currently in place throughout the US to 

automate the flow of legitimate travellers and deter illegal 

immigrants. Elsewhere biometrics is capturing the 

imagination of countries such as Australia, Bermuda, 

Germany, Malaysia and Taiwan.�

NATIONAL IDENTITY- 

Biometric technologies are beginning to assist governments 

as they record population growth, identify citizens and 

prevent fraud from occurring during local and national 

elections. Often this involves storing a biometric template 

on a card that in turn acts as a national identity document. 

Finger scanning is particularly strong in this area and 

schemes are already under way in Jamaica, Lebanon, The 

Philippines and South Africa.  

TELEPHONE SYSTEMS- 

Global communication has truly opened up over the past 

decade, while telephone companies are under attack from 

fraud. Once again, biometrics is being called upon to defend 

against this onslaught. Speaker ID is obviously well suited 

to the telephone environment and is making in-roads into 

these markets.  

TIME, ATTENDANCE AND MONITORING:  

Recording and monitoring the movement of employees as 

they arrive at work, have breaks and leave for the day were 

traditionally performed by time-card machines. Replacing 

the manual process with biometrics prevents any abuses of 

the system and can be incorporated with time management 

software to produce management accounting and personnel 

reports.�

BIOMETRIC RECOGNITION TECHNOLOGIES/ 

MODALITIES 

A biometric system can be regarded as a pattern recognition 

system, where a feature set is first extracted from the 

acquired data, and then is compared with the stored template 

set to make a decision on the identity of an individual. A 

biometric system can be operated in two modes, biometric 

verification and biometric identification. In biometric 

verification mode, the decision is whether a person is “who 

he/she claims to be?” In biometric identification mode, the 

decision is “whose biometric data is this?” Thus a biometric 

system can be formalized into a two-class or multi-class 

pattern recognition system.  
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A general distinction is drawn between behavioural and 

physiological biometric characteristics. Physiological 

characteristics are usually determined by the genes (like face 

or vein pattern), in some cases (fingerprint, iris) they are 

also influenced by extra-genetic or environmental factors 

and can in theory be used to distinguish between identical 

twins (with identical genome). Behavioural modalities are 

affected by the human genome as well, but their occurrence 

can be changed deliberately. The process of capturing 

behavioural modalities is a measurement of an activity. 

Therefore these modalities are called active modalities. 

 

A biometric system usually includes four major modules: 

data acquisition, feature extraction, matching, and system 

database (Jain, Ross, & Prabhakar, 2004). In the data 

acquisition module, the biometric data of an individual is 

acquired using a capture sensor. In the feature extraction 

module, the acquired data is processed to extract a set of 

discriminative features. In the matching module, the features 

are compared with the stored template set to make a 

decision on the identity of an individual. In the system 

database module, a database is built and maintained to store 

the biometric templates of the enrolled users. Feature 

extraction and matching are two of the most challenging 

problems in biometric recognition research, and have 

attracted researchers from different backgrounds: 

biometrics, computer vision, pattern recognition, signal 

processing, and neural networks.�

 

Advances in sensor technology and increasing diverse 

demand of biometric systems cause the persistent progress 

on developing novel acquisition sensors and novel biometric 

technologies. Before 1980s, the offline “ink-technique” is 

the dominant approach to acquire fingerprint images. 

Nowadays, a number of online live-scan fingerprint sensors, 

e.g., optical, solid-state, and ultrasound, have been designed 

for fingerprint acquisition.  

 

Although research on the issues of common biometric 

technologies have drawn considerable attention, and have 

been studied extensively over the last 25 years, there are still 

some limitations to varieties of existing applications. For 

example, some people have their fingerprints worn-away 

due to the hard work they do with their hands and some 

people are born with unclear fingerprints. Face-based and 

voice-based identification systems are less accurate and 

easier to be attacked using a mimic. Efforts geared towards 

improving the current personal identification methods will 

continue, and meanwhile new biometric technologies are 

under investigation. Currently, the major biometric 

technologies involve face, fingerprint, iris, palm print, 

signature, and voice recognition, as well as multi-biometric 

recognition technologies (Zhang, 2002).  

The following provides a brief introduction of these 

biometric traits:  

FINGERPRINT-  

Because the patterns of ridges and valleys on an individual’s 

fingertips are unique to that individual, fingerprints can be 

used for authenticating personal identity. For decades, law 

enforcement has been classifying and determining identity 

by matching key points of ridge endings and bifurcations. 

Fingerprints are so unique that even identical twins usually 

do not have the same fingerprint.  

IRIS- 

The patterns of the iris, the colored area that surrounds the 

pupil, are thought to be unique. Iris patterns can be obtained 

through a video-based image acquisition system. Iris 

scanning devices have been used in personal authentication 

applications. It has been demonstrated that iris-based 

biometric system can work with individuals without regard 

to ethnicity or nationality.  

PALM PRINT- 

Palm print, the inner surface of the palm, carries several 

kinds of distinctive identification features for accurate and 

reliable personal recognition. Like fingerprints, palm print 

have permanent discriminative features including patterns of 

ridges and valleys, minutiae, and even pores in high 

resolution (>1000dpi) images. Except these quasi fingerprint 

features, palm print also carries other particular distinctive 

features including principal lines and wrinkles. Using a high 

resolution capture device, it is possible to extract all kinds of 

palm print features to construct a high accurate biometric 

system. In the early stage, palm print recognition techniques 

have been investigated to extract and match the singular 

points and minutia points from high resolution palm print 

images. High resolution palm print scanner, however, is 

expensive, and is time consuming to capture a palm print 

image, which restricts the potential applications of online 

palm print recognition systems. Subsequently, online 

capture device has been developed to collect real time low 

resolution palm print image, and low resolution palm print 

recognition has gradually received considerable recent 

interest in biometric community (Zhang, Kong, You,  & 

Wong, 2003; Jain et al., 2004; Zhang, 2004).  

FACE:  

Humans are specialists in recognising faces. The automation 

of this intentional process is not easy, but research is 

sophisticated in 2D face recognition. This modality has a 

very high user acceptance because of its frequent 

employment. After 30 years of research, 2D results are quite 

good [64].  

 

Nevertheless, there are some issues that are hard to cope 

with taking into account only “flat” images of faces. With 

3D depth information lighting conditions and pose 

variations can be handled more exact. This type of face 

recognition is an evolving domain that is not yet well 

investigated. Another advantage of 3D models is that they 

are harder to copy than 2D images. Several 2D face 

recognition systems could be fooled by simply holding a 

picture in front of a capture device. Recent systems include 

liveness detection mechanisms to prevent this kind of attack 

– a possible resolution are two camera systems, that are 

harder to fool.  

SIGNATURE- 

Signature authentication involves the dynamic analysis of a 

signature to authenticate a person’s identity. A signature-

based system will measure the speed, pressure, and angle 

used by the person when producing a signature. This 

technology has potential applications in e-business, where 

signatures can be an accepted method of personal 

authentication.  

SPEECH- 
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Speech-based personal authentication, which has a history 

of about four decades, is regarded as a non-invasive 

biometric technology. Speech authentication uses the 

acoustic features of speech, which have been found to be 

different between individuals. These acoustic patterns reflect 

both anatomic (e.g., size and shape of the throat and mouth) 

and behavioral patterns (e.g., voice pitch, speaking style) of 

an individual. The incorporation of learned patterns into the 

voice templates (the latter called "voiceprints") has allowed 

speaker recognition to be recognized as a "behavioral 

biometric". Speech-based personal authentication systems 

employ three styles of spoken input: text-dependent, text-

prompted and text-independent. Most speech authentication 

applications use text-dependent input, which involves 

selection and enrollment of one or more voice passwords. 

Text-prompted input is used whenever there is concern 

about imposters.  

RETINA:  

Blood vessel patterns in the back of the inner eye are taken 

as reference. This feature is very stable and does not alter. 

Sensors are expensive and must use visible light which may 

annoy users. Retinal images are used in the medical domain 

to diagnose diseases and are therefore known to be one of 

the few biometric modalities that carry sensitive 

information. 

GAIT- 

Gait, the peculiar way one walks, is a complex spatio-

temporal biometric trait. Note that gait is a behavioral trait 

and may not remain the same over a long period of time, due 

to some factors such as changes in body weight. It is 

commonly considered that a gait-based biometric system 

can be used in some low-security applications. Gait 

authentication is also not intrusive and the acquisition of gait 

is similar to acquiring a facial image. Usually a gait-based 

biometric system analyzes a video-sequence to obtain the 

gait trait and it is generally computationally expensive.  

HAND AND FINGER GEOMETRY- 

A system may measure geometrical characteristics of either 

the hands or the fingers to perform personal authentication. 

These characteristics include length, width, thickness and 

surface area of the hand. Requiring only a small biometric 

sample of a few bytes is one interesting characteristic of this 

kind of biometric technology. The biometric system based 

on hand and finger geometry has been used in physical 

access control in commercial and residential applications, in 

time and attendance systems.  

DNA:  

Feature extraction is very expensive and takes a lot of time 

(up to several days) but it is referred to as the ultimate 

biometric characteristic. Desoxyribonucleic acid is available 

in every cell of each organism, a drawback is the equality of 

identical twins. Although 99.5 percent of the human genome 

overlaps between individuals there is still enough 

information for exact identification. Alleles are alternate 

forms of the DNA that can be used for feature extraction.�

 

DNA can be misused to derive other information (e.g. 

medical conditions, race or paternity can be extracted) and 

therefore is absolutely critical in respect of privacy. 

EAR- 

There is evidence to show that the shape of the ear and the 

structure of the cartilaginous tissue of the pinna are 

distinctive. As a result, the ear-based biometric system can 

be used for authenticating personal identity. This uncommon 

modality can also be used for recognition. Employing 

thermograms instead of normal pictures improves system 

performance because hairstyle has no effect on it. Ear shape 

models are often combined with face recognition to improve 

overall performance. Human bodies provide many more 

attributes to be captured and taken for comparison. To name 

a few: Odour, sweat pores, vein patterns, lip motion or skin 

reflectance. Using multi-modal biometrics7 can improve the 

system’s performance. 

ODOR- 

Each object, including people, spreads an odor that is 

characteristic of its chemical composition. This could be 

used for distinguishing various objects. This would be done 

with an array of chemical sensors, each sensitive to a certain 

group of compounds. However, deodorants and perfumes 

could compromise distinctiveness.  

MULTI-BIOMETRICS- 

From an application standpoint, widespread deployment of a 

user authentication solution requires support for an 

enterprise’s heterogeneous environment. Often, this requires 

a multi-faceted approach to security, deploying security 

solutions in combination. An authentication solution should 

seamlessly extend the organization’s existing security 

technologies. We are now interested in understanding both 

how to build multi-biometric recognition systems and what 

possible improvements these combinations can produce. 

Currently there are several true multi-modal databases 

available for testing multi-biometric recognition algorithms. 

The most important resource available may be the extended 

M2VTS database, which is associated with the specific 

Lausanne protocol for measuring the performance of 

verification tasks. This database contains audio-visual 

material from 295 subjects (Poh & Bengio, 2006). To 

facilitate multi-biometric research, NIST presents an open 

resource of Biometric Scores Set -Release 1 (BSSR1), 

which includes true multimodel matching scores generated 

by face and fingerprint recognition algorithms (Grother & 

Tabassi, 2004).�

MAIN PROBLEMS IN BIOMETRIC RECOGNITION  

To enhance the recognition performance of the biometric 

system, this section suggests two advanced biometric 

recognition technologies, biometric data discrimination and 

multi-biometric technologies. In biometric data 

discrimination, we first introduce the fundamental of 

biometric data discrimination, and then suggest using a 

family of tensor discriminant analysis to deal with the 

diversity in forms of biometric data. In multi-biometrics, we 

introduce three categories of fusion strategies to enhance the 

performance and reliability of the biometric system.  

 

Besides recognition performance, security and privacy 

issues should also be taken in account. In terms of security,�

There are many attacks, such as overplay, database and 

brute-force attacks, on biometric applications. In terms of 

privacy, biometric traits may carry additional sensitive 

personal information. For example, genetic disorders might 

be inferred from the DNA data used for personal 
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identification.  

BIOMETRIC DATA DISCRIMINATION – 

Generally, biometric data�

mainly exists in the following three forms: 1D waveform  

(e.g. voice, signature data), 2D images (e.g. face images, 

fingerprints, palm prints,  or image sequences, i.e., video), 

and 3D geometric data (such as 3-D facial or hand 

geometric shapes). Since the diversity in biometric data and 

feature forms, it is  hardly difficult to develop a universal 

recognition technology which is capable to  process all kinds 

of biometric data. Fortunately, recent progress in 

discriminant analysis sheds some light on the possibility on 

this problem.  Discriminant analysis, with the goal of 

dimensionality reduction and of retaining the statistical 

separation property between distinct classes, is a natural 

choice for biometric recognition. With the development of 

biometrics and its applications, many classical discriminant 

analysis technologies have been borrowed and applied to 

deal with biometric data. Among them, principal component 

analysis (PCA, or K-L transform) and Fisher linear 

discriminant analysis (LDA) have been very successful, in 

particular for face image recognition. These methods have 

themselves been greatly improved with respect to specific 

biometric data analyses and applications. Recently, non-

linear projection analysis technology represented by kernel 

principal component analysis (KPCA) and kernel Fisher 

discriminant (KFD) has also shown great potential for 

dealing with biometric recognition problems. In summary, 

discrimination technologies play an important role in the 

implementation of biometric systems. They provide 

methodologies for automated personal identification or 

verification. In turn, the applications in biometrics also 

facilitate the development of discrimination methodologies 

and technologies, making discrimination algorithms more 

suitable for image feature extraction and recognition.  

Currently discriminant analysis has been widely applied to 

face, ear, fingerprint, gait recognition, and even multi-modal 

biometrics. Further, the increasing demand for reliable and 

convenient biometric system is also contributing to the 

development and improvement of linear/nonlinear 

discriminant analysis techniques.  

A tensor is a higher order generalization of a vector or a 

matrix. In fact, a vector is a first-order tensor and a matrix is 

a tensor of order two. Furthermore speaking, tensors are 

multilinear mapping over a set of vector spaces. If we have 

data in three or more dimensions, then we mean to deal with 

a higher-order tensor. Tensor presents a generalized 

representation of biometric data. To deal with the diversity 

in biometric data forms, families of tensor discriminant 

analysis technologies have been investigated. Nowadays, 

tensor principal compoenent analysis, tensor discriminant 

analysis, tensor independent component analysis, and other 

tensor analysis approaches have been successfully applied to 

face, palm print, and gait recognition.  

 

Biometric data discrimination technologies can be briefly 

defined as automated methods of feature extraction and 

recognition based on given biometric data. It should be 

stressed that the biometric data discrimination technologies 

are not the simple application of classical discrimination 

techniques to biometrics, but are in fact improved or 

reformed discrimination techniques that are more suitable 

for biometric applications, for example by having a more 

powerful recognition performance or by being 

computationally more efficient for feature extraction or 

classification. In other words, the biometric data 

discrimination technologies are designed for extracting 

features from biometrics data, which are characteristically 

high-dimensional, large scale, and offer only a small sample 

size. The following explains these characteristics more fully.  

HIGH  DIMENSIONALITY- 

In biometric recognition, high dimensional data usually are 

expected to be more powerful. The high-dimensionality of 

biometric data, however, would make direct classification 

(e.g. the so-called correlation method that uses a nearest 

neighbour classifier) in original data space almost 

impossible, firstly because the similarity (distance) 

calculation is very computationally expensive, secondly 

because it demands large amounts of storage. High 

dimensionality makes it necessary to use a dimension 

reduction technique prior to recognition.  

LARGE  SCALE-  

Real-world biometric applications are often large-scale, 

which means biometric systems should be operated in large 

population databases. Typical examples of this would 

include welfare-disbursement, national ID cards, border 

control, voter ID cards, driver’s licenses, criminal 

investigation, corpse identification, parenthood 

determination, and the identification of missing children. 

Given an input biometric sample, a large-scale biometric 

identification system determines whether the pattern is 

associated with any of a large number (e.g., millions) of en-

rolled identities. These large-scale biometric applications 

require high-quality and very generalizable biometric data 

discrimination technologies.  

SAMPLE QUALITY- 

Biometric systems automatically capture, detect and 

recognizing biometric image, making it inevitable that 

biometric data will sometimes be noisy or partially 

corrupted. The capture and communication of biometric data 

itself may introduce noise; some accessories will cause the 

partial corruption of biometric data, for example a scarf may 

occlude a facial image. Because all these factors are 

inevitable, the development of biometric system should 

always address the robust feature extraction and recognition 

of noisy or partially corrupted biometric data.�

SMALL SAMPLE SIZE- 

Unlike, for example, optical character recognition (OCR) 

problems, the training samples per class that are available in 

real-world biometric recognition problems are always very 

limited. Indeed, there may be only one sample available for 

each individual. Combined with high-dimensionality, small 

sample size creates the so-called small sample size (or 

under-sampled) problems. In these problems, the within-

class scatter matrix is always singular because the training 

sample size is generally less than the space dimension. As a 

result, the classical LDA algorithm becomes infeasible in 

image vector space.�

MULTI-BIOMETRICS – 
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Verification or identification accuracy is always the first-of-

all objective for biometric systems. Unibiometric system, 

the biometric system using a single biometric characteristic, 

usually suffers from some limitations and cannot provide 

satisfactory recognition performance. For example, manual 

workers with damaged or dirty hands may not be able to 

provide high-quality fingerprint images, and thus failure to 

enrol would happen for single fingerprint recognition 

system.  

 

Multi-biometric systems, which integrate information from 

multiple biometric traits, provide some effective means to 

enhance the performance and reliability of the biometric 

system. To combine information from individual biometric 

traits, there are three categories of fusion strategies, feature 

level fusion, matching score level fusion, and decision level 

fusion. In feature level fusion, the data obtained from each 

sensor is used to compute a feature vector. As the feature 

extracted from one biometric trait is independent of that 

extracted from the other, it is reasonable to concatenate the 

two vectors into a single new vector for performing multi-

bio-metric based personal authentication. Note that the new 

feature vector now has a higher dimensionality than the 

original feature vector generated from each sensor. Feature 

reduction techniques may be employed to extract useful 

features from the set of the new feature vector. In matching 

score level fusion, each subsystem using one biometric trait 

of the multi-biometric system provides a matching score 

indicating the proximity of the feature vector with the 

template vector. These scores can be combined to assert the 

veracity of the claimed identity. In decision level fusion 

each sensor first acquire one of multiple biometric traits and 

the resulting feature vectors are individually classified into 

the two decisions---accept or reject the claimed identity.�

 

Then a scheme that exploits the known decisions to make 

the final decision is used. In the field of multi-biometrics, a 

great number of studies of feature level fusion, matching 

score level fusion and decision level fusion have been made. 

Though fusion of multi-biometrics are generally recognized 

as three classes as described above, in real-world 

applications of multi-modal biometric it is possible that the 

“Fusion Process” may be simultaneously involved in 

different levels such as in both the matching score level and 

the decision level.�

Recent decades have witnessed the development and 

prosperity of biometric data discrimination technologies. 

Various unsupervised/supervised, linear/nonlinear, 

vector/tensor discrimination technologies have been 

investigated and successfully applied to biometric 

recognition. At the beginning, linear unsupervised method, 

principal component analysis (PCA), was used to extract the 

holistic feature vectors for facial image representation and 

recognition (Sirovich & Kirby, 1987; Kirby & Sirovich, 

1990; Turk & Pentland, 1991a & 1991b). Since then, PCA 

has been widely investigated and has become one of the 

most successful approaches to face recognition (Pentland, 

Moghaddam, & Starner, 1994; Pentland, 2000; Zhao & 

Yang, 1999; Moghaddam, 2002; Zhang, 2002; Kim, H. C., 

Kim, D., Bang, & Lee, 2004) and palm print recognition 

(Lu, Plataniotis, & Venetsanopoulos, 2003b). Other popular 

unsupervised methods, such as independent component 

analysis (ICA) and non-negative matrix factorization 

(NMF), have been applied to biometric recognition (Bartlett 

et al., 2002; Yuen & Lai, 2002; Liu & Wechsler, 2003; 

Draper, Baek, Bartlett, & Beveridge, 2003; Petridis & 

Perantonis, 2004).  

 

Since the unsupervised methods do not utilize the class label 

information in the training stage, it is generally believed that 

the supervised methods are more effective in dealing with 

recognition problems. Fisher linear discriminant analysis 

(LDA), which aims to find a set of the optimal discriminant 

projection vectors that map the original data into a low-

dimensional feature space, is then gaining popularity in 

biometric recognition research. In 1986, Fisher linear 

discriminant analysis was first applied to image 

classification (Tian, Barbero, Gu, & Lee, 1986). Further, 

LDA was applied to face recognition, and subsequently was 

developed into one of the most famous face recognition 

approaches, Fisherfaces (Liu, K. Cheng, Yang, & Liu, X. 

1992; Swets & Weng, 1996; Belhumeur, Hespanha, & 

Kriengman, 1997). In biometric recognition, the data 

dimensionality is much higher than the size of the training 

set, leading to the well-known small sample size (SSS) 

problem. Currently there are two popular strategies to solve 

the SSS problem, the transform-based and the algorithm-

based (Yang & Yang, 2003; Jian, Yang, Hu, & Lou, 2001; 

Chen, Liao, Lin, Kao, & Yu, 2000; Yu & Yang, 2001; Lu et 

al., 2003a; Liu & Wechsler, 2000 & 2001; Zhao et al., 1998; 

Loog, Duin, & Haeb-Umbach, 2001; Duin & Loog, 2004; 

Ye, 2004; Howland & Park, 2004). The transform-based 

strategy first reduces the dimensions of the original image 

data and then uses LDA for feature extraction. Typical 

transform-based methods include PCA+LDA and 

uncorrected LDA. The algorithm-based strategy finds an 

algorithm for LDA that can circumvent the SSS problem. 

Some representative algorithm-based methods can avoid the 

SSS problem, but most algorithm-based methods are 

computationally expensive or lose parts of important 

discriminatory information.  

 

Biometric recognition usually is highly complex and can not 

be regarded as a linear problem. In the last few years, a class 

of nonlinear discriminant analysis techniques named as 

kernel-based discriminant analysis has been widely 

investigated for biometric data discrimination. Kernel 

principal component analysis (KPCA) and kernel Fisher 

discriminant (KFD) are two of the most representative 

nonlinear methods and have received considerable interests 

in the fields of biometrics, pattern recognition, and machine 

learning. By far, a number of kernel-methods, such as 

KPCA, KFD, complete kernel Fisher discriminant (CKFD), 

and kernel direct discriminant analysis (KDDA), have been 

developed from biometric recognition (Schölkopf et al., 

1998; Mika Rätsch, Schölkopf, Smola, Weston, & 

Müller,1999a & 1999b; Baudat & Anouar, 2000; Roth & 

Steinhage, 2000; Mika, Rätsch, & Müller, 2001a & 2001b; 

Mika et al., 2003; Yang, 2002; Lu et al., 2003b; Xu, Zhang, 

& Li, 2001; Billings & Lee, 2002; Gestel, Suykens, 

Lanckriet, Lambrechts, De Moor, & Vanderwalle, 2002; 

Cawley & Talbot, 2003; Lawrence & Schölkopf, 2001; Liu, 

2004; Yang, Zhang, & Lu, 2004a & 2004b; Xu, Yang, J. Y, 

& Yang, J., 2004; Yang, Zhang, Yang, Zhong, & Frangi, 

2005). Most recently, manifold learning methods, such as 

isometric feature mapping (ISOMAP), locally linear 
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embedding (LLE), and Laplacian eigenmaps, have also 

shown great potential in biometric recognition (Tenenbaum, 

2000; Roweis & Saul, 2000; Belkin & Niyogi, 2002).  

 

As a generalization of vector-based methods, a number of 

tensor discrimination technologies have been proposed. The 

beginning of tensor discrimination technology can be traced 

back to 1993, where a 2D image matrix based algebraic 

feature extraction method is proposed for image recognition 

(Liu, Cheng, & Yang, 1993). As a new development of the 

2D image matrix based straightforward projection 

technique, a two-dimensional PCA (2DPCA) and 

uncorrelated image projection analysis were suggested for 

face representation and recognition (Yang, Zhang, Frangi, & 

Yang, 2004c; Yang. J, Yang, J. Y., Frangi, A. F., & Zhang, 

2003b). To reduce the computational cost of 2DPCA, 

researchers have developed several BDPCA and generalized 

low rank approximation of matrices (GLRAM) approaches 

(Zuo, Wang, & Zhang, 2005; Ye, 2004; Liang & Shi 2005; 

Liang, Zhang, & Shi, 2007). Motivated by multilinear 

generalization of singular vector decomposition, a number 

of alterative supervised and unsupervised tensor analysis 

methods have been proposed for image or image sequence 

feature extraction (Lathauwer, Moor, & Vndewalle, 2000; 

Vasilescu, & Terzopoulos 2003; Tao, Li, Hu, Maybank, & 

Wu, 2005; Yan, Xu, Yang, Zhang, Tang, & Zhang, 2007).�

 

Multi-biometric system is designed to overcome the 

limitations of any single biometric systems by fusing 

information from multiple biometric traits. The fusion can 

be implemented in either of three levels, feature level, 

matching score level, and decision level. In feature level 

fusion, a new feature vector is constructed using the 

concatenation rule (Ross & Govindarajan, 2005), the 

parallel rule (Yang et al., 2003a; Yang, J., & Yang, J. Y., 

2002), or the competitive rule (Kong, Zhang, & Kamel, 

2006). In matching score level fusion, a number of 

transformation-based (Jain, Nandakumar, & Ross, 2005; 

Zuo, Wang, Zhang, D., & Zhang, H., 2007), clas-sifier-

based (Brunelli & Falavigna, 1995; Jain, Prabhakar, & 

Chen, 1999b; Fierrez-Aguilar, Ortega-Garcia, Gonzalez-

Rodriguez, & Bigun, 2005), and density-based (Ulery, 

Hicklin, Watson, Fellner, & Hallinan, 2006; Nandakumar, 

Chen, Jain, & Dass, 2006) score fusion methods have been 

used to combine scores of multiple scores. In decision level 

fusion, boolean conjunctions, weighted decision methods, 

classical inference, Bayesian inference, Dempster–Shafer 

method, and voting have been proposed to make the final 

recognition decision (Gokberk, Salah, & Akarun, 2003; 

Jing, Zhang, D., & Yang, 2003).�

MODEL BASED FACE RECONSTRUCTION  

RELATED WORK 

In this section, we review methods for shape reconstruction. 

First, we describe methods which have been used for 

restoring (acquiring) geometrical data considering only 

shape. The following gives methods where reconstruction is 

done to acquire both shape and structure. With restored 

structure, the reconstruction model can be animated. 

SHAPE RECONSTRUCTION 

To get a detailed matched shape, we need time-consuming 

manual job, a sophisticated equipment, or complicated 

algorithm. Most of them need one more process to get 

structured shape for animation. In this section we focus on a 

few methods to get detailed range data for face. 

 

Plaster Model Magnenat Thalmann et al. [1987] used 

plaster models in real world and selected facets and vertices 

marking on the models which are photographed from 

various angles to be digitized. Here the reconstruction 

approach requires a mesh drawn on the face and is time 

consuming, but can obtain high resolution in any interested 

area. 

 

Laser Scanning In range image vision system some 

sensors, such as scanners, yield range images. For each pixel 

of the image, the range to the visible surface of the objects 

in the scene is known. Therefore, spatial location is 

determined for a large number of points on this surface. An 

example of commercial 3D digitizer based on laser-light 

scanning, is Cyberware Color DigitizerTM. Lee et al. [1996] 

digitized facial geometry through the use of scanning range 

sensors. However, the approach based on 3D digitization 

requires special high-cost hardware and a powerful 

workstation. 

 

Recently, laser-based 3D range scanners have been 

commercially available. Examples include CyberwareTM 

[Cyberware, 2003] scanner, Eyetronics
TM

 scanner 

[Eyetronics, 2003], and etc.  Cyberware
TM

 scanner shines a 

safe, low-intensity laser on a human face to create a lighted 

profile. A video sensor captures this profile from two 

viewpoints. The laser beam rotates around the face 360 

degrees in less than 30 seconds so that the 3D shape of the 

face can captured by combining the profiles from every 

angle. Simultaneously, a second video sensor in the scanner 

acquires color information. EyetronicsTM scanner shines a 

laser grid onto the human facial surface. Based on the 

deformation of the grid, the geometry of the surface is 

computed. Comparing these two systems, EyetronicsTM is a 

“one shot” system which can output 3D face geometry based 

on the data of a single shot. In contrast, Cyberware
TM

 

scanner need to collect multiple profiles in a full circle 

which takes more time.  

 

In post-processing stage, however, EyetronicsTM needs more 

manual adjustment to deal with noisy data. As for the 

captured texture of the 3D model, EyetronicsTM has higher 

resolution since it uses high resolution digital camera, while 

texture in Cyberware
TM

 has lower resolution because it is 

derived from low resolution video sensor. In summary, these 

two ranger scanners have different features and can be used 

to capture 3D face data in different scenarios.�

 

Based on the 3D measurement using these ranger scanners, 

many approaches have been proposed to generate 3D face 

models ready for animation. Ostermann et al. [Ostermann et 

al., 1998] developed a system to fit a 3D model using 

Cyberware
TM

 scan data. Then the model is used for MPEG-4 

face animation. 

 

Lee et al. [Lee et al., 1993, Lee et al., 1995] developed 

techniques to clean up and register data  generated from 

Cyberware
TM

 laser scanners. The obtained model is then 

animated by using a physically based approach. Marschner 
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et al. [Marschner et al., 2000] achieved the model fitting 

using a method built upon fitting subdivision surfaces. 

 

Stripe Generator As an example of structured light camera 

range digitizer, a light striper with a camera and stripe 

pattern generator can be used for face reconstruction with 

relatively cheap equipment compared to laser scanners. 

Stripe pattern is projected on the 3D object surface and it is 

taken by a camera. With information of posit ions of 

projector and camera and stripe pattern, a 3D shape can be 

calculated. Proesmans et al. [1997] shows a good dynamic 

3D shape using a slide projector, by a frame-by-frame 

reconstruction of a video. 

 

Lighting Switch Photometry Lighting Switch Photometry 

uses three or more light sources for computing normal 

vectors for extracting shapes of static objects , Coleman EN 

et.al.[1982] or a moving human face , Hrroshi Saji 

et.al.[1992]. This method assumes that the reflectance map 

is lambertian. By Lighting Switch Photometry, the normal 

vector can be computed at the points where three incident 

light sources illuminate. It is difficult to compute the 

accurate normal vector at the point where the intensity of 

radiance is small, such as shadowed regions.�

 

Stereoscopy A distance measurement method such as stereo 

can establish the correspondence at certain characteristic 

points. The method uses the geometric relation over stereo 

images to recover the surface depth. The method usually 

results in sparse spatial data. Fua and Leclerc [1996] used it 

mainly in textured areas by weighting the stereo component 

most strongly for textured image areas and the shading 

component most strongly for texture-less areas. 

STRUCTURED SHAPE RECONSTRUCTION 

Most of the above methods concentrate on recovering a 

good shape, but the biggest drawback is that they provide 

only the shape without structured information. To get a 

structured shape for animation, most typical way is to 

modify an available generic model with structural 

information such that eyes, lips, nose, hair and so on. We 

classify methods using range data1 and without using range 

data.  

WITH RANGE DATA 

The plaster marking method by Magnenat Thalmann et al. 

[1987] mentioned in previous section has structure for 

animation because each point has its own labeling 

corresponding to animation model. Except in this method, it�

is necessary to add a structural information to a set of 3D 

points to make the model suitable for animation.  

 

Warping Kernels Williams [1990] reconstructed a head 

using CyberwareTM digitizer and apply warpware to 

animate the model. A set of warping kernels is distributed 

around the face, each of which is a Hanning (cosine) 

window, scaled to 1.0 in the center, and diminishing 

smoothly to 0.0 at the edge. 

 

Mesh Adaptation Starting with a structured facial mesh, 

Lee et al. [1996] developed algorithms that automatically 

construct functional models of the heads of human subjects 

from laser-scanned range and reflection data. After getting 

the large arrays of data acquired by the scanner, they reduce 

it into a parsimonious geometric model of the face that can 

eventually be animated efficiently. They adapt a generic 

face mesh to the data. Once the mesh has been fitted by the 

feature based matching technique, the algorithm samples the 

range image at the location of the nodes of the face mesh to 

capture the facial geometry. The node positions also provide 

texture map coordinates that are used to map the full 

resolution color image onto the triangles. 

 

While 3D face recognition research dates back to before 

1990, algorithms that combine results from 3D and 2D data 

did not appear until about 2000. Most efforts to date in this 

area use relatively simplistic approaches to fusing results 

obtained independently from the 3D data and the 2D data. 

The single most common approach has been to use an 

eigenface type of approach on each of the 2D and 3D 

independently, and then combine the two matching scores. 

However, more recent works appear to take a variety of 

quite different approaches. Interestingly, several commercial 

face recognition companies already have capabilities for 

multi-modal 3D + 2D face recognition.  

 

Lao et al. [2000] perform 3D face recognition using a sparse 

depth map constructed from stereo images. Iso-luminance 

contours are used for the stereo matching. Both 2D edges 

and iso-luminance contours are used in finding the irises. In 

this specific limited sense, this approach is multi-modal. 

However, there is no separate recognition result from 2D 

face recognition. Using the iris locations, other feature 

points are found so that poses standardization can be done. 

Recognition is performed by the closest average difference 

in corresponding points after the data are transformed to a 

canonical pose. Recognition rates of 87–96% are reported 

using a dataset of 10 persons, with four images taken at each 

of nine poses for each person. Beumier and Acheroy [2001] 

approach multi-modal recognition by using a weighted sum 

of 3D and 2D similarity measures. They use a central profile 

and a lateral profile, each in both 3D and 2D. Therefore they 

have a total of four classifiers, and an overall decision is 

made using a weighted sum of the similarity metrics. A data 

set representing over 100 persons imaged on multiple 

sessions, with multiple poses per session, is acquired. 

Portions of this data set have been used by several other 

researchers [C.Xu et.al. (2004), B.Gokberk et.al.(2005)]. In 

this paper, results are reported for experiments on a subset 

of the data, using a 27-person gallery and a 29-person probe 

set. An equal-error rate as low as 1.4% is reported for multi-

modal 3D + 2D recognition that merges multiple probe 

images per subject. In general, multi-modal 3D + 2D is 

found to perform better than either 3D or 2D alone. 

 

Wang et al. [2002] use Gabor filter responses in 2D and 

‘‘point signatures’’ in 3D to perform multi-modal face 

recognition. The 2D and 3D features together form a feature 

vector. Classification is done by support vector machines 

with a decision directed acyclic graph (DDAG).  

 

Experiments are performed with images from 50 subjects, 

six images per subject, with pose and expression variations. 

Recognition rates exceeding 90% are reported.  

 

Bronstein et al. [2003] use an isometric transformation 

approach to 3D face analysis in an attempt to better cope 
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with variation due to facial expression. One method they 

propose is effectively multi-modal 3D + 2D recognition 

using eigen decomposition of flattened textures and 

canonical images. They show examples of correct and 

incorrect recognition by different algorithms, but do not 

report any overall quantitative performance results for any 

algorithm. 

 

Tsalakanidou et al. [2003] report on multi-modal face 

recognition using 3D and color images. The use of color 

rather than simply gray-scale intensity appears to be unique 

among the multi-modal work surveyed here. Results of 

experiments using images of 40 persons from the XM2VTS 

dataset [1999] are reported for color images alone, 3D alone, 

and 3D + color. The recognition algorithm is PCA-style 

matching, followed by a combination of the results for the 

individual color planes and range image. Recognition rates 

as high as 99% are achieved for the multi-modal algorithm, 

and multi-modal performance is found to be higher than for 

either 3D or 2D alone. 

 

Chang et al. [2003] report on PCA-based recognition 

experiments performed using 3D and 2D images from 200 

persons. One experiment uses a single set of later images for 

each person as the probes. Another experiment uses a larger 

set of 676 probes taken in multiple acquisitions over a 

longer elapsed time. Results in both experiments are 

approximately 99% rank-one recognition for multi-modal 

3D + 2D, 94% for 3D alone, and 89% for 2D alone. The 

multi-modal result was obtained using a weighted sum of 

the distances from the individual 3D and 2D face spaces.  

 

Godil et al. [2005] present results of 3D + 2D face 

recognition using 200 persons worth of data taken from the 

CAESAR anthropometric database. They use PCA for 

matching both the 2D and the 3D, with the 3D represented 

as a range image. The 3D face data from this database may 

be rather coarse, with approximately 4000 points reported 

on the face. Multiple approaches to score-level fusion of the 

two results are explored. Performance as high as 82% rank-

one recognition is reported. 

 

Papatheodorou and Rueckert [2004] perform multi-modal 

3D + 2D face recognition using a generalization of ICP 

based on point distances in a 4D space (x, y, z, intensity).  

 

This approach integrates shape and texture information at an 

early stage, rather than making a decision using each mode 

independently and combining decisions. They present 

results from experiments with 62 subjects in the gallery, and 

probe sets of varying pose and facial expression from the 

images in the gallery. They report 98–100% correct 

recognition in matching frontal, neutral-expression probes to 

frontal neutral-expression gallery images. Recognition drops 

when the expression and pose of the probe images is not 

matched to those of the gallery images, for example to the 

range of 73–94% for 45_ off-angle probes, and to the range 

of 69–89% for smiling expression probes. Tsalakanidou 

et.al. [2004] report on an approach to multi-modal face 

recognition based on an embedded hidden Markov model 

for each modality.  

 

Their experimental data set represents a small number of 

different persons, but each has 12 images acquired in each 

of five different sessions. The 12 images represent varied 

pose and facial expression. Interestingly, they report a 

higher EER for 3D than for 2D in matching frontal neutral- 

expression probes to frontal neutral-expression gallery 

images, 19% versus 5%, respectively. They  report that 

‘‘depth data mainly suffers from pose variations and use of 

eyeglasses’’ [M.L. Koudelka et.al.(2005)]. This work is also 

unusual in that it is based on using five images to enroll a 

person in the gallery, and also generates additional synthetic 

images from those, so that a person is represented by a total 

of 25 gallery images. A longer version of this work appears 

in [F. Tsalakanidou et.al.(2005)].  

 

Hu¨sken et al. [2005] describe the Viisage approach to 

multi- modal recognition. The 3D matching  follows the 

style of hierarchical graph matching already used in 

Viisages 2D face recognition technology. This is felt to 

allow greater speed of matching in comparison to techniques 

based on ICP or similar iterative techniques. Fusion of the 

results from the two modalities is done at the score level. 

Multimodal performance on the FRGC version 2 data set is 

reported as 93% verification at 0.01 FAR. In addition, it is 

reported that performance of 2D alone is only slightly less 

than multi-modal performance, and that performance of 3D 

alone is substantially less than that of 2D alone. In this 

context, it may be interesting to note that results from a 

group (Geometrix) that originally focused on 3D face 

recognition show that 3D alone outperforms 2D alone, 

whereas results from a group (Viisage) that originally 

focused on 2D alone show that 2D alone outperforms 3D 

alone. 

 

Lu et al. [2005] build on earlier work with ICP style 

matching of 3D shape [X. Lu et.al.(2004)] to create a 3D + 

2D multi-modal system. They use a linear discriminant 

analysis approach for the 2D matching component. Their 

experimental data set consists of multiple scans of each of 

100 persons. Five scans with a Minolta Vivid 910 system 

are taken in order to create a 3D face model for enrolling a 

person. Enrollment is done with neutral expression. Six 

scans are taken of each person, three with neutral 

expression, and three with smiling expression, to use as 

individual probes for testing. They report better performance 

with 3D matching alone than with 2D matching alone. They 

also report 98% rank-one recognition for 3D + 2D 

recognition on neutral expressions alone, and 91% on the 

larger set of neutral and smiling expressions. 

 

Maurer et al. [2005] describe the Geometrix approach to 

multi-modal 3D + 2D face recognition. The 3D matching 

builds on the approach described by Medioni and 

Waupotitsch [2005], whereas the 2D matching uses the 

approach of Neven Vision. A weighted sum rule is used to 

fuse the two results, with the exception that ‘‘when the 

shape score is very high, we ignore the texture score’’ [T. 

Maurer et.al.(2005)].�

 

Experimental results are presented for the FRGC version 

two data set. The facial expression variations in this dataset 

are categorized into ‘‘neutral,’’ ‘‘small,’’ and ‘‘large’’ and 

results are presented separately for these three categories. 
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Multi-modal performance for the ‘‘all versus all’’ matching 

of the 4007 images reaches approximately 87% verification 

at 0.01 FAR. They also report that 3D + 2D outperforms 3D 

alone by a noticeable increment, and that the verification 

rates for 2D alone are below those for 3D alone. 

WITHOUT RANGE DATA 

The approach based on 3D digitization to get a range data 

often requires special purpose high-cost hardware. So a 

common way of creating 3D objects is reconstruction from 

2D information which is accessible at low price. Two 

commonly used methods are an interactive deformation 

method which modifies or generates a surface employing 

deformation, and a reconstruction method with feature 

points which modifies a generic model after feature 

detection. 

 

Interactive deformation Magnenat Thalmann et al. [1995] 

used an interactive tool to generate a polygon mesh surface 

for creating figures. The major operations performed include 

creation of primitives, selection, local deformations and 

global deformations. It is more tedious and time consuming. 

However, it may be only possible way to digitize a historical 

personage whose pictorial or other source is not available 

and is useful to invent new characters. 

 

Reconstruction with feature points There are faster 

approaches to reconstruct a face shape from few pictures of 

a face [Horace H.S.et.al.1996, Takaaki Akimoto et.al.1993, 

Kurihara et.al.1991]. In this method, a generic model in 3D 

is provided in advance, and a limited number of feature 

points are detected either automatically or interactively on 

the two (or more) orthogonal pictures, and the other points 

on the generic model are modified by a special function. 

Then 3D points are calculated by just combining several 2D 

coordinates. 

 

Kurihara and Arai [1991] used an interactive method to get 

a few points, and a Delaunay triangulation for the 

conformation of the face and texture mapping. The result 

seems nice, but a big drawback is that they use too few 

points to modify the generic model. So if the generic model 

has very different shape, the result may not be similar to the 

person and texture mapping may also not work well. To 

increase accuracy, one should increase input points for 

modification of generic model. Ip and Yin [1996] have very 

similar approach to the one of Akimoto et al. [1993]. These 

two approaches tried to detect feature points automatically 

using dynamic template matching or LMCT (Local 

Maximum-Curvature Tracking) checking concave and 

convex points on the side profile of a face and a very simple 

filtering method to get interior points. It was a trial for 

automation, but the method they use to detect points does 

not seem to be very robust. In addition LMCT was designed 

to calculate convex or concave points which works well 

only for Mongoloid looking people.�

METHODS OF 3D FACE MODELS 

Zhao et.al. (2003) describes, Many methods of face 

recognition have been proposed during the past many years. 

Face recognition is such a challenging yet interesting 

problem that it has attracted researchers who have different 

backgrounds: behavioral, psychology, pattern recognition, 

neural networks, computer vision, and computer graphics. It 

is due to this fact that the literature on face recognition is 

vast and diverse. Often, a single system involves techniques 

motivated by different principles. The usage of a mixture of 

techniques makes it difficult to classify these systems based 

purely on what types of techniques they use for feature 

representation or classification. To have a clear and high-

level categorization, we instead follow a guideline suggested 

by the psychological study of how humans use holistic and 

local features. Specifically, we have the following 

categorization: 

HOLISTIC MATCHING METHODS: 

These methods use the whole face region as the raw input to 

a recognition system. It covers Principal-component 

analysis (PCA), Eigenfaces, Probabilistic Eigenfaces, 

Fisherfaces/subspace LDA, SVM, Evolution pursuit, 

Feature lines, ICA, Other representations- LDA/FLD, 

PDBNN(Probabilistic decision based NN). 

FEATURE-BASED (STRUCTURAL) MATCHING 

METHODS.  

Typically, in these methods, local features such as the eyes, 

nose, and mouth are first extracted and their locations and 

local statistics (geometric and/or appearance) are fed into a 

structural classifier. It covers Pure geometry methods, 

Dynamic link architecture, Hidden Markov model, 

Convolution Neural Network. 

HYBRID METHODS.  

Just as the human perception system uses both local features 

and the whole face region to recognize a face, a machine 

recognition system should use both. One can argue that 

these methods could potentially offer the better of the two 

types of methods. It covers Modular Eigenfaces, Hybrid 

LFA, Shape-normalized, Component-based. 

OTHER METHODS 

Few papers on this topic have been published even if 3D 

face recognition research started in last eighties. Many 

criteria can be adopted to compare existing 3D face 

algorithms by taking into account the type of problems they 

address or their intrinsic properties. Indeed, some 

approaches perform very well only on faces with neutral 

expression, while some others try also to deal with 

expression changes. An additional parameter to measure 3D 

models based robustness is represented by how sensitiveness 

they are to size variation. In fact, sometimes the distance 

between the target and the camera can affect the size of the 

facial surface, as well as its height, depth, etc. Therefore, 

approaches exploiting a curvature-based representation 

cannot distinguish between two faces with similar shape, but 

different size. 

 

In order to overcome this problem some methods are based 

on point-to-point comparison or on volume approximation. 

However, the absence of an appropriate standard dataset 

containing large number and variety of people, whose 

images were taken with a significant time delay and with 

meaningful changes in expression, pose and illumination, is 

one of the great limitations to empirical experimentation for 

existing algorithms. 
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In particular, 3D face recognition systems are tested on 

proprietary databases, with few models and with a limited 

number of variations per model. Consequently, comparing 

different algorithms performances often turns into a difficult 

task. Nevertheless, they can be classified based on the type 

of problems they address such as mesh alignment, 

morphing, etc.  

 

The goal for this section is to present a terse description of 

most recent 3D based face recognition algorithms. Methods 

have been grouped in three main categories: 2D image 

based, 3D image based and multimodal systems. The first 

category includes methods based on comparisons among 

intensity images, but supported by a three-dimensional 

procedure that increases the system robustness. The second 

class groups approaches based on 3D facial representation, 

like range images or meshes. Finally, methods combining 

2D image and 3D image information fall in the third 

category. 

2D-BASED CLASS 

Approaches based on 2D images supported by some 3D data 

are identified as 2D-based class methodologies. Generally, 

the idea is to use a 3D generic face model to improve 

robustness with respect to appearance variations such as 

hard pose, illumination and facial expression. An example 

of this approach is given by Blanz and Vetter (2003). They 

proposed to synthesize various facial variations by using a 

morphable model that augments the given training set 

containing only a single frontal 2D image for each subject. 

The morphable face is a parametric model based on a vector 

space representation of faces. This space is constructed so 

that any convex combination of shape and texture vectors 

belonging to the space describes a human face. Given a 

single face image, the algorithm automatically estimates 3D 

shape, texture, and all relevant 3D scene parameters like 

pose, illumination, etc. (see Fig. 7), while the recognition 

task is achieved measuring the Mahalanobis distance (Duda 

et al., 2001) between the shape and texture parameters of the 

models in the gallery and the fitting model. The 

identification has been tested on two publicly available 

databases of images: CMU-PIE (Sim et al., 2003) and 

FERET (Phillips et al., 2000). A recognition rate of 95% on 

CMUPIE dataset and 95.9% on FERET dataset is claimed. 

 

Another interesting approach using a 3D model to generate 

various 2D facial images is given by Lu et al. (2004). They 

generated a 3D model of the face from a single frontal 

image. From this 3D model many views are synthesized to 

simulate new poses, illuminations and expressions. Tests are 

performed by measuring dissimilarities among affine 

subspaces according to a given distance measure. In 

particular, an affine subspace contains all the facial 

variations synthesized for a single subject. They performed 

experiments on a dataset of 10 subjects building 22 

synthesized images per subject with different poses, facial 

expressions and illuminations. The method achieves a 

recognition rate of 85%, outperforming the PCA-based 

methods on this dataset. Nevertheless, very few people are 

in the database, making difficult to estimate accurately the 

real discriminating power of the method. On the contrary, 

Hu et al. (2004) show that linear methods such as PCA and 

LDA can be further extended to cope with changes in pose 

and illumination by using a Nearest Neighbor approach. The 

dataset is gathered on 68 subjects and 41.368 bi-dimensional 

images under various facial expression, illuminations and 

poses. Their results show that using virtual face for 

particular poses increase the recognition rate and the highest 

rate reached 95% when pose is approximately frontal and 

LDA is used. 

 

Creating various 2D synthetic faces could be good way to 

overcome the classical problems of 2D face recognition, but 

two important considerations have to be carefully examined: 

‘‘how much realistic is a synthesized face?’’ and ‘‘how 

precise can a 3D facial reconstruction taken by one single 

picture be?’’. First of all, we have to consider that modern 

3D computer graphics technologies are able to reproduce 

synthetic images in an excellent realistic way and with an 

accurate geometric precision. Secondly, we have to consider 

that 3D facial reconstruction from a single view image can 

be considered good enough, only if the experimental results 

show a high discriminating power. 

FACE MODELING USING 2D IMAGES 

A number of researchers have proposed to create face 

models from 2D images. Some approaches use two 

orthogonal views so that the 3D information of facial 

surface points can be measured [Akimoto et al., 1993, 

Dariush et al., 1998, H.S.Ip and Yin, 1996]. They require 

two cameras which must be carefully set up so that their 

directions are orthogonal. [Zheng, 1994] developed a system 

to construct geometrical object models from image contours.  

 

The system requires a turn-table setup. Pighin et al. [Pighin 

et al., 1998] developed a system to allow a user to manually 

specify correspondences across multiple images, and use 

computer vision techniques to compute 3D reconstructions 

of specified feature points. A 3D mesh model is then fitted 

to the reconstructed 3D points. With a manually intensive 

procedure, they were able to generate highly realistic face 

models. Fua and Miccio [Fua and Miccio, 1998] developed 

system which combine multiple image measurements, such 

as stereo data, silhouette edges and 2D feature points, to 

reconstruct 3D face models from images. Because the 3D 

reconstructions of face points from images are either noisy 

or require extensive manual work, researcher have tried to 

use prior knowledge as constraints to help the image-based 

3D face modeling. One important type of constraints is the 

“linear classes” constraint. Under this constrain, it assumes 

that arbitrary 3D face geometry can be represented by a 

linear combination of certain basic face geometries. The 

advantage of using linear class of objects is that it eliminates 

most of the non-natural faces and significantly reduces the 

search space. Vetter and Poggio [Vetter and Poggio, 1997] 

represented an arbitrary face image as a linear combination 

of some number of prototypes and used this representation 

(called linear object class) for image recognition, coding, 

and image synthesis. In their representative work, Blanz and 

Vetter [Blanz and Vetter, 1999] obtain the basis of the linear 

classes by applying Principal Component Analysis (PCA) to 

a 3D face model database. The database contains models of 

200 Caucasian adults, half of which are male. The 3D 

models are generated by cleaning up, registering the 

Cyberware
TM

 scan data. Given a new face image, a fitting 

algorithm is used to estimate the coefficients of the linear 

combination. They have demonstrated that linear classes of 

face geometries and images are very powerful in generating 
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convincing 3D human face models from images. For this 

approach to achieve convincing results, it requires that the 

novel is similar to faces in the database and the feature 

points of the initial 3D model is roughly aligned with the 

input face image.  

 

Because it is difficult to obtain a comprehensive and high 

quality 3D face database, other approaches have been 

proposed using the idea of “linear classes of face 

geometries”. Kang and Jones [Kang and Jones, 1999] also 

use linear spaces of geometrical models to construct 3D face 

models from multiple images. But their approach requires 

manually aligning the generic mesh to one of the images, 

which is in general a tedious task for an average user. 

Instead of representing a face as a linear combination of real 

faces, Liu et al. [Liu et al., 2001b] represent it as a linear 

combination of a neutral face and some number of face 

metrics where a metric is a vector that linearly deforms a 

face. The metrics in their systems are meaningful face 

deformations, such as to make the head wider, make the 

nose bigger, etc. They are defined interactively by artists.  

 

S.Jaiswal et.al.[2010] given a comprehensive literature on 

Image Based human and machine recognition of faces 

during 1987 to 2010. Machine recognition of faces has 

several applications. As one of the most successful 

applications of image analysis and understanding, face 

recognition has recently received significant attention, 

especially during the past several years. In addition, relevant 

topics such as Brief studies, system evaluation, and issues of 

illumination and pose variation are covered. In this paper 

numerous method which related to image based 3D face 

recognition are discussed. S.Jaiswal et.al.[2007] described 

an efficient method and algorithm to make individual faces 

for animation from possible inputs. Proposed algorithm 

reconstruct 3D facial model for animation from two 

projected pictures taken from front and side views or from 

range data obtained from any available resources. It is based 

on extracting features on a face in automatic way and 

modifying a generic model with detected feature points with 

conic section and pixalization. Then the fine modifications 

follow if range data is available. The reconstructed 3Dface 

can be animated immediately with given parameters. 

Several faces by one methodology applied to different input 

data to get a final Animatable face are illustrated. 

 

S.Jaiswal et.al.[2007] the proposed study, 2D photographs 

image divided into two parts; one part is front view (x, y) 

and side view (y, z). Necessary condition of this method is 

that position or  coordinate of both images should be equal. 

We combine both images according to the coordinate then 

we will get 3D Models (x, y, z) but this 3D model is not 

accurate in size or shape. In defining other words, we will 

get 3D animatable face, refinement of 3D animatable face 

through pixellization and smoothing process. Smoothing is 

performed to get the more realistic 3D face model for the 

person.�

 

Security is the one of the main concern in today’s world. 

Whether it is the field of telecommunication, information, 

network, data security, airport or home security, national 

security or human security, there are various technique for 

the security. Biometric is one of the mode of it. A biometrics 

is, “Automated methods of recognizing an individual based 

on their unique physical or behavioral characteristics.” Face 

recognition is a task humans perform remarkably easily and 

successfully. This apparent simplicity was shown to be 

dangerously misleading as the automatic face recognition 

seems to be a problem that is still far from solved. In spite of 

more than 20 years of extensive research, large number of 

papers published in journals and conferences dedicated to 

this area, we still can not claim that artificial systems can 

measure to human performance. Automatic face recognition 

is intricate primarily because of difficult imaging conditions 

(lighting and viewpoint changes induced by body 

movement) and because of various other effects like aging, 

facial expressions, occlusions etc. Researchers from 

computer vision, image analysis and processing, pattern 

recognition, machine learning and other areas are working 

jointly, motivated largely by a number of possible practical 

applications. A general statement of the face recognition 

problem (in computer vision) can be formulated as follows: 

Given still or video images of a scene, identify or verify one 

or more persons in the scene using a stored database of 

faces. Face recognition is one of the most active and widely 

used techniques because of its reliability and accuracy in the 

process of recognizing and verifying a person’s identity. The 

need is becoming important since people are getting aware 

of security and privacy. For the Researchers Face 

Recognition is among the tedious work. It is all because the 

human face is very robust in nature; in fact, a person’s face 

can change very much during short periods of time (from 

one day to another) and because of long periods of time (a 

difference of months or years). One problem of face 

recognition is the fact that different faces could seem very 

similar; therefore, a discrimination task is needed. On the 

other hand, when we analyze the same face, many 

characteristics may have changed. These changes might be 

because of changes in the different parameters. The 

parameters are: illumination, variability in facial 

expressions, the presence of accessories (glasses, beards, 

etc); poses, age, finally background. We can divide face 

recognition techniques into two big groups, the applications 

that required face identification and the ones that need face 

verification. The difference is that the first one uses a face to 

match with other one on a database; on the other hand, the 

verification technique tries to verify a human face from a 

given sample of that face.  

 

Principal components analysis (PCA) and linear 

discriminant analysis (LDA) are widely used in face 

recognition system. These methods can efficiently reduce 

the dimensions of biometric data and improve the robustness 

to disturbing factors like expression variance, wearing 

glasses, mimic, etc. Due to these advantages, they are 

popular with commercial face recognition system providers.  

 

However, the strong dimension reduction of PCA-LDA 

algorithms limits its integration with in the template 

protection techniques.�

 

In our work, we selected three techniques for comparative 

study and evaluation, using a common face data base that 

contains overall 360 images. The three techniques are 

Principal Component Analysis (eigenface) , Regularized 

Linear Discriminant Analysis (R-LDA), and Morphological 
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Method. These all are coupled with artificial neural 

networks for training and classification of extracted features. 

These techniques are having apparently promising 

performances and are representative of new trends in face 

recognition. All three techniques were reported to have 

recognition rates of more than 80–90% on data bases of 

moderate sizes (e.g., 16–50 persons). We believe this work 

would be a useful complement to, where the surveyed 

techniques were not evaluated on a common data base of 

relatively large size. Indeed, through a more focused and 

detailed comparative study of three important techniques, 

our goal is to gain more insights into their underlying 

principles, interrelations, advantages, limitations, and design 

tradeoffs and, more generally, into what the critical issues 

really are for an effective recognition algorithm. Basically 

we have used two different approaches for feature extraction 

of image:�

MORPHOLOGICAL APPROACH-  

In morphological approach feature extraction methods can 

be distinguished into three types: (1) a Generic method is 

based on the analysis of edges, lines, and curves. (2) feature-

template-based methods is based on the detection of the 

facial features such as eyes. (3) Structural matching methods 

that take into consideration geometrical constraints on the 

features. The technique we proposed here is independent of 

the aging factor, illumination and presence of accessories 

(glasses, beards, etc). Here in this technique we are 

considering the fiducial points. The points are the distance 

between eyes; eye and mouth. The distance between these 

facial points never changes. After drawing out the fiducial 

points we implement the Neural Network (NN) to the 

system for training and classification.  

NEURAL NETWORK FOR TRAINING- 

The Back Propagation algorithm looks for the minimum of 

the error function in weight space using the method of 

gradient descent. Properly trained back propagation 

networks tend to give reasonable answers when presented 

with inputs that they have never seen. Typically, a new input 

leads to an output similar to the correct output for input 

vectors used in training that are similar to the new input 

being presented. This generalization property makes it 

possible to train a network on a representative set of input 

pairs and get good results without training the network on 

all possible input or output pairs. The RBF network 

performs similar function mapping with the BP, however its 

structure and function are much different. An RBF is a local 

network that is trained in a supervised manner contrasts with 

the BP network that is a global network. A BP performs a 

global mapping, meaning all inputs cause an output, while 

an RBF performs a local mapping, meaning only inputs near 

a receptive field produce activation. The LVQ network has 

two layers: a layer of input neurons, and a layer of output 

neurons. The weights of the connections to this neuron are 

then adapted, i.e. made closer if it correctly classifies the 

data point or made less similar if it incorrectly classifies it.  

APPEARANCE BASED APPROACH- 

These approaches utilize the pixel intensity or intensity-

derived features. However, these methods may not perform 

well in many real-world situations, where the test face 

appearance is significantly different from the training face 

data, due to variations in pose, lighting and expression. 

Usually a face image of size p × q pixels is represented by a 

vector in p.q dimensional space. In practice, however, these 

(p.q) -dimensional spaces are too large to allow robust and 

fast object recognition. A common way to attempt to resolve 

this problem is to use dimension reduction techniques. Two 

of the techniques for this purpose are Principal Component 

Analysis (PCA) and Regularized Linear Discriminant 

Analysis (R-LDA). In these approaches, the two-

dimensional face image is considered as a vector, by 

concatenating each row or column of the image. Each 

classifier has its own representation of basis vectors of a 

high dimensional face vector space. The dimension is 

reduced by projecting the face vector to the basis vectors, 

and is used as the feature representation of each face images.�

3D-BASED CLASS 

This subsection explores several methodologies that work 

directly on 3D datasets. The first problem concerning 3D 

face recognition is to set up a correct alignment between two 

face surfaces. One possible approach to gain a correct 

alignment is by using an acquisition system based on a 

morphable model, because it is pre-aligned within a given 

reference frame. The work presented by Ansari and Abdel-

Mottaleb (2003) could be considered as an example of this 

kind of methods. Starting from one frontal and one profile 

view image, they use 3D coordinates of a set of facial 

feature points to deform a morphable model fitting the real 

facial surface. The deformation of the model is performed in 

two steps. At first a global deformation is carried out to 

scale and to align the morphable model to the feature points 

extracted from the pair images. Then a local deformation is 

applied to bring the vertices as close as possible to feature 

points. The recognition task is then performed calculating 

the Euclidean distance between 29 features points lying on 

3D facial surface on mouth, nose and eyes. Their 

experimental results show a recognition rate of 96.2% on a 

database of 26 subjects with two pairs of images, one used 

for training and the other for testing. 

 

The Iterative Closest Point (ICP) algorithm (Besl and 

McKay, 1992) is often used as an alternative approach 

aligning models. It could be used to reduce misalignment 

during the registration phase as well as to approximate the 

volume difference between two surfaces. Even though, it 

leads to problems with convergence when the initial 

misalignment of the data sets is too large, typically over; it 

is possible countered to this limitation with a coarse 

prealignment. An approach based on Iterative Closest Point 

algorithm is given by Cook et al. (2004).  

 

They use ICP only to establish the correspondence between 

3D surfaces in order to compensate problems due to non-

rigid nature of faces. Then, once the registration is done, 

faces are compared by using a statistical model, namely 

Gaussian Mixture Model (GMM), and the distribution of the 

errors is then parameterized. They performed experiments 

on the 3D RMA database (Beumier and Acheroy, 2000) 

reaching a recognition rate of 97.33%. A quite similar ICP-

based approach to find a point-to-point correspondence 

between landmarks features is given by Irfanoglu et al. 

(2004). They described a method to obtain a dense point-to-

point matching by means of a mesh containing points that 

are present in all faces, so that the face alignment is trivially 

obtained. Then, once the dense correspondence is 
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established, the Point Set Distance (PSD), that is a discrete 

approximation of the volume between facial surfaces, is 

used to compute the distance between two different clouds 

of points. In the experiments, they tested the algorithm on 

the 3D RMA database with a resulting recognition rate of 

96.66%. Even if the ICP is a powerful tool in order to 

estimate the similarity between two faces, it has a serious 

lack. Indeed, ICP-based methods treat the 3D shape of the 

face as a rigid object so they are not able to handle changes 

in expression.  

 

Medioni and Waupotitsch (2003) proposed an ICP-based 

approach that aligns two face surfaces and calculates a map 

of differences between the facial surfaces, then applying 

statistic measures in order to obtain a compact description of 

this map. They built 3D models of 100 subjects by using a 

stereo system; each subject has been acquired in 7 different 

poses within degrees with respect to the frontal view. The 

recognition rate on this dataset was 98%. As said before, a 

different use of the ICP algorithm is to approximate the 

surface difference between two faces. Indeed, the work of 

Lu et al. (2004) is headed in this direction. They describe 

both a procedure for constructing a database of 3D mesh 

models from several 2.5D images and a recognition method 

based on ICP algorithm. In order to build up the 3D meshes, 

features points are automatically detected on 2.5D images, 

searching for maximum and minimum local curvatures, so 

that ICP is run on these points aligning all the 2.5D images. 

Then, the recognition match between faces is carried out 

exploiting the local feature information correlated by the 

ICP. For the experiments, they report a recognition rate of 

96.5% using a database of 113 range images for 18 subjects 

with different poses, facial expressions and illuminations. A 

further interesting aspect dealing with 3D face recognition 

concerns the analysis of the 3D facial surface in order to 

extrapolate information about the shape. Some approaches 

are based on a curvature-based segmentation detecting a set 

of fiducial regions.  

 

Gordon (1991) presented a new method based on the idea 

that some facial descriptors, such as the shape of forehead, 

jaw line, eye corner cavities and cheeks, remain generally 

similar although they are taken by different range images for 

the same subject. This is not completely true when detection 

errors or changes in expression occur. His method consists 

in two different tasks: the former extracts a set of high level 

shape descriptors, for eyes, nose and head; the latter uses 

these descriptors to compute a set of basic scalar features 

corresponding to distance measurements. At last, each face 

images is projected in the feature space, while the Euclidean 

distance between feature vectors is used as a metric. The 

experiments of this method shows a recognition rate of 

100% using a small training set of 8 subjects with three 

different view for each for a total of 24 faces. 

 

Another interesting segmentation approach based on 

Gaussian curvature has been proposed by Moreno et al. 

(2003). For each 3D facial model, they detect a set of 86 

different segmented regions by using an algorithm 

exploiting the signs of the median and Gaussian curvatures 

in order to isolate regions with significant curvatures (see 

Fig. 8). Then, this feature space is reduced in order to 

increase the efficiency. Finally, a feature vector is created 

for each subject. Experiments have been conducted on a 

dataset of 420 3D facial models belonging to 60 subjects, 

including images with light, rotation and facial expression 

variations, achieving a recognition rate of 78% for the best 

match and 92% for the five best matches. In addition, the 

segmentation process can be used to treat face recognition 

problem as a non-rigid object recognition problem to  

improve the robustness to facial expression variations. 

 

Chua et al. (2000) observed that on there are regions on 

facial surfaces, such as nose, eye socket and forehead which 

undergo to much less deformation in case of expression 

changes (see Fig. 9). They find these ‘‘rigid’’ facial regions 

by using a Point Signature two-by-two comparison (Chua 

and Jarvis, 1997) among different facial expressions of the 

same person. Then, they store only the rigid parts in an 

indexed library, ranking models according to their 

similarity. 

 

Their experiment shows a recognition rate of 100% on a 

dataset of 6 subjects and 4 facial expression variations. To 

model facial shape is also possible by creating a 

mathematical framework representing local/global 

curvatures. Another kind of approach to the analysis of 

facial shape is to create a mathematical model representative 

of local curvatures. This is a good way to account the 3D 

surface in a compact fashion using few features descriptors 

to characterize a face, without a wasteful complexity time. 

In addition, a local curvature-based representation better 

cope the non-rigid nature of face due to facial expressions 

because, though expressions changes the facial surface 

globally and the local curvature relations are preserved. 

Unluckily, this kind of representation is not able to handle 

information about the size of face, doing not possible to 

distinguish two similar faces but with different sizes.  

 

Tanaka et al. (1998) proposed an example of these 

approaches performing a correlation-based face recognition 

based on analysis of minimum and maximum principal 

curvature and their directions, to describe the facial surface 

shape. Then, these descriptors are mapped on two unit 

spheres, the Extended Gaussian Images (EGI). The 

similarity match is performed by using the Fisher’s spherical 

approximation on the EGIs of faces. The method worked on 

37 range images gathered by National Research Council of 

Canada (NRCC) (Rioux and Cournoyer, 1988), providing a 

recognition rate of 100%. On the contrary, Wang et al. 

(2004) presented a viewpoint-invariant technique based on a 

free-form representation, called Sphere-Spin-Images (SSI).�

 

The SSIs are used to describe locally the shape of the facial 

surface.  The SSIs of a point are constructed by mapping the 

3D point coordinates lying into a sphere space, centered in 

that point, into a 2D space. The main aim of this mapping is 

to represent the local shape of points by means of a 

histogram. To describe a face, the method selects a small set 

of fixed points by means of a minimum principal curvature 

analysis and builds a single SSI series for each subject. 

Then, a simple correlation coefficient is used to compare the 

similarity between different SSI series. They performed tests 

on the SAMPL dataset (Range Imagery), with 31 models of 

6 different subjects, reporting a recognition rate of 91.68%. 

Then, a simple correlation coefficient is used to compare the 
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similarity between different SSI series. They performed tests 

on the SAMPL dataset (Range Imagery), with 31 models of 

6 different subjects, reporting a recognition rate of 91.68%. 

the Principal Component Analysis (PCA) has been 

mentioned as a technique largely used in 2D face 

recognition in order to classify face images, reducing the 

dimensionality of image input space. In 3D face recognition 

is applied treating data as a cloud of points rather than a 

surface and new axes that best summarize the variance 

across the vertices are determined. Thus, the PCA is able to 

work with different facial poses producing a descriptive 

model of the facial shape. 

 

This approach has been extended to the 3D face recognition 

by Hesher et al. (2002). The method apply the PCA directly 

to the range images, while they use the Euclidean distance to 

measure similarities among the resulting feature vectors. 

The authors state this method reached a recognition rate of 

100% on a dataset of 222 range images of 37 subjects with 

different facial expressions. Further investigations on PCA 

in the 3D framework have been carried out by Heseltine et 

al. They presented two different works based on PCA 

theory, showing experimental results with several facial 

surface representations given by different convolution 

kernels and several distance metrics such as the Euclidean 

and cosine. The first method (Heseltine et al., 2004a) is 

based on a PCA-based eigen surface approach and is 

gathered on a data set of 330 three dimensional mesh 

models available by The University of York (The 3D Face 

Database, 2003). It reaches a recognition rate of 87.3%. The 

second approach (Heseltine et al., 2004b) is an adaptation of 

traditional 2D Belhumeur’s fisherface approach (Belhumeur 

et al., 1997) to 3D facial surface data (see Fig. 10). The 

results are gathered on a data set of 1770 three-dimensional 

mesh models with 280 subjects with several poses and facial 

expressions. The highest recognition rate it reaches is 88.7% 

when the surface gradients representation and the cosine 

distance metrics are used. 

3D SHAPE-BASED FACE 

3D shape-based face recognition algorithms can be broadly 

classified into the following categories: (1) point cloud-

based, (2) depth map-based, (3) profile-based, (4) point 

signature-based, and (5) curvature-based algorithms. 

 

The most prominent method in current 3D face recognition 

systems is to use 3D point clouds to represent faces.  

In point cloud-based approaches, raw 3D point sets are used 

to register faces, and then features are extracted from 

registered faces. Often, the similarity between two facial 

point sets is determined by the quality of the alignment 

produced by the iterative closest point (ICP) [P. Besl 

et.al.(1992)] algorithm, [G. Medioni et.al.(2003), X. Lu 

et.al.(2004), S. Malassiotis et.al.(2004), T. Papatheodorou 

et.al.(2004), C. Xu et.al.(2004)].However, the ICP algorithm 

can only handle rigid transformations. In Lu and Jain(2005) 

extend their ICP-based algorithm such that thin plate spline 

(TPS) warping algorithm is used to establish registration in 

non-rigidly deformed locations. A similar approach was 

previously used in [M.O. I˙rfanoglu et.al.(2004)] where TPS 

warping is used to establish dense correspondence. A 

completely different idea was proposed in [A.M. Bronstein 

et.al. (2003)] where the distances between 3D facial points 

are approximated by geodesic distances. In their work, 

authors apply multidimensional scaling algorithm to the 

geodesic distance matrix to obtain a canonical face 

representation. In their later work [A.M. Bronstein 

et.al.(2004), C. Hesher et.al.(2003)], they have extended 

their approach using surface gradients field. Their 

experimental result confirms that canonical form matching 

is robust to expression variations and outperforms 2D 

image-based eigenfaces [C. Hesher et.al. (2003)]. 

depth map-based ,Another popular approach to represent 3D 

faces is to project the 3D depth data to a 2D image 

according to the z-depth of the 3D points. In [C. Hesher 

et.al.(2003)], principal component analysis (PCA) and 

independent component analysis (ICA) were applied to the 

2D depth images. Lee et al. [2003] use the means and the 

variances of the depth values of the local windows around 

the central nose region to represent faces from 2D depth 

images. In Srivastava et al. find the optimal linear subspace 

via the simulated annealing approach, and extract features in 

that space. Their results show that optimal linear subspace 

method outperforms PCA, LDA, and ICA-based feature 

extraction methods. Both 2D texture and depth images are 

used and combined in various works [K.I. Chang 

et.al.(2005), F. Tsalakanidou et.al.(2003)]. 

 

Silhouette-based representations are also applied to the 3D 

face recognition problem. In [C. Beumier et.al.(2000)], 

central and lateral profiles derived from 3D facial surfaces 

are used for recognition. Matching of the profiles of is 

carried out using iterative conditional mode (ICM) 

optimization. Curvature values computed along the profile 

curves are used as features. In [C. Beumier et.al.(2001)], 

authors extend their system where gray level color 

information is fused with shape features. �

 

Point signatures are popular 3D descriptors for face 

recognition. In [C.-S. Chua et.al.(2000)], point signatures 

are used for both coarse registration and for rigid facial 

region detection which provide expression invariance. In 

their later work [Y. Wang et.al.(2002)], authors include 

texture into their systems by using 2D Gabor wavelets. 

Another 3D shape descriptor similar to the point signatures 

was used for face recognition in [Z. Wu et.al.(2004)] where 

authors proposed local shape maps to extract 2D histograms 

from 3D feature points. Their approach does not require 

registration, and the similarity between two faces is 

calculated by a voting algorithm as in [C.-S. Chua 

et.al.(2000)].  

 

Surface curvatures play an important role in representing 

3D faces [G. Gordon (1992)]. In [H.T. Tanaka et.al.(1998)], 

maximum and minimum principal directions are represented 

by two enhanced Gaussian images (EGIs) and similarity 

between faces is computed by Fisher’s spherical correlation 

method. Moreno et al. [2003] segment a facial surface into 

seven regions using curvature and extract several features 

such as region areas, area relations, and curvature means. 

Similar to curvature descriptors, surface normals are also 

used to represent 3D shape of faces in [S. Tsutsumi 

et.al.(1998)]. Combination of different shape features is also 

found to be beneficial in 3D face recognition systems. 

Go¨kberk et al. [2005] showed that when point cloud-based, 

surface-normal-based and depth image based shape 
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representations are fused at the decision level in a rank-

based manner, significant performance improvement is 

possible. Similarly, a surface-based recognizer and a profile-

based recognizer are combined at the decision level in [G. 

Pan et.al.(2003), G. Pan et.al.(2005)]. 

 

Our aim in this paper is to study the state-of-the-art 

techniques frequently used in the purely 3D shape-based 

face recognition systems. Comparative analysis starts by 

dividing the 3D face recognition task into two consecutive 

subtasks, and for each subtask we implement various 

approaches. The first subtask, namely the registration of 

facial surfaces is carried out using two most commonly used 

approaches. The first registration method is based on a non-

linear warping of facial surfaces using TPS, and the second 

approach is based on a rigid transformation using the ICP 

technique. For warping-based registration, we propose a 

novel 3D facial feature localization algorithm since TPS 

warping needs several correspondent landmarks. The 

realization of the ICP-based registration algorithm is also 

novel and faster than the ones already present in the 

literature. Our implementation uses an average face model 

to define dense correspondence. This significantly reduces 

the computational effort. The second subtask in face 

recognition is the extraction of 3D facial features. We 

provide a comparative analysis of the most commonly used 

features such as point clouds, facial profiles, surface 

curvature-based features, 2D depth image-based approaches, 

and surface normals. We note that surface normal features 

are not so popular in the 3D face recognition community. 

However, we show that the use of surface normal features 

can significantly outperform other approaches. The second 

contribution of the paper is the systematic analysis of 

several fusion algorithms, which operate solely on the 3D 

shape features. Up to now, simple decision-level fusion 

algorithms were employed to fuse shape and texture 

information. Only a small number of studies emphasized the 

decision-level fusion of 3D shape-based face classifiers [B. 

Go¨kberk et.al.(2005), G. Pan et.al.(2003), G. Pan 

et.al.(2005)].  

 

Distinctive outward facial appearance is a combination of 

colour and shape. Both these aspects of the face can be used 

together in so-called multi-modal approaches [A.S. Mian 

et.al.(2007), K.I. Chang et.al.(2003), M. Husken 

et.al.(2005), F. Tsalakanidou et.al.(2003)].In this review, 

however, we focus on the shape component only, which is 

defined as all the geometrical information that remains when 

colour, pose (rotation and location) and size (scale) effects 

are filtered out. 

 

Morphometrics is the study of variation and change in the 

form (size and shape) of organisms or objects [M. 

Webster(2006)]. Morphometrics has a quantitative element 

that enables numerical comparisons between different 

shapes to be made. Quantitative and numerical data are 

extracted from the shape, reducing it to a series of numbers 

(typically concatenated into a so-called vector description), 

and facilitating objective (vector) comparisons between 

different objects. 

 

Applied to faces these objective comparisons generate a 

numerical score of similarity, which is needed for 

recognition. In an authentication setup, the similarity scores 

between two given faces must be high enough to claim 

identity. For identification scenarios, the similarity scores 

between a probe face of unknown identity and a set of faces 

in a gallery with known identity are generated. The gallery 

face with the highest similarity to the probe face is used to 

establish identity. In a classification context the similarity 

score of a face with faces from a certain population must be 

high enough to belong to that population.  

 

There are several different approaches in the literature for 

extracting and comparing data from facial shapes, each with 

their own strengths and weaknesses. However, whatever 

approach is used, three issues always exist that have to be 

taken into account. (1) The type of facial representation used 

from which the data is extracted. (2) The way pose or facial 

orientation differences between different faces are dealt 

with, which is easier in 3D than in 2D but still an important 

challenge. (3) Is whether or not the extracted data is 

embedded into any form of statistical shape analysis.�

3D SHAPE ALONE 

Cartoux et al. [1989] approach 3D face recognition by 

segmenting a range image based on principal curvature and 

finding a plane of bilateral symmetry through the face. This 

plane is used to normalize for pose. They consider methods 

of matching the profile from the plane of symmetry and of 

matching the face surface, and report 100% recognition for 

either in a small dataset. 

 

Lee and Milios [1990] segment convex regions in a range 

image based on the sign of the mean and Gaussian 

curvatures, and create an extended Gaussian image (EGI) 

for each convex region.Amatch between a region in a probe 

image and in a gallery image is done by correlating EGIs. 

The EGI describes the shape of an object by the distribution 

of surface normal over the object surface. A graph matching 

algorithm incorporating relational constraints is used to 

establish an overall match of probe image to gallery image. 

Convex regions are asserted to change shape less than other 

regions in response to changes in facial expression. This 

gives some ability to cope with changes in facial expression. 

However, EGIs are not sensitive to change in object size, 

and so two similar shape but different size faces will not be 

distinguishable in this representation. 

 

Gordon [1992] begins with a curvature-based segmentation 

of the face. Then a set of features are extracted that describe 

both curvature and metric size properties of the face. Thus 

each face becomes a point in feature space, and nearest- 

neighbor matching is done. Experiments are reported with a 

test set of three views of each of eight faces and recognition 

rates as high as 100% are reported. It is noted that the values 

of the features used are generally similar for different 

images of the same face, ‘‘except for the cases with large 

feature detection error, or variation due to expression’’ 

[Gordon [1992]. 

 

Nagamine et al. [1992] approach 3D face recognition by 

finding five feature points, using those feature points to 

standardize face pose, and then matching various curves or 

profiles through the face data. Experiments are performed 

for 16 subjects, with 10 images per subject. The best 

recognition rates are found using vertical profile curves that 
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pass through the central portion of the face. Computational 

requirements were apparently regarded as severe at the time 

this work was performed, as the authors note that ‘‘using the 

whole facial data may not be feasible considering the large 

computation and hardware capacity needed’’ [Gordon 

(1992)]. 

 

Achermann et al. extend eigenface and hidden Markov 

model (HMM) approaches used for 2D face recognition to 

work with range images. They present results for a dataset 

of 24 persons, with 10 images per person, and report 100% 

recognition using an adaptation of the 2D face recognition 

algorithms. 

 

Tanaka et al. [1998] also perform curvature-based 

segmentation and represent the face using an extended 

Gaussian image (EGI).Recognition is 

performedusingaspherical correlation of the EGIs. 

Experiments are reported with a set of 37 images from a 

National Research Council of Canada range image dataset 

[1988], and 100% recognition is reported.  

 

Chua et al. [2000] use ‘‘point signatures’’ in 3D face 

recognition. To deal with facial expression change, only the 

approximately rigid portion of the face from just below the 

nose up through the forehead is used in matching. Point 

signatures are used to locate reference points that are used to 

standardize the pose. Experiments are done with multiple 

images with different expressions from six subjects, and 

100% recognition is reported. 

 

Achermann and Bunke [2000] report on a method of 3D 

face recognition that uses an extension of Hausdorff 

distance matching. They report on experiments using 240 

range images, 10 images of each of 24 persons, and achieve 

100% recognition for some instances of the algorithm. 

Hesher et al. [2003] explore principal component analysis 

(PCA) style approaches using different numbers of 

eigenvectors and image sizes. The image data set used has 

six different facial expressions for each of 37 subjects. The 

performance figures reported result from using multiple 

images per subject in the gallery. This effectively gives the 

probe image more chances to make a correct match, and is 

known to raise the recognition rate relative to having a 

single sample per subject in the gallery [2003].  

 

Medioni and Waupotitsch [34] perform 3D face recognition 

using an iterative closest point (ICP) approach to match face 

surfaces. Whereas most of the works covered here use 3D 

shapes acquired through a structured-light sensor, this work 

uses 3D shapes acquired by a passive stereo sensor. 

Experiments with seven images each from a set of 100 

subjects are reported, with the seven images sampling 

different poses. An EER of ‘‘better than 2%’’ is reported.�

 

Moreno and co-workers [2003] approach 3D face 

recognition by first performing a segmentation based on 

Gaussian curvature and then creating a feature vector based 

on the segmented regions. They report results on a dataset of 

420 face meshes representing 60 different persons, with 

some sampling of different expressions and poses for each 

person. Rank-one recognition of 78% is achieved on the 

subset of frontal views. 

Lee et al. [2003] perform 3D face recognition by locating 

the nose tip, and then forming a feature vector based on 

contours along the face at a sequence of depth values. They 

report 94% correct recognition at rank five, but do not report 

rank-one recognition. The recognition rate can change 

dramatically between ranks one and five, and so it is not 

possible to project how this approach would perform at rank 

one. 

 

Pan et al. [2003] experiments with 3D face recognition 

using both a Hausdorff distance approach and a PCA-based 

approach. In experiments with images from the M2VTS 

database [1999] they report an equal-error rate (EER) in the 

range of 3–5% for the Hausdorff distance approach and an 

EER in the range of 5–7% for the PCA-based approach.  

 

Lee and Shim [2004] consider approaches to using a 

‘‘depth-weighted Hausdorff distance’’ and surface curvature 

information (the minimum, maximum, and Gaussian 

curvature) for 3D face recognition. They present results of 

experiments with a data set representing 42 persons, with 

two images for each person. A rank-one recognition rate as 

high as 98% is reported for the best combination method 

investigated, whereas the plain Hausdorff distance achieved 

less than 90%. 

 

Lu et al. [2004] report on results of an ICP-based approach 

to 3D face recognition. This approach assumes that the 

gallery 3D image is a more complete face model and the 

probe 3D image is a frontal view that is likely a subset of the 

gallery image. In experiments with images from 18 persons, 

with multiple probe images per person, incorporating some 

variation in pose and expression, a recognition rate of 97% 

was achieved. 

 

Russ et al. [2004] present results of Hausdorff matching on 

range images. They use portions of the dataset used in 

[2003] in their experiments. In a verification experiment, 

200 persons were enrolled in the gallery, and the same 200 

persons plus another 68 imposters were represented in the 

probe set. A probability of correct verification as high as 

98% (of the 200) was achieved at a false alarm rate of 0 (of 

the 68). In a recognition experiment, 30 persons were 

enrolled in the gallery and the same 30 persons imaged at a 

later time were represented in the probe set. A 50% 

probability of recognition was achieved at a false alarm rate 

of 0. 

 

The recognition experiment uses a subset of the available 

data ‘‘because of the computational cost of the current 

algorithm’’ [2004]. Xu et al. [2004] developed a method for 

3D face recognition and evaluated it using the database from 

Beumier and Acheroy [2001]. The original 3D point cloud is 

converted to a regular mesh. The nose region is found and 

used as an anchor to find other local regions. A feature 

vector is computed from the data in the local regions of 

mouth, nose, left eye, and right eye. Feature space 

dimensionality is reduced using principal components 

analysis, and matching is based on minimum distance using 

both global and local shape components. Experimental 

results are reported for the full 120 persons in the dataset 

and for a subset of 30 persons, with performance of 72 and 

96%, respectively. This illustrates the general point that 
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reported experimental performance can be highly dependent 

on the dataset size. Most other works have not considered 

performance variation with dataset size. It should be 

mentioned that the reported performance was obtained with 

five images of a person used for enrollment in the gallery. 

Performance would generally be expected to be lower with 

only one image used to enroll a person. 

 

Bronstein et al. [2005] present an approach to 3D face 

recognition intended to allow for deformation related to 

facial expression. The idea is to convert the 3D face data to 

an ‘‘eigenform’’ that is invariant to the type of shape 

deformation that is modeled. In effect, there is an 

assumption that ‘‘the change of the geodesic distances due 

to facial expressions is insignificant.’’ Experimental 

evaluation is done using a dataset containing 220 images of 

30 persons (27 real persons and 3 mannequins), and 100% 

recognition is reported. A total of 65 enrollment images 

were used for the 30 subjects, so that a subject is represented 

by more than one image. As already mentioned, use of more 

than one enrollment image per person will generally 

increase recognition rates. The method is compared to a 2D 

eigenface approach on the same subjects, but the face space 

is trained using just 35 images and has just 23 dimensions.�

 

The method is also compared to a rigid surface matching 

approach. Perhaps the most unusual aspect of this work is 

the claim that the approach ‘‘can distinguish between 

identical twins.’’ Go¨kberk et al. [2005] compare five 

approaches to 3D face recognition using a subset of the data 

used by Beumier and Acheroy [2001]. They compare 

methods based on extended Gaussian images, ICP matching, 

range profile, PCA, and linear discriminant analysis (LDA). 

Their experimental dataset has 571 images from 106 people. 

They find that the ICP and LDA approaches offer the best 

performance, although performance is relatively similar 

among all approaches but PCA. They also explore methods 

of fusing the results of the five approaches and are able to 

achieve 99% rank-one recognition with a combination of 

recognizers. 

 

This work is relatively novel in comparing the performance 

of different 3D face recognition algorithms, and in 

documenting a performance increase by combining results 

of multiple algorithms. Additional work exploring these 

sorts of issues would seem to be valuable.�

Lee et al. [2005] propose an approach to 3D face recognition 

based on the curvature values at eight feature points on the 

face. Using a support vector machine for classification, they 

report a rank-one recognition rate of 96% for a data set 

representing 100 persons. They use a Cyberware sensor to 

acquire the enrollment images and a Genex sensor to acquire 

the probe images. The recognition results are called 

‘‘simulation’’ results, apparently because the feature points 

are manually located. 

 

Lu and Jain [2005] extend previous work using an ICPbased 

recognition approach [X.Lu et.al.(2004)] to deal explicitly 

with variation variation in facial expression. The problem is 

approached as a rigid transformation of probe to gallery, 

done with ICP,along with a non-rigid deformation, done 

using thin-plate spline (TPS) techniques. The approach is 

evaluated using a 100-person dataset, with neutral-

expression and smiling probes, matched to neutral-

expression gallery images.  

 

The gallery entries are whole-head data structures, whereas 

the probes are frontal views. Most errors after the rigid 

transformation result from smiling probes, and these errors 

are reduced substantially after the non-rigid deformation 

stage. For the total 196 probes (98 neutral and 98 smiling), 

performance reaches 89% for shape-based matching and 

91% for multi-modal 3D + 2D matching [2005]. 

 

Russ et al. [2005] developed an approach to using Hausdorff 

distance matching on the range image representation of the 

3D face data. An iterative registration procedure similar to 

that in ICP is used to adjust the alignment of probe data to 

gallery data. Various means of reducing space and time 

complexity of the matching process are explored. 

 

Experimental results are presented on a part of the FRGC 

version 1 data set, using one probe per person rather than all 

available probes. Performance as high as 98.5% rank-one 

recognition, or 93.5% verification at a false accept rate of 

0.1%, is achieved. In related work, Koudelka et al. [2005] 

have developed a Hausdorff-based approach to prescreening 

a large dataset to select the most likely matches for more 

careful consideration [2005]. 

 

Pan et al. [2005] apply PCA, or eigenface, matching to a 

novel mapping of the 3D data to a range, or depth, image. 

Finding the nose tip to use as a center point, and an axis of 

symmetry to use for alignment, the face data are mapped to 

a circular range image. Experimental results are reported 

using the FRGC version 1 data set. The facial region used in 

the mapping contains approximately 12,500–110,000 points. 

Performance is reported as 95% rank-one recognition or 

2.8% EER in a verification scenario. It is not clear whether 

the reported performance includes the approximately 1% of 

the images for which the mapping process fails. 

 

Chang et al. [2005] describe an ‘‘multi-region’’ approach to 

3D face recognition. It is a type of classifier ensemble 

approach in which multiple overlapping subregions around 

the nose are independently matched using ICP, and the 

results of the multiple 3D matches fused. The experimental 

evaluation in this work uses essentially the FRGC version 2 

data set, representing over 4000 images from over 400 

persons. In an experiment in which one neutral-expression 

image is enrolled as the gallery for each person, and all 

subsequent images (of varied facial expressions) are used as 

probes, performance of 92% rank-one recognition is 

reported.�

 

Passalis et al. [2005] describe an approach to 3D face 

recognition that uses annotated deformable models. An 

average 3D face is computed on a statistical basis from a 

training set. Landmark points on the 3D face are selected 

based on descriptions by Farkas [1994]. Experimental 

results are presented using the FRGC version 2 data set. For 

an identification experiment in which one image per person 

is enrolled in the gallery (466 total) and all later images 

(3541) are used as probes, performance reaches nearly 90% 

rankone recognition. 



Sushma Jaiswal ����������������	�
�������
�
��������������
�����
��
�������
�������
���������
�������

© JGRCS 2010, All Rights Reserved                                              169 

3D FACE MODELING -STATISTICAL 

DEFORMATION MODEL 

We present an automatic and efficient method to fit a 

statistical deformation model of the human face to 3D scan 

data. In a global to local fitting scheme, the shape 

parameters of this model are optimized such that the 

produced instance of the model accurately fits the 3D scan 

data of the input face. To increase the expressiveness of the 

model and to produce a tighter fit of the model, our method 

fits a set of predefined face components and blends these 

components afterwards. Quantitative evaluation shows an 

improvement of the fitting results when multiple 

components are used instead of one. Compared to existing 

methods, our fully automatic method achieves a higher 

accuracy of the fitting results. The accurately generated face 

instances are manifold meshes without noise and holes, and 

can be effectively used for 3D face recognition: We achieve 

100% correct identification for 876 queries in the UND face 

set, 98% for 244 queries in the GAVAB face set, and 98% 

for 700 queries in the BU-3DFE face set. Our results show 

that model coefficient based face matching outperforms 

contour curve and landmark based face matching, and is 

more time efficient than contour curve matching. 

 

The use of 3D scan data for face recognition purposes has 

become a popular research area. With high recognition rates 

reported for several large sets of 3D face scans, the 3D 

shape information of the face proved to be a useful 

contribution to person identification. The major advantage 

of 3D scan data over 2D color data, is that variations in 

scaling and illumination have less influence on the 

appearance of the acquired face data. However, scan data 

suffers from noise and missing data due to self-occlusion. 

To deal with these problems, 3D face recognition methods 

should be invariant to noise and missing data, or the noise 

has to be removed and the holes interpolated. 

 

Alternatively, data could be captured from multiple sides, 

but this requires complex data acquisition. In this chapter we 

present a method that produces an accurate fit of a statistical 

3D shape model of the face to the scan data. We show that 

the 3D geometry of the generated face instances, which are 

without noise and holes, can be effectively used for 3D face 

recognition. 

 

Previous techniques are based on 3D geodesic surface 

information, such as the methods of Bronstein et al. [2005] 

and Berretti et al. [2007]. The geodesic distance between 

two points on a surface is the length of the shortest path 

between two points. To compute accurate 3D geodesic 

distances for face recognition purposes, a 3D face without 

noise and without holes is desired. Since this is typically not 

the case with laser range scans, the noise has to be removed 

and the holes in the 3D surface interpolated. However, the 

success of basic noise removal techniques, such as 

Laplacian smoothing is very much dependent on the 

resolution and density of the scan data. Straightforward 

techniques to interpolate holes using curvature information 

or flat triangles often fail in case of complex holes, as 

pointed out in , J. Davis,et.al.(2002). The use of a 

deformation model to approximate new scan data and 

interpolate missing data is a gentle way to regulate flaws in 

scan data. 

A well known statistical deformation model specifically 

designed for surface meshes of 3D faces, is the 3D 

morphable face model of Blanz and Vetter [1999]. This 

statistical model was built from 3D face scans with dense 

correspondences to which Principal Component Analysis 

(PCA) was applied. In their early work, Blanz and Vetter 

[1999] fit this 3D morphable face model to 2D color images 

and cylindrical depth images from the CyberwareTM 

scanner. In each iteration of their fitting procedure, the 

model parameters are adjusted to obtain a new 3D face 

instance, which is projected to 2D cylindrical image space 

allowing the comparison of its color values (or depth values) 

to the input image. The parameters are optimized using a 

stochastic Newton algorithm. More recently, Blanz et al. 

[2007] proposed a method to fit their 3D morphable face 

model to more common textured depth images. In the fitting 

process, a cost function is minimized using both color and 

depth values after the projection of the 3D model to 2D 

image space. To initialize their fitting method, they 

manually select seven corresponding face features on their 

model and in the depth scan. A morphable model of 

expressions was proposed by Lu et al. [2008].  

 

Amberg et al. [2008] built a PCA model from 270 identity 

vectors and a PCA model from 135 expression vectors and 

combined the two into a single morphable face model. They 

fitted this model to 3D scans of both the UND and GAVAB 

face sets, and use the acquired model coefficients for 

expression invariant face matching with considerable 

success. 

 

Non-statistical deformation models were proposed as well. 

Huang et al. [2006] proposed a global to local deformation 

framework to deform a shape with an arbitrary dimension 

(2D, 3D or higher) to a new shape of the same class. They 

show their framework’s applicability to 3D faces, for which 

they deform an incomplete source face to a target face. 

Kakadiaris et al. [2006] deform an annotated face model to 

scan data. Their deformation is driven by triangles of the 

scan data attracting the vertices of the model. The 

deformation is restrained by a stiffness, mass and damping 

matrix, which control the resistance, velocity and 

acceleration of the model’s vertices. The advantage of such 

deformable faces is that they are not limited to the statistical 

changes of the example shapes, so the deformation has less 

restriction. However, this is also their disadvantage, because 

these models cannot rely on statistics in case of noise and 

missing data.  

 

The scans that we fit the morphable face model to, are the 

3D face scans of the UND, a subset of the GAVAB [A. 

Moreno et.al.(2004), F. B. ter Haar,et.al.(2008)] and a subset 

of the BU-3DFE L. ,Yin, [2006] databases. The UND set 

contains 953 frontal range scans of 277 different subjects 

with mostly neutral expression. The GAVAB set consists of 

nine low quality scans for each of its 61 subject, including 

scans for different poses and expressions. From this set we 

selected, per subject, four neutral scans, namely the two 

frontal scans and the scans in which subjects look up and 

down. Acquired scan data from these poses differ in point 

cloud density, completeness and relatively small facial 

changes. The BU-3DFE set was developed for facial 

expression classification. This set contains one neutral scan 
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and 24 expression scans having different intensity levels, for 

each of its 100 subjects. From this set we selected the 

neutral scans and the low level expression scans. Although 

the currently used morphable model is based on faces with 

neutral expressions only, it makes sense to investigate the 

performance of our face model fitting in case of changes in 

pose and expressions. These variations in 3D scan data, 

which are typical for a non-cooperative scan environment, 

allows us to evaluate our 3D face recognition methods. 

 

Before pose normalization, we applied a few basic 

preprocessing steps to the scan data: the 2D depth images 

were converted to triangle meshes by connecting the 

adjacent depth samples with triangles, slender triangles and 

singularities were removed, and only considerably large 

connected components were retained. Afterwards, the face is 

segmented by removing the scan data with a Euclidean 

distance larger than 100 mm from the nose tip. 

 

In general, 3D range scans suffer from noise, outliers, and 

missing data and their resolution may vary. The problem 

with single face scans, the GAVAB scans in particular, is 

that large areas of the face are missing, which are hard to fill 

using simple hole filling techniques. When the morphable 

face model is fitted to a 3D face scan, a model is obtained 

that has no holes, has a proper topology, and has an assured 

resolution.  

ITERATIVE FACE FITTING- 

With the defined distance measure for an instance of our 

compressed morphable face model, the m-dimensional space 

can be searched for the optimal instance. The fitting is done 

by choosing a set of m weights , measuring the RMS-

distance of the new instance to the scan data, selecting new 

weights and continue until the optimal instance is found. 

Knowing that each instance is evaluated using a large 

number of vertices, an exhaustive search for the optimal set 

of m weights is too computationally expensive. A common 

method to solve large combinatorial optimization problems 

is simulated annealing (SA) [S. Kirkpatrick,et.al.(1983)]. In 

our case, random m-dimensional vectors could be generated 

which represent different morphs for a current face instance. 

A morph that brings the current instance closer to the scan 

data is accepted (downhill), and otherwise it is either 

accepted (uphill to avoid local minima) or rejected with a 

certain probability. The fitting process starts with the mean 

face and morphs in place towards the scan data, which 

means that the scan data should be well aligned to the mean 

face. To do so, the segmented and pose normalized face is 

placed with its center of mass on the center of mass of the 

mean face, and finely aligned using the Iterative Closest 

Point (ICP) algorithm [P. J. Besl et.al.(1992)]. The ICP 

algorithm iteratively minimizes the RMS distance between 

vertices. To further improve the effectiveness of the fitting 

process, our approach is applied in a coarse fitting and a fine 

fitting step.�

COARSE FITTING-  

The mean face is coarsely fitted to the scan data by adjusting 

the weights of the first ten principal eigenvectors .Fitting the 

model by optimizing the first ten eigenvectors results in the 

face instance  , with global face properties similar 

to those of the scan data. After that, the alignment of the 

scan to be further improved with the ICP algorithm. 

FINE FITTING- 

Starting with the improved alignment, we again fit the 

model to the scan data.  

MULTIPLE COMPONENTS- 

Knowing that the morphable model was generated from 100 

3D face scans, an increase of its expressiveness is most 

likely necessary to cover a large population. To increase the 

expressiveness, also Blanz and Vetter [1999] proposed to 

independently fit different components of the face, namely 

the eyes, nose, mouth, and the surrounding region. Because 

each component is defined by its own linear combination of 

shape parameters, a larger variety of faces can be generated 

with the same model. The fine fitting scheme from the 

previous section was developed to be applicable to either the 

morphable face model as a whole, but also to individual 

components of this model. 

FACE MATCHING- 

Our model fitting algorithm determines a set of model 

coefficients that morphs the mean face to a clean model 

instance that resembles the 3D face scan. Based on this 

model instance, we use three different methods to perform 

face matching. Two methods use the newly created 3D 

geometry as input, namely the landmarks based and contour 

based methods. The third method uses the model 

coefficients as a feature vector to describe the generated face 

instance. 

LANDMARKS- 

All vertices of two different instances of the morphable 

model are assumed to have a one-to-one correspondence. 

Assuming that facial landmarks such as the tip of the nose, 

corners of the eyes, etc. are morphed towards the correct 

position in the scan data, we can use them to match two 3D 

faces. 

CONTOUR CURVES- 

Another approach is to fit the model to scans A and B and 

use the new clean geometry as input for a more complex 3D 

face recognition method. To perform 3D face recognition, 

we extract from each fitted face instance three 3D facial 

contour curves, and match only these curves to find similar 

faces.  

MODEL COEFFICIENTS- 

The iterative model fitting process determines an optimal 

weight  for each of the m eigenvectors. These weights, or 

model coefficients, multiplied by  describe a path along 

the linearly independent eigenvectors through the m 

dimensional face space. For two similar scans one can 

assume these paths are alike, which means that the set of m 

model coefficients can be used as a feature vector for face 

matching.  

 

In case of multiple components, each component has its own 

set of m model coefficients. In [V. Blanz, et.al.(2007)], sets 

of model coefficients where simply concatenated to a single 

coefficient vector. Here, we also concatenate the coefficient 

vectors of multiple components. To determine the similarity 
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of faces with these coefficient vectors, we use four distance 

measures. In [B. Amberg et.al.(2008)], the authors assume 

that caricatures of an identity lie on a vector from the origin�

to any identity and use the angle between two coefficient 

vectors as a distance measure.  

ANALYSIS- 

In this section we evaluate our fitting results for the UND, 

GAVAB, and BU-3DFE datasets. We perform a qualitative 

and quantitative evaluation of the acquired model fits and 

compare the results with other model fitting methods. To 

prove that the use of multiple components improves the 

fitting accuracy over a single component, we compare the 

quantitative measures and relate the fitting accuracy to face 

recognition by applying different face matching algorithms 

to the produced fits. By applying and comparing different 

face matching methods, we end up with a complete 3D face 

recognition system with high recognition rates for all three 

datasets. 

 

Starting with the 3D face scans from a dataset, we apply our 

face segmentation method. Our face segmentation method 

correctly normalized the pose of all face scans and 

adequately extracted the tip of the nose in each of them. For 

the 953 scans of the UND face set, we evaluated the tip of 

the nose extraction by computing the average distance and 

standard deviation of the 953 automatically selected nose 

tips to our manually selected nose tips, which was 2.4 ± 1.3 

mm. Since our model fitting method aligns the face scan to 

the mean face and at a later stage to the coarsely fitted face 

instance, these results are good enough. 

COMPARISON-  

Blanz et al. [18] reported a mean depth error over 300 UND 

scans of 1.02 mm when they neglected outliers. For our 

fitted single component to UND scans the error davr.depth 

is 0.65 mm, which is already more accurate. For the fitted 

multiple components these errors are 0.47 and 0.43, for four 

and seven components respectively.  

 

Our time to process a raw scan requires ca. 3 seconds for the 

face segmentation, ca. 1 second for the coarse fitting, and 

ca. 30 seconds for the fine fitting on a Pentium IV 2.8 GHz. 

Blanz method reported ca. 4 minutes on a 3.4 GHz Xeon 

processor, but includes texture fitting as well. Huang et al.�

 

[49] report for their deformation model a matching error of 

1.2 mm after a processing time of 4.6 minutes. Recently, 

Amberg et al. [2008] proposed a competitive fitting time of 

40 to 90 seconds for their face model with 310 model 

coefficients and 11.000 vertices.�

FACE MATCHING-  

we can use the morphed face instances to perform 3D face 

recognition. For this experiment, we computed the 953 × 

953, 244 × 244, and 700 × 700 dissimilarity matrices and 

sorted the ranked lists of face models on decreasing 

similarity. From these ranked lists, we computed the 

recognition rate (RR), the mean average precision (MAP) 

and the verification rate at 0.1% false acceptance rate 

(VR@0.1%FAR). A person is recognized (or identified) 

when the face retrieved on top of the ranked list (excluding 

the query) belongs to the same subject as the query. For 77 

subjects in the UND set only a single face instance is 

available which cannot be identified, so for this set the RR is 

based on the remaining 876 queries. The mean average 

precision (MAP) of the ranked lists are also reported, to 

elaborate on the retrieval of all relevant faces, i.e. all faces 

from the same subject. Instead of focusing on 3D face 

retrieval application, one could use 3D face matching for 

imposter detection as well. For an imposter/client detection 

system, all face matches with a dissimilarity above a 

carefully selected threshold are rejected. Lowering this 

threshold means that more imposters are successfully 

rejected, but also that less clients are accepted. We use the 

dissimilarity threshold at which the false acceptance rate is 

0.1%, which is also used in the face recognition vendor test. 

Because the VR@0.1%FAR depends on similarity values, it 

is not only important to have relevant faces on top of the 

ranked lists, but also that their similarity values are alike and 

differ from irrelevant faces. 

 

Since, the VR@0.1%FAR evaluation measure depends on 

the acquired similarity values there are several ways to 

influence this measure. Rank aggregation with the use of 

Consensus Voting or Borda Count [T. Faltemier 

et.al.(2008)], for instance, reassigns similarity values based 

on the ranking. This way one can abstract from the actual 

similarity values, which allows for the selection of a 

different imposter threshold and change the VR@0.1%FAR. 

Of course, a rank based threshold can not be used in case of 

a one-to-one face matching, that is, a scenario in which 

someone’s identity must be confirmed or rejected. The 

application domain for rank-based measures is the one-to-

many face matching, that is, a scenario in which we search 

for the most similar face in a large database.  

 

In case of the face matching based on model coefficients, we 

assume that caricatures of an identity lie on a vector from 

the origin to any identity. If we normalize the lengths of 

these vectors, we neglect the caricatures and focus on the 

identity. This normalization step also regulates the similarity 

values and thus influences the VR@0.1%FAR. In Table 5.3, 

we report the face matching results based on the  and 

distances between coefficient vectors, before and after 

length normalization. Remarkable is the significant increase 

of the VR@0.1%FAR for the normalized coefficient 

vectors, whereas the rankings are similar as shown by the 

MAPs. Although we show in Table 5.3 only the results for 

the face model fitting using seven components, it also holds 

for the one and four component case. Because the  

distance between normalized coefficient vectors slightly 

outperforms the  distance measure, we use this measure 

whenever we evaluate the performance of model 

coefficients. 

 

Face retrieval and verification results based on 

anthropometric landmarks, contour curves, and model 

coefficients. To each set of face scans we fitted the 

morphable face model using one, four, and seven 

components. Each fitted component produces a 99 

dimensional model coefficient vector with a different face 

instance as a result. The performance of our face matching 

depends on both the number of components as well as the 

applied feature set. The two main observations are that (1) 

the coefficient based method outperforms the landmark 



Sushma Jaiswal ����������������	�
�������
�
��������������
�����
��
�������
�������
���������
�������

© JGRCS 2010, All Rights Reserved                                              172 

based and contour based methods, and (2) that the use of 

multiple components can increase the performance of 3D 

face matching. In the next paragraphs we elaborate on these 

observations. The automatically selected anthropometric 

landmarks have a reasonable performance on the UND face 

scans, but are not reliable enough for effective 3D face 

matching in the two other sets. The contours perform well 

for retrieval and verification purposes in the UND face set. 

However, their performance drops significantly for the other 

two sets, because the contour curves cannot be effectively 

used in case of facial deformations. The use of the model 

coefficients consistently outperforms both the landmarks 

based and contour based face matching. Besides the 

difference in performance, the three methods differ in 

running time as well. The landmark based method matches 

two faces using only 15 coordinates, whereas the contour 

based method matches two faces using 135 coordinates. The 

coefficient based method matches faces using 99 weights 

times the number of fitted components. So, the coefficient 

based method using four components has the approximately 

the same running time as the contour based method. The 

observation that multiple (four or seven) components 

increases the performance of our face matching holds for all 

results except the landmark based and contour based 

methods in the GAVAB set. The problem with this set is 

that a low quality scans of a person looking up or down 

causes artifacts on and around the nose. In such cases a 

more accurate fit of the face model’s nose harms, because 

the performance of landmark and contour based methods are 

heavily dependent on an accurate selection of the nose tip. 

Although the face matching improves from the single to 

multiple component case, there is no consensus for the four 

or seven component case. The use of either four or seven 

components causes either a marginal increase or decrease of 

the evaluation scores. Although, face matching with the use 

of 1000 model coefficients is usually referred to as time 

efficient, one could argue to use four components instead of 

seven, because the number of coefficients is smaller. 

Comparison. Blanz et al. [2007] achieved a 96% RR for 150 

queries in a set of 150 faces (from the FRGC v.1). To 

determine the similarity of two face instances, they 

computed the scalar product of the 1000 obtained model 

coefficients. In the previous chapter, we achieved 95% RR 

on the UND set using the three selected contour curves, and 

98% RR with an ICP-based method. 

 

Where other methods need manual initialization, we 

presented a fully automatic 3D face morphing method that 

produces a fast and accurate fit for the morphable face 

model to 3D scan data. Based on a global to local fitting 

scheme the face model is coarsely fitted to the automatically 

segmented 3D face scan. After the coarse fitting, the face 

model is either finely fitted as a single component or as a set 

of individual components.  

BOOTSTRAPPING ALGORITHM FOR 3D FACE 

MODEL 

We present a new bootstrapping algorithm to automatically 

enhance a 3D morphable face model with new face data. 

Our algorithm is based on a Morphable model fitting 

method that uses a set of predefined face components. This 

fitting method produces accurate model fits to 3D face data 

with noise and holes. In the fitting process, the dense point-

to-point correspondences between the scan data and the face 

model can become less reliable at the border of components. 

In this chapter, we solve this by introducing a blending 

technique that improves on the distorted correspondences 

close to the borders. Afterwards, a new face instance is 

acquired similar to the 3D scan data and in full 

correspondence with the face model. These newly generated 

face instances can then be added to the morphable face 

model to build a more descriptive one. To avoid our 

bootstrapping algorithm from needlessly adding redundant 

face data, we incorporate a redundancy estimation 

algorithm. We tested our bootstrapping algorithm on a set of 

scans acquired with different scanning devices, and on the 

UND data set. Quantitative and qualitative evaluation shows 

that our algorithm successfully enhances an initial 

morphable face model with new face data, in a fully 

automatic manner.The process of using a statistical model to 

enhance itself automatically, is referred to as bootstrapping 

the synthesis of the model [T. Vetter et.al.(1997)]. The 

difficulty of bootstrapping is that: (1) If the model (as is) fits 

a new example well, there is no use of adding the new 

example to the model. This must be automatically verified. 

(2) If the model doesn’t fit the new example, the 

correspondences are incorrect and the example cannot be 

added to the model. (3) It should be fully automatic. 

Nowadays, several statistical models are available, ready to 

be used and reused. In this chapter we present a 

bootstrapping algorithm based on an initial statistical model, 

which automatically fits to new scan data with noise and 

holes, and which is capable of measuring the redundancy of 

new example faces. 

 

The importance for bootstrapping statistical models was 

posed by Vetter et al. [1997]. They introduced a 

bootstrapping algorithm for statistical models, and showed 

that the use of merely an optic flow algorithm was not 

enough to establish full correspondence between example 

faces and a reference face. Instead, they attain an effective 

bootstrapping algorithm by iteratively fitting the face model, 

applying the optic flow algorithm, and updating the face 

model. Blanz and Vetter also used this bootstrapping 

algorithm in [V. Blanz et.al.(1999)] to build a 3D morphable 

face model. 

 

Their bootstrapping algorithm works well in case of input 

data with constant properties, but fails when input data is 

incomplete and when the optic flow algorithm fails. To 

bootstrap the 3D morphable face model with more general 

face data, Basso et al. [2006] added a smoothness term to 

regularize the positions of the vertices where the optic flow 

correspondence is unreliable. In case a 3D morphable face 

model is not yet available, a reference face can be used as an 

approximation instead, which is a major advantage. Amberg 

et al. [2007] proposed a non-rigid Iterative Closest Point 

(ICP) algorithm to establish dense correspondences between 

a reference face and face scans, but they need an initial rigid 

transformation for the reference face based on 14 manually 

selected landmarks. Afterwards, the reference face and the 

fitted face instances can be used to construct a new 

morphable face model. 

 

Basso et al. [2007] fit the morphable face model to scan data 

using implicit representations. They also use multiple 

components and blend the implicit functions at the borders 
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of components, but they loose the full point-to-point 

correspondence in the process. So the fitted examples cannot 

be added to the morphable model.  

 

Huang et al. [2006] proposed a global to local deformation 

framework to deform a shape with an arbitrary dimension 

(2D, 3D or higher) to a new shape of the same class. Their 

method also operates in the space of implicit surfaces, but 

uses a non-statistical deformation model. They show their 

framework’s applicability to 3D faces, for which they 

deform an incomplete source face to a target face.  

 

The use of multiple components has been used by Blanz et 

al. to improve the face model fitting [V. Blanz et.al.(2007)] 

and for face recognition purposes [V. Blanz et.al.(2003)], 

but so far the resulting face instances were not accurate 

enough to be incorporated in the statistic model. The explicit 

point-to-point correspondences of the fitted face instance 

and the statistical model had to be established by techniques 

based on optic flow or non-rigid ICP. In the previous 

chapter, a set of predefined face components was used to 

increase the descriptiveness of a 3D morphable face model. 

With the use of multiple components, a tighter fit of the face 

model was obtained and higher recognition rates were 

achieved. However, by fitting each component individually, 

components started to intersect, move apart, or move across. 

So, afterwards the full point-to-point correspondences 

between the morphable model and the fitted instance were 

distorted. The postprocessing method to blend the borders of 

the components introduces a new set of surface samples 

without correspondence to the model either. 

 

Without the use of unreliable optic flow [C. Basso 

et.al.(2006)] or semi-automatic non-rigid ICP [B. Amberg 

et.al.(2007)], we are able to bootstrap the 3D morphable 

face model with highly accurate face instances. As a proof 

of concept, we (1) fit the initial morphable face model to 

several 3D face scans  using multiple components, (2) blend 

the components at the borders such that accurate point-to-

point correspondences with the model are established, (3) 

add the fitted face instances to the morphable model, and (4) 

fit the enhanced morphable model to the scan data as one 

single component. In the end, we compare each single 

component fit obtained with the enhanced morphable model 

to the single component fit obtained with the initial 

morphable model. Qualitative and quantitative evaluation 

shows that the new face instances have accurate point-to-

point correspondences that can be added to the initial 

morphable face model. By comparing the multiple and 

single component fit, our bootstrapping algorithm 

automatically distinguishes between new face data to add 

and redundant data to reject. This is important to keep both 

the model fitting and the face recognition with model 

coefficients time-efficient. 

MORPHABLE FACE MODEL- 

We fit the morphable face model to 3D scan data to acquire 

full correspondence between the scan and the model. we 

crop the morphable face model and lower its resolution so 

that n=12,964 vertices remain for the fitting. We fit the 

morphable face model to 3D scan data from the UND [K. I. 

Chang et.al.(2005)], GAVAB [A. Moreno et.al.(2004)], BU- 

3DFE [L. Yin et.al.(2006)], Dutch CAESAR [CAESAR-

survey(2008)], and our local dataset. From all except the 

UND set, we randomly select four scans yielding a first test 

set of 18 scans. These scans vary in pose, facial expression, 

resolution, accuracy, and coverage. This set of 18 face scans 

is used to test our bootstrapping algorithm. To test the 

automatic redundancy check, we use a subset of 277 face 

scans from the UND dataset, namely the first scan of each 

new subject.  

BOOTSTRAPPING ALGORITHM- 

The main problem in bootstrapping the 3D morphable face 

model, is that (1) we only want to add example faces that are 

not covered by the current model, (2) new example faces 

suffer from noise and missing data, which makes it hard to 

establish the point-topoint correspondences, and (3) it 

should be fully automatic. To establish point-to-point 

correspondences between the 3D morphable face model and 

new face data with noise and missing data. This method 

either fits the model as a single component or as a set of 

predefined components. In case the model is fitted as a 

single component, the final model fit is in full point-to-point 

correspondence with the face model, but adds no additional 

information to the current face model. In case the model is 

fitted as a set of predefined components, this method 

produces model fits that go beyond the current statistics of 

the face model, but the point-to-point correspondence are 

inaccurate or lost. In this section, we briefly describe the 

used model fitting method, then we explain our algorithm to 

establish dense point-to-point correspondences between the 

multiple component fits and the morphable face model, and 

finally, we explain how the bootstrapping algorithm can 

distinguish between new face data to add to the model and 

redundant data to reject.  

MODEL FITTING- 

This model fitting algorithm iteratively adjusts them 

coefficients for each component, such that the vertices move 

closer to the vertices of the scan data. After all components 

are fitted to the scan data individually, an accurate 

representation of the new face.  

ANALYSIS- 

To elaborate on the performance of our bootstrapping 

algorithm, we applied it to the dataset of 17 different face 

scans and to the subset of 276 UND scans. The small set is 

used to evaluate the model fitting and correspondence 

estimation algorithm. The UND set is used to test the 

redundancy estimation. 

FACIAL EXPRESSION BASED MODELING 

This statistical model consists of face data with neutral 

expressions only, and with the bootstrapping algorithm we 

presented in the previous chapter, we could extend the 

model with small expression deformations only. Adding 

these expression deformations to the same morphable face 

model causes the statistical spaces of identities and 

expressions to interfere, which means that the model 

coefficients are no longer reliable for face identification. As 

a result, we should be able to fit the model to a neutral and 

an expression scan of the same person, but we cannot use 

the coefficients to identify one with theother. 

 

This chapter presents a new automatic and efficient method 

to fit a statistical expression model of the human face to 3D 

scan data. To achieve expression invariant face matching we 
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incorporated expression-specific deformation models in the 

fitting  method. In a global to local fitting scheme, the 

identity and expression coefficients ofthis model are 

adjusted such that the produced instance of the model 

accurately fits the 3D scan data of the input face. 

Quantitative evaluation shows that the expression 

deformations as well as a set of predefined face components 

improve on the fitting results. 3D face matching experiments 

on the publicly available UND, GAVAB, BU-3DFE, FRGC 

v.2 datasets show high recognition rates of respectively 

99%, 98%, 100%, and 97% with the use of the identity 

coefficients. Results show that not only the coefficients that 

belong to the globally optimized model fit perform well, but 

that the coefficients of four locally optimized model fits can 

produce similar recognition rates. Finding the optimal model 

fit is hard and loosening this requirement could make a 

system more robust. 

 

Statistical models of the human face have proven to be an 

effective tool for person identification of 3D face scans. To 

build a statistical model, a set of example faces is required 

with face features in full correspondence. With such a 

model, a new face instance can be constructed as a linear 

combination of the example faces. For 3D face 

identification, the idea is to use the statistical model to 

construct a face instance that resembles an input image. The 

way these example faces are combined linearly to represent 

an input face provides both global and local information 

about the input face that can be used to classify and identify 

different input faces. Expressions are a problem, because 

they change the resemblance of the input faces. 

 

Most of the early 3D face recognition methods focused on 

variants of the Iterative Closest Point (ICP) [P. J. Besl et.al. 

(1992)] algorithm to find similarity between two 3D face 

scans. As 3D face recognition became more challenging 

with larger datasets and expression scans, the ICP-based 

methods showed two main disadvantages. The non-rigid 

expression deformations forced the ICP-based methods to 

rely on smaller face regions such as the nose and forehead, 

and the computational expensive face matching lowered its 

practical use. Methods of Faltemier et al. [2008] and Mian et 

al. [2007] reported high recognition rates based on nose 

regions in combinations with ICP. For efficient face 

matching, the extraction of person specific features became 

the new area of interest. 

 

With high recognition rates, low computational costs during 

face matching, and high robustness to noise and missing 

data, 3D morphable face model based methods prove to 

perform well. To build a 3D morphable face model, dense 

correspondences are required among a set of 3D example 

faces. The mean face and the statistical variation of these 

faces can be computed using Principal Component Analysis 

(PCA). Using the statistical face variations, the mean face 

can be deformed to fit the noisy scan data. The way such a 

model is deformed (larger, wider, longer nose, etc.), 

provides information on the geometric shape properties of 

the input face. The coefficients that induce these 

deformations form a relatively small feature vector for 

efficient face matching. For reliable model coefficients, the 

model deformation must be independent of changes in the 

face pose. Therefore, the model fitting is often combined 

with an ICP algorithm to compensate for the rigid 

transformation between closest point features. Because both 

the model fitting and the ICP algorithm are local 

optimization methods, a coarse alignment between the scan 

data and the model should be automatically established first.  

 

Blanz and Vetter use a 3D morphable face model to model 

3D faces out of 2D images [V. Blanz Et.al.(1999)]. In 

[2007], Blanz et al. fit a morphable model to 3D scan data 

and use the deformation weights (or model coefficients) to 

recognize faces with neutral expressions. In each iteration of 

their stochastic Newton algorithm, the current model 

instance is projected to 2D image space and the model 

coefficients are adjusted according to the difference in 

texture and depth values. For the coarse alignment and to 

initiate the morphable model, they manually select seven 

corresponding face features on their model and in the depth 

scan. 

 

Amberg et al. [2008] build a PCA model from 270 identity 

vectors and a PCA model from 135 expression vectors and 

combined the two into a single morphable face model. Their 

method fits this model to 3D scan data by iteratively finding 

closest point pairs to  improve on the alignment, the identity 

deformation, and the expression deformation at the same 

time. Their local optimization method, which does not 

guarantee convergence to the global minimum, returns a set 

of identity coefficients that perform well in terms of face 

recognition. For the initial alignment of the scan to the 

model, they use our automatic face pose normalization 

method. 

 

Lu and Jain [2008] train a morphable expression model for 

each expression in their test set. Starting from an existing 

neutral scan, they fit each of their expression models 

separately to adjust the vertices in a small region around the 

nose to lower the ICP error between that particular neutral 

scan and an expression scan. The expression model that 

produces the most accurate fit is used to deform the neutral 

scan. For the initial alignment they use three automatically 

detected feature points. For the fitting, they combine the 

accurate ICP alignment for the rigid transformation with the 

fast eigenspace projection [M. Turk et.al.(1991)] for the 

expression deformation. This process is iterated until 

convergence and the lowest residual error is used as the 

dissimilarity score between the neutral scan and the new 

scan. Although the authors use PCA models, their method 

can be classified as an ICP based method, because the fitting 

procedure has to be repeated for every pair of face scans in 

the dataset. The expression models are merely used to 

improve on the ICP fitting procedure. 

 

Mpiperis et al. [2008] build a bilinear PCA model for the 

BU-3DFE dataset suitable for both expression and identity 

recognition after a face scan is brought into full 

correspondence with the model. To establish full 

correspondence, they detect the boundary of the mouth, 

elastically deform a low resolution face mesh to the scan 

data (considering the mouth), and subdivide the mesh for 

denser correspondences. The bilinear PCA model is solely 

used to map the full correspondence to expression and 

identity coefficients that are either used for expression 

classification or person identification. 
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Kakadiaris et al. [2006] deform an annotated subdivision 

face model to scan data. Their non-statistical deformation is 

driven by triangles of the scan data attracting the vertices of 

the model. The deformation is restrained by a stiffness, mass 

and damping matrix, which control the resistance, velocity 

and acceleration of the model’s vertices. They use the newly 

created geometry for wavelet analysis and achieve state of 

the art recognition results on the Face Recognition Grand 

Challenge (FRGC) [P. J. Phillips et.al.(2006)]. 

 

Firstly, we introduce seven morphable expression models, 

for the “expressions” anger, disgust, fear, happiness, 

sadness, surprise, and inflated cheeks. Secondly, we use a 

new morphable identity model to perform expression 

invariant 3D face identification, in combination with the 

expression model. Starting with a dataset of neutral scans, 

expression scans, and a small set of annotated landmarks, 

we describe how to build a strong multi-resolution 

morphable model for both identity and expression variations 

of the human face. A new feature in this modeling method is 

the decoupling of the pose normalization and deformation 

modeling, so that the model fitting becomes highly 

timeefficient. 

 

Thirdly, we introduce a model fitting method that combines 

eigenspace sampling, eigenspace projection, and predefined 

face components. This method is able to produce accurate 

fits for the morphable identity model in combination with 

the best expression model to new expression scans. The 

statistics captured in the Morphable face model allows for 

the robust handling of noise and holes. Afterwards, the final 

expression instance and its model coefficients can be used as 

the complete and noiseless representation of the expression 

scan, to automatically extract the facial landmarks, to 

bootstrap the face model, to remove the expression, and for 

expression invariant face recognition. Fourthly, for 3D face 

recognition with model coefficients, we propose a new 

multiple minima approach and compare the results with the 

global minimum approach. Local minima in facespace are 

easier to find and their locations provide valuable 

information for face identification. 

 

Results show that (1) our method can be applied with 

considerable success to a large range of datasets with high 

recognition rates of 99%, 98%, 100%, and 97%, for the 

UND, GAVAB, BU-3DFE, FRGC v.2 datasets, (2) the use 

of expression models is essential for a high performance, (3) 

the use of multiple components (MC) improves on the single  

component (SC) results, (4) in case of scan data with lower 

quality, as in the GAVABdataset, the multiple minima 

(MM) approach can improve the system’s performance. (5) 

the time-efficiency of our complete 3D face recognition 

system allows for its application in face authentication and 

face retrieval scenarios. 

MORPHABLE FACE MODEL- 

We use a morphable face model built from both 3D neutral 

and expression scans of the human face. We fit this model to 

3D scan data in such a way that expressions can be removed 

and subjects identified in an expression invariant manner. 

To build a morphable face model with expressions, an 

example set of subjects showing various expressions is 

required. For that, we use the BU-3DFE [databases] dataset, 

from which we select the 100 neutral scans and 600 

expression scans at their highest intensity level. The BU-

3DFE set was developed for facial expression classification. 

This set contains one neutral scan and 24 expression scans 

having different intensity levels, for each of its  100 

subjects. From this set we selected the neutral scans and the 

highest intensity level expression scans .The goal is to 

model a neutral face model from a dense set of 

correspondences, and a neutral to expression model for each 

of the expressions anger, disgust, fear, happiness, sadness 

and surprise. The neutral face model, which is built from the 

100 neutral scans, captures the identity of different subjects, 

whereas a neutral-to-expression model captures the facial 

changes caused by a certain expression. 

 

A morphable face model is a type of statistical point 

distribution model (PDM) [T. Cootes et.al.(2001)], where 

the points are facial features that have a different 

distribution among different faces. Building a morphable 

face model, requires n dense correspondences S = (x1, y1, 

z1. . . xn, yn, zn)T � �3n among a set of input face scans. 

Principal Component Analysis (PCA) is used to capture the 

statistical distribution of these correspondences among the 

input faces. Because the automatic estimation of reliable 

dense correspondences among noisy face scans with 

expressions is still unsolved, we propose a semiautomatic 

correspondence estimation that requires 26 facial landmarks. 

With the use of these 26 landmarks, we construct a low 

resolution mesh that is projected to the cylindrical depth 

image of a 3D face scan. By subdividing the triangles of the 

low resolution mesh, a multi-resolution representation of the 

face is constructed. At each level, we assume that the 

vertices between different subjects or expressions 

correspond. The correspondences at the highest level are 

used to build a neutral 3D morphable face model as well as 

a morphable expression model for each of the expressions. 

Because the manual annotation of facial landmarks in 3D 

face scans is often a major disadvantage in statistical 

modeling.This automatic bootstrapping is a useful tool to 

limit the user input. The flow chart of our semi-automatic 

modeling approach. Our semi-automatic model building 

consists of the following steps: 

A. Manual annotation of facial landmarks, including nose, 

eyes, eyebrows, and mouth. 

B. Cylindrical depth image construction. 

C. Multi-resolution face mesh construction. 

D. Building the morphable identity model. 

E. Building the morphable expression models. 

F. Automatic bootstrapping the morphable model. 

G. Data reduction. 

H. Component selection. 

LANDMARK ANNOTATION- 

In each of the 700 pose normalized (raw) BU-3DFE scans, 

we manually selected the same sequence of 26 facial 

landmarks as an initial set of correspondences. These 

landmarks include locations on the nose, mouth, eyes, and 

eyebrows, and provide a coarse notion of facial changes 

among different identities and expressions. This is the only 

user input throughout this chapter. In fact, most of these 

landmarks were already annotated in the BU-3DFE set and 

the nose tip was detected automatically. 

CYLINDRICAL DEPTH IMAGE- 
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Knowing that almost all face scans (even with facial hair 

and expressions) can be correctly pose normalized after the 

final alignment to an average nose template, it makes sense 

to build the morphable face model based on face scans in the 

coordinate system of this nose template. Each BU-3DFE 

scan was brought into alignment with the reference nose 

template, which has the desired pose and its nose tip in the 

origin. Although the nose template was accurately fitted to 

the face scans, this doesn’t mean that the nose tip of the face 

scan is aligned to the nose tip in the template. A smaller 

nose, for instance, has its tip behind the template and a 

larger nose in front of the template (higher z-value). To 

produce a cylindrical depth image for each of the face scans, 

we simulate a cylindrical laser range scanner. To cover most 

of the face, the nose template and the aligned face scans are 

moved 80 mm along the positive z-axis. A surface sample is 

acquired for each angle _ at each height y with radius 

distance d to the y-axis of the coordinate system. Basically, 

we cast a horizontal ray at height y with an angle _ in the 

xz-plane from the y-axis to the face scan, and store the 

distance to the The pose normalized faces are annotated with 

landmarks (first row) that correspond among different 

expressions and different subjects to construct an initial face 

mesh as a layer over the cylindrical depth image (second 

row). Asubdivision scheme is applied to acquire dense 3D 

face meshes (third row). 

MORPHABLE IDENTITY MODEL- 

Building an identity based face model requires a training set 

of neutral faces of different subjects in full correspondence. 

Turk and Pentland [1991] also described how to compute 

the “eigenfaces” that define this “face space”, for 2D 

intensity images. 

MORPHABLE EXPRESSION MODEL- 

Building an expression model requires full correspondence 

between all the neutral faces and the sets of expression 

faces. Matrix A is now initiated with the difference between 

the expression face and neutral face of subject. 

  

In the work of Lu and Jain [2008], experiments with an 

expression-generic and expression-specific models show 

that the latter outperforms the former.  

AUTOMATIC BOOTSTRAPPING- 

For face recognition purposes it is important to have an 

identity model Sid that describes a large human population. 

The face space allows for the interpolation between example 

faces and the extrapolation outside its statistical boundary, 

but only to some extend.  

MORPHABLE MODEL FITTING- 

The task of the model fitting algorithm is to find the face 

instance Sexpr.inst in the high dimensional face space that 

produces the best point-to-point correspondence with a new 

face scan. Additionally, the model fitting algorithm should 

be robust to noise and perform well even when large areas 

of the face are missing.  

EXPRESSION FITTING- 

The main difficulty in model fitting is that neither the 

expression coefficients nor the identity can be optimized 

without optimizing the other. When the model is fitted to a 

new scan with an unknown expression, it makes sense to 

coarsely estimate the identity based on expression invariant 

regions and then to select the best expression model and 

search for its optimal expression parameters. 

IDENTITY FITTING- 

After the expression fitting, we have obtained a coarse 

identity vector that, in combination with the final expression 

vector, produces a relatively good fit to the scan data. For 

the purpose of face recognition, each subject needs a unique 

expression invariant identity vector _. Amberg et al. [5] 

proposed to produce the best possible fit and to use the 

decoupled identity vector for face recognition. In the 

previous chapter, a more accurate fit was produced by fitting 

predefined face components individually. Here, we use both 

methods and propose a new descriptor. 

 

This results in a higher fitting accuracy [I. Mpiperis 

et.al.(2008)]. With the use of a kD-tree the closest point 

correspondences can be found efficiently. For high 

efficiency, we compute in algorithm ESSamp only the 

correspondences from model to scan, because the model and 

its kD-tree change in each iteration. For the eigenspace 

sampling we consider two closest points pairs to correspond 

if the distance between them is smaller than 50 mm, for the 

eigenspace projection we use correspondences closer than 

10 mm. We stop traversing a kD-tree, when this criterion 

can no longer be met. 

FACE MATCHING- 

After the morphable model is fitted to each of the face 

scans, we have obtained three feature vectors of model 

coefficients, namely, the single-component vector, the 

multicomponent vector, and the multi-minima vector. For 

the face matching we use each of these vectors individually 

to do 3D face recognition. To determine the similarity of 

faces with these coefficient vectors, we use the L1 distance 

between the normalized coefficient vectors.  

ANALYSIS-  

We can evaluate the fits qualitatively by looking at the more 

frequent surface interpenetration of the fitted model and face 

scan (Fig. 7.9), which means a tighter fit. Note that fitting 

method is robust to missing data and even creates accurate 

face instances when half of the face is missing.  

 

Comparison UND. Several authors report recognition rates 

for theUNDdataset. Blanz et al. [2007] achieved a 96% RR 

for 150 queries in a set of 150 faces. Samir et al. [2006] 

reported 90.4% RR for 270 queries in a set of 470 faces. 

Mian et al. [2005] reported 86.4% RR for 277 queries in a 

set of 277 scans. Amberg et al. [2008] used all 953 scans 

and achieved 100% RR. 

 

Comparison GAVAB. The GAVAB dataset has been used in 

the Shape Retrieval Contest 2008 [R. C. Veltkamp 

et.al.(2008)] to compare 3D face retrieval methods. Results 

of different approaches vary between 60% and 100% RR. 

Recently, Amberg et al. [2008] achieved a recognition rate 

of 99.7% on this dataset. They use a morphable head model 

that covers the neck and  ears as well, features that may aid 

the person identification.  

 

Comparison BU-3DFE. Mpiperis et al. [2008] performed 

experiments on the BU-3DFE dataset. They used two 
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methods for the expression invariant face matching, a 

symmetric bilinear model and geodesic polar coordinates, 

with respectively 86% and 84% RR. The authors report that 

their recognition results outperform Bronstein et al.’s [2005] 

canonical image representation. 

 

Comparison FRGC v.2. Lu et al. [2008] applied their 

expression-specific deformation models to only 100 subjects 

of the FRGC v.2 and report 92% recognition rate and 0.7 

VR@0.1%FAR, which is considerably lower than the 

results with our expression-specific deformation models. 

Moreover, we do not need a neutral face scan for the 

deformation nor the computational expensive ICP algorithm 

for the matching. Other 3D shape based methods that report 

the VR@0.1%FAR for the all-to-all face matching 

experiment are, Maurer et al. [2005] with 0.78 VR, Mian et 

al. [2007] with 0.87 VR, Cook et al. [2006] with 0.92 VR, 

and Faltemier et al. [2008] with 0.93 VR. Most of them use 

the computational expensive ICP algorithm during face 

matching and simply neglect data in regions with 

expressions. Kakadiaris et al. [2007] reported a 97% RR and 

0.97 VR@0.1%FAR for slightly different experiments. 

 

The model fitting method that we presented, coarsely fits the 

identity model in combination with each of the expression 

models and keeps the overall best fit. Because separate 

models are used for the identity and expression 

deformations, the expression can be easily neutralized and 

the separate identity coefficients can be used for expression 

invariant face matching. Three identity coefficient vectors 

were acquired for the face matching, one based on the face 

as a single component, one for multiple face components, 

and one for multiple local minima. Compared to the 

literature, all our coefficient vectors proved to perform very 

well on the publicly available datasets. The use of multiple 

face components is an easy way to improve on the face 

matching performance, and in case of low quality scans the 

multiple minima vector can be a good alternative. Therefore, 

our method can be very well applied to authentication 

scenarios as well as face retrieval scenarios. 

2D + 3D-BASED CLASS 

Multimodal approaches combine information coming from 

2D image as well as 3D model of faces. Recently Chang et 

al. (2003) investigated on possible improvements that 2D 

face biometric can receive integrating the 3D also. The 

method, they proposed, performs separately the PCA on the 

intensity and range images and then combines results 

obtained from both strategies to get a global response from 

the system. The authors assert four important conclusion: 

‘‘(1) 2D and 3D have similar recognition performance when 

considered individually, (2) Combining 2D and 3D results 

using a simple weighting scheme outperforms either 2D or 

3D alone, (3) Combining results from two or more 2D 

images using a similar weighting scheme also outperforms a 

single 2D image, and (4) Combined 2D + 3D outperforms 

the multi-image 2D result’’ (Chang et al., 2004). 

Experiments have been conducted on a dataset of 275 

subjects by using a single and a multiprobe set. The 

recognition rate is 89.5% for the intensity images and 92.8% 

for the range images, while the combined solution provides 

a global rate of 98.8% (see Fig. 11). 

 

Bronstein et al. (2003) presented a new method based on a 

bending invariant canonical representation (Fig. 12), they 

called canonical image that models deformations resulting 

from facial expression and pose variations. They observe 

that facial expressions are not arbitrary, but they can be 

modelled by using isometric transformations. The canonical 

image stores these geometric invariants and it is built by 

calculating the geodesic distances between points on facial 

surface. The 2D face image is mapped onto the canonical 

image shape flattening the texture coordinates onto the 

canonical surface. The experimental results are performed 

on a database of 157 subjects but nothing has been said 

about recognition rates. 

 

On the contrary, Tsalakanidou et al. (2003) proposed an 

HMM approach to integrate depth data and intensity image. 

The method start localizing the face with a depth  and 

brightness based procedure, while the recognition task 

exploits the embedded hidden Markov model techniq that is 

applied to 3D range images as well as 2D images. The 

experimental results are gathered on a very large database of 

3000 range and greyscale images of 50 subjects, with 

various facial expressions, poses, illuminations and with/ 

without glasses, reporting a recognition rate of 90.7% on 2D 

intensity images and 80% on 3D range images, while the 

system reaches a rate of 91.67%, when both information are 

combined. Papatheodorou and Rueckert (2004) proposed a 

4D registration method based on Iterative Closest Point 

(ICP), but adding textural information too. The data 

acquisition is done with a stereo camera system composed 

by three cameras and a pattern projector, while the 

measurement of facial similarity involves a 4D Euclidean 

distance (represented by colors1 as shown in Fig. 13) 

between four-dimensional points: the three spatial 

coordinates more the texel intensity information. They 

report various results on a dataset collected from 62 subjects 

with 13 distinct 3D meshes and 2D texture maps considering 

several  facial expression and poses. The percentage of 

correct matches and correct rejection are used as 

performance measures. In case of frontal pose, results show 

that the use of both texture and shape improves 

performances, while a percentage of correct recognition 

ranging from 66.5% to 100%, depending on several poses 

and expressions. All 3D based methods introduced so far are 

summarized in Table 4 in addition to a small set of 

parameters, that can be considered meaningful for a more 

complete and accurate evaluation of discussed approaches. 

In general, the recognition rate is a widely used measure for 

the evaluation of face recognition methods, but it strongly 

depends on the number of people in the database and the 

number of images per subject gathered for the experimental 

results. In addition the key features (illumination (i), 

expression (e), pose (p), occlusions (o)) considered on the 

models in the probe and gallery  set are reported, in order to 

take into account for the testingframework, in which 3D 

methods have been tested. 

CONCLUSION 

Here we give the complete survey of 3D based face 

modeling methods. We conclude that three-dimensional face 

modeling needs better algorithms. Here, better means more 

tolerant of real-world variety factors. At the same time, 

better Also means less computationally demanding. Three-
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dimensional face modeling in general seems to require much 

more computational effort per match than does 2D face 

modeling. Here 3D morphable face modeling is better than 

the other methods.�
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