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ABSTRACT: Recent analyses demonstrate that operations in some bases of Residue Number System (RNS) exhibit 
higher elasticity to process variations than in normal binary number system. Under this premise, moduli method offer 
greater flexibility in forming high cardinality balanced RNS. Limited in number theoretic property, converting an 
integer into residue for an arbitrary modulus is as difficult as complex arithmetic operation. This paper presents a new 
design of efficient residue generator and the design approach is demonstrated with large input word length of 32 bits 
for moduli of up to 5 bits. The proposed scheme is aimed to reduce the unwanted zero–zero additions which reduce 
number of computations thereby reducing power and enhance the performance. Our experimental results on moduli of 
different periodicities show that the proposed design is faster than the state-of-the-art residue generator.  
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I. INTRODUCTION 

RESIDUE NUMBER SYSTEM (RNS) emerges as an attractive solution for the implementation of low-power digital 
systems. Besides the frequently cited advantages over the conventional binary system, recent studies indicate that RNS 
computations also offer significant delay tolerance against process-induced parameter variations with properly selected 
bases [1]. It is found that larger modulo operation dominates circuit behavior and exhibits increased delay variations. 
From variation-tolerant perspective, RNS constructed by a large number of small and balanced moduli is preferable. 
This finding is timely and has paradigmatic impact on the digital integrated circuit design and yield for the continued 
scaling of transistor dimensions. Although moduli of the forms 2n, 2n+1 and 2n-1  are modulo arithmetic friendly, it is 
very difficult to obtain more than five coprime integers of comparable wordlength in these forms. For the best of our 
knowledge, the highest reported cardinality (i.e.,number of modulus channels) of such balanced moduli set is five [3]. 
As the dynamic range increases, the wordlengths of some or all of these moduli will have to increase. Except for the 
simplicity of forward and reverse conversions in RNS, it may not pay off to have a large modulo operation of special 
modulus than multiple small generic modulo operations. The study in [4] shows that the area, delay and power costs 
contributed from the reverse conversion are cardinality insensitive once the cardinality exceeds certain threshold 
(usually between five to eight). Hence, it is better to increase the cardinality rather than enlarging the sizes of one or 
more moduli to extend the dynamic range of a RNS. Fortunately, a valid RNS can be formed with relative ease by 
selecting as many moduli as desired from plentiful small integers to fulfill the relative primality criterion and meet the 
dynamic range requirement. The significance of general moduli sets is also reflected in the continuous research into 
their efficient reverse conversion problem [5]–[7]. Hardware implementation of forward converter, also known as the 
residue generators, is not trivial for general moduli set. Unlike the reverse converter, as many residue generators as the 
cardinality of the moduli set are needed for each integer operand, which can become a performance bottleneck. In this 
paper, we investigate the existing formal design approaches to the binary-to-residue conversion problem for general 
moduli and identified their carry propagation addition and modular adder tree as the two main performance bottlenecks. 
To eliminate these problems, we have proposed a new approach to the design of highly efficient residue generators for 
any arbitrary moduli of up to five bits wide.  

The rest of this paper is organized as follows. Section II introduces the preliminaries of RNS and Current art 
residue generators for an moduli are reviewed and analyzed. Our proposed architecture and its design procedures are 
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presented in Section III. Synthesis results are compared and analyzed in Section IV, and the conclusion is given in 
Section V. 
 

II. REVIEW OF PREVIOUS WORKS 
 
An RNS is defined by a base consisting of a set of co-prime integers{m1,m2,...,mn} , where mi is called a modulus and 
the greatest common divisor between any two moduli is one. The dynamic range of a RNS is given by M = i . 
An L-bit integer X = j 2j  in weighted binary number system, where xj ={0,1} and 0 < X < M, can be represented 
uniquely by an n–tuple in RNS, where the operation X mod m is widely known as the residue generation, binary-to-
residue conversion or forward conversion.  
Due to the cyclic periodicity of p, 2i mod m , the integers 2i and 2i+kp for any integer k have the same residue modulo 
[8]. The residue corresponding to the jth bit of an n bit binary number with respect to modulus mi is generated and 
serially stored in a register.Two such registers storing residues of adjacent bits are combined using an processing 
element(PE). A total of n/2 PEs are used to generate the residues corresponding to each and every bit in the n-bit binary 
word. For a given binary number, depending on the value of bit bj either the register contents or zeros will be output. In 
general, the state-of-the-art high-speed implementation of residue generators for an moduli involves two stages of 
multi-operand additions. The first stage reduces theL -bit input to a p-bit word based on the cyclic periodicity of the 
modulus. The second stage reduces this p-bit word to the final residue by modular exponentiation. A binary CSA tree 
and one or more p-bit binary CPAs are needed in the first stage depending on the number of overflow carries generated 
from the CSAs. The second stage is usually implemented with a large number of logic gates and multiplexers, and a 
tree of modulo adders. One main problem of this approach is the speed, area and power consumption of the residue 
generator is strongly dependent on the periodicity, which varies irregularly from modulus to modulus.  
 

III. PROPOSED RESIDUE GENERATORS 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1: Block diagram of proposed method 
Our approach to the design of residue generators for arbitrary moduli is a great departure from all existing solutions. 
The main ideas that distinguish our proposed architecture are: 1) depth-bounded carry-save addition; 2) carry-free 
wordlength reduction of the sum and carry vectors; and 3) a single modified modulo adder. An overview of the 
essential building blocks is shown in Fig. 1. 

To avoid the great delay disparity of CSA due to the differences in periodicity of different moduli, the residue is 
calculated using the distributive property in modular arithmetic [18] as follows:         

Bit rewiring 

ASAP column 
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   │x│m = │ j 2j│m │m 
Where xj is either 0 or 1. 
As opposed to the input partitioning of  conventional designs, the number of partial sums is L instead of L/p , which is 
independent of the modulus m. For convenience, we call each partial sum |2j*bj|mod m,a partial residue, where 
i=0,1,2,......L-1 .Each partial residue is r-bit wide. In conventional approach, the array of partial sums is reduced to two 
binary vectors by a CSA tree followed by a CPA to produce a p-bit or longer word as input operand to the next 
stage.Thus, subsequent modular additions also become unwieldy due to its input dependency on p. To minimize the 
hardware complexity of the modulo reduction process, the wordlengths of the sum and carry vectors resulted from the 
CSA tree need to be minimized so as to reduce the wordlength of the CPA and hence the number of modulo adders 
needed later.A compact dot matrix diagram, where each dot denotes a binary variable, is formed by vacating all the “0” 
bits in the matrix of partial residue bits. The height of the dot matrix can be reduced by adding every three (two) dots in 
the same column by a FA (HA) in a carry save manner iteratively until it is one. 
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Figure 2:Dot matrix reduction technique 
Modulo m Adder 
The final result of is obtained by adding the two r-bit operands A and B modulo m. 
The simple modulo addition be 
 │A + B│m = A + B       if A + B < m 
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                              A + B - m  otherwise 
This can be obtained using logic gates and multiplexers. Modulo 2n addition of any two numbers X and Y, 

each of n bits, is done by adding the two numbers using a conventional adder. The result is an n+1  bit output, where 
the most significant bit is the carry-out. The residue is the first n lowest significant bits, and the final carry-out is 
neglected. Therefore, modulo addition 2n is the most efficient modulo addition operation in the residue domain. 2n-1   is 
a commonly used modulus in most special moduli-sets . Some architectures to implement the 2n-1  modulo addition are 
available in the literature. Here, present the basic idea behind these algorithms and architectures. To understand the 
operation of modulo 2n-1  addition of any two  X and Y, where 
    0<= X,Y < m, we need to distinguish between three cases: 
0 <= X+Y < 2n-1 
X+Y = 2n-1 
2n-1  < X+Y < 2n+1 -2 

In the first case, the result of the conventional addition is less than the upper limit 1 and no carry-out (Cout) is 
generated at the most significant bit. In this case, the modulo addition of X and Y  is equivalent to the conventional 
addition. In the second case, the result is equal to 2n- 1 (i.e. all 1’s in binary representation). However, from RNS 
definition, the result has to be less than 2n- 1  . In this case, the result should be zero. This case can be detected when all 
bits of the resulting number are ones . Correction is done simply in this case by adding a one and neglecting the carry-
out. In the third case, the result of the conventional addition exceeds 2n- 1  and a carry-out is generated at the most 
significant bit. This case is easily detected by the carry-out. Correction is done by ignoring the carry-out (equivalent to 
subtracting 2n ) and adding 1 to produce the correct result. 

 
IV. SIMULATION RESULTS AND COMPARISION 

 

 
Figure 3:Simulation result for M=29 

 
Parameter [12] Proposed 

No of adders 256 125 
Path Delay 17.7 ns 17.4 ns 

Device 
Utilization 17% 

LUT-1% 
Flipflop-42% 

IO-17% 
 

V. CONCLUSION 
The proposed scheme reduces the unwanted zero-zero addition ,thereby reducing the number of fulladders . 

The combinational path delay gets reduced and hence reduces power. This inturn enhances the efficiency .The 
proposed scheme is implemented for 32 bit binary input data.The technique is extended for 64 bit,128 bit and so on. 
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