
Volume 3, No. 3, March 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 46

DESIGN AND PERFORMANCE EVALUATION OF THE ADVANCE MIX JOB

WITH DYNAMIC QUANTUM ROUND ROBIN SCHEDULING ALGORITHM FOR

REAL TIME SYSTEMS

H.S.Behera
*1

, Bijayalaxmi Panda
2
, Sreelipa Curtis

3

Department of Computer Science and Engineering,

Veer Surendra Sai University of Technology, Burla, Odisha, India

hsbehera_india@gmail.com1

bijayafouru@gmail.com2
csrilipa@gmail.com3

Abstract: The purpose of an operating system is to provide an interface in which a program can execute in a convenient and efficient manner.

While designing an operating system, a programmer must consider which scheduling algorithm will perform best for the system. There is no
universal “best” scheduling algorithm, and many operating systems are using extended or combinations of the scheduling algorithms. The
efficiency of scheduling depends on optimal time quantum and proper distribution of system resources. So, we have proposed a new algorithm
known as advanced mix job with dynamic quantum round robin (AMDRR) scheduling algorithms. We have experimentally shown that the
efficiency of AMDRR is better than conventional RR(round robin) and DQRRR (dynamic quantum readjusted round robin) by reducing its
context switching, average turnaround time and average waiting time.

Keywords: Scheduling, round robin, burst time, waiting time, turnaround time, context switching, priority

INTRODUCTION

Scheduling is a key concept in computer multitasking,
multiprocessing operating system and real time operating
system designs. Scheduling refers to the way processes are
assigned to run on the available CPU. There are typically
many more processes running than they are available on
CPU. This assignment is carried out by a software know as
scheduler and dispatcher. Multiprogramming increases CPU
utilization by organizing jobs so that the CPU always has one
to execute. Scheduler can be long term scheduler, short term
scheduler. Long term scheduler determines which jobs are
admitted to the system for processing. Long term scheduler
executes less frequently than the short-term scheduler and
controls the degree of multiprogramming. Medium term
scheduler swaps jobs in and out of memory to reduce
contention for the CPU. Short term scheduler selects from
among the processes in memory that are ready to execute,
and allocates the CPU to one of them. In time sharing
system, the CPU will execute multiple jobs by switching
among them, but the switches occur so frequently that the
users can interact with each program while it’s running.

Dispatcher is a module that gives control of CPU to the
process selected by short term schedulers. Time taken for the
dispatcher to stop one process and start running another is
known as dispatcher latency. It must be short because every
context switch invokes dispatcher. In some real-time
scheduling algorithms, a task can be preempted if another
task of higher priority becomes ready. In contrast, the
execution of a non-preemptive task should be completed
without interruption, once it is started. A schedule is called
preemptive if each task may be preempted at any time and
restarted later at no cost, perhaps on another processor. If
preemption is not allowed then the schedule is non-
preemptive.

Scheduling Algorithm:

In first-in first- serve (FCFS) algorithm, the process that

requests CPU first is allocated to CPU first. The

implementation of this algorithm is easily done with FIFO

queue. Shortest-Job-First (SJF) is non-preemptive discipline

in which waiting job (or process) with the smallest estimated

run-time to completion is run next. In other words, when

CPU is available, it is assigned to the process that has

smallest next CPU burst. In case of priority scheduling,

priority is assigned to each process and CPU is allocated to

the process with highest priority. Equal priority processes are

scheduled in FCFS order. Round robin (RR) algorithm is
used for time sharing systems. It is similar to FCFS with

preemption.

Motivation:

In RR scheduling a fixed time quantum is given to all

process that are submitted in ready queue. So there is
frequent switching between processes by which efficiency

of CPU decreases. If the time slice is a large one then

waiting time and turnaround time increases. So to overcome

these above situations, we have proposed an algorithm that

uses priority, modified shortest job first and dynamic time

quantum concept.

Related Work:

SARR algorithm uses a new approach that it is using
dynamic time quantum in which time quantum is repeatedly
changing with respect to their burst time. Mixed scheduling
uses two non-preemptive type scheduling i.e. FCFS and SJF.
According to mixed job first scheduling the process with
minimum time will be executed first then the process with
maximum burst time and so on. DQRRR algorithm uses
dynamic quantum concept. Quantum is chosen by finding the
median of burst time and it changes when all the process
execute once.

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 47

Our Contribution:

In this paper, the main objective is to reduce average waiting

time and turnaround time occur in RR and DQRRR

scheduling. For this purpose, we have developed a method

that drastically reduces average waiting time and turnaround
time and switching between processes.

Organization of Paper:

This paper represents a method for reducing context
switching, average waiting time and average turnaround time
using random sorting and dynamic quantum with burst task
component and priority task component. Section 2 describes
all preliminary work. Section 3 presents our proposed
approach, algorithm and flow-chart. Section 4 shows
experimental analysis and comparison of result. In Section 5
conclusion is given.

BACKGROUND WORK

Terminology:

A program in execution is known as process. To schedule
process, processor should know its arrival time, burst time
and time-slice assigned for each process. Burst time is the
amount of time a process uses the CPU for a single time. To
calculate the efficiency of scheduling waiting time,
turnaround time and context switching plays an important
role. Turnaround time is the total amount of time to execute a
particular process. It is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on
the CPU. Waiting time is the sum of the periods a process
spent waiting in the ready queue .Response time is the
amount of time process takes from when a request was
submitted until the first response is produced. The number of
times CPU switches from one process to another is called as
context switching.

RR Scheduling Algorithm:

In RR, each ready task runs turn by in turn in a cyclic queue
for limited time slices. It is widely used in traditional OS. RR
is a hybrid model i.e. clock driven model (e.g. cyclic model)
as well as event driven (e.g. Preemption). The performance
of RR algorithm is highly dependent on time slice. For low
time-slice context switching is more and for high time-slice
response time is more. So the time quantum plays most
determining factor for the performance of RR algorithm...

DQRRRR Scheduling Algorithm:

Dynamic quantum re-adjusted round robin (DQRRRR) is a
method for scheduling which uses dynamic time quantum.
Time quantum is calculated by finding the median of burst
time. The process with shortest burst time will execute first
then the process with next shortest burst time and so on.
Time quantum changes when all processes execute once. The
method is continued till there is no process in ready queue.

PROPOSED APPROACH

In this approach, the processes are arranged in ready queue in
ascending order according to their scheduling time. To get
optimised result for time quantum, median is calculated. The
median is calculated as follows:

Median =

The scheduling time is calculated as follows:
Scheduling time= (burst time* burst task component) +
(priority * priority task component);
The determinant factor is calculated as follows:

Determinant factor = (max of scheduling time of processes +

min of scheduling time of processes)/2;

Now time quantum is calculated as follows:

Time quantum = (median + determinant factor)/2;

Time quantum is assigned to each process. Median is

recalculated with remaining scheduling time after each

execution of each cycle. In the next step, the processes which

need lowest scheduling time will be replaced as first

processes then with next lowest scheduling time from queue

will be replaced as second process and so on.

Pseudo code of our Proposed Algorithm:

1. I.P: process(Pi), Burst time(Bt), arrival

time(At),priority(P),burst task components(btc), priority

task components(Ptc)

O.P: context switch (CS), average turnaround time

(atat), average waiting time (awt).

2. Initialize the ready queue =0, CS=0, awt=0, atat=0,

St=0, Detfact=0.

3. St=(Bt*btc + P*ptc)

4. Detfact= ((max of St+ min of St) of processes)/2.

5. While (ready queue== NULL)

 Sort the process in ascending order in

 ready queue according to scheduling time.

 // Find median;

 Qt=(median+Detfact)/2;

6. for each process i=1 to n

 do
 {

 if(i%2==0)

 put minimum amount in ready queue.

 else

 put the maximum in ready queue;

 }//end of for

7. //Assign Qt to each process

 for each process i=1 to n

 p[i]->Qt;

7. //if a new process arrives

 update the counter n and goto step 2;

 end while.

 awt, atat,CS is calculated.

8. stop and exit.

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 48

Flowchart:

Figure: 1

Illustration:

Let us explain above algorithm with an example. Here arrival

time is considered to be zero. The processes are P1, P2, P3,

and P4 with their burst time 19, 92, 107, 72 and priority of

these processes are 10, 2,15,7 respectively. Burst task

component and priority task component is assumed to be
60% and 40% respectively. So in first step we need to

calculate scheduling time as described in step-3 like P1, P2,

P3, and P4 as 15,56,70 and 46 respectively. Then

arrangement occurs in ready queue in ascending order as per

scheduling time. Now median is calculated. Determinatfactor

is calculated as described in step-4. Now time quantum is

calculated by taking the half of addition of median and

determinant factor. Time quantum is assigned to processes.

Here the time quantum is calculated as Qt=47.In next step

scheduling of the processes are to be done as described in

step-6 i.e. P1 with St=15, P4 with St=46, P3 with St=70, P2
with St=56. After assignment of time quantum to each

process, remaining scheduling time will be P1:0, P4:0, P2:9,

P3:23 and in this case time quantum is calculated as Qt=30.

When executation of a process completed, it is automatically

deleted from ready queue and scheduling is done by step-6.

EXPERIMENTAL ANALYSIS:

Assumption:

All experiments are performed in a uni-processor

environment. All processes are independent of each other.

Here P1, P2 ...Pn n-processes are taken. Burst time and
priority of corresponding process are known before

submitting the task to the processor. Burst task component

and priority task component can be taken constant for n-

number of processes.

Experimental Frame Work:

Pn is the number of processes. The input parameters for the
processes are burst time, arrival time, priority which is BT,

AT and P respectively. The output parameters are Context

switch (CS), average waiting time (awt), average turnaround

time (atat).

Data Set:

We have considered two cases here. Case-1 is for process
with zero arrival time.Case-2 is for process with certain

arrival time. In both case-1 and case-2, there are 3-subcases

i.e. processes are taken in ascending, descending and random

order.

Performance Metrics:

The significance of our performance metrics for experiment

analysis is as follows:

a. Turnaround time (TAT): For the better performance of

scheduling algorithm, turnaround time should be less.

b. Waiting time (WT): For better performance of

scheduling algorithm, waiting time for processes should

be less.

c. Context switch (CS): The number of context switches

should be low for better result of proposed algorithm.

Experiments Performed:

To evaluate the efficiency of our proposed algorithm

(AMDRR), the output parameters are compared with round

robin (RR) and Dynamic quantum with re-adjusted round

robin (DQRRR). This algorithm can work effectively with

large number of processes. For simplicity we have taken five

processes with ascending, descending and random order to

illustrate our proposed algorithm.

Results Obtained:

Here we are considering two cases i.e. processes are with

zero arrival time in case -1 and processes are with certain

arrival time in case-2. For RR scheduling algorithm we have

taken 25 as the fixed time quantum. Burst task component

and priority task component are taken as 60% and 40%
respectively.

CASE 1: With Zero Arrival Time

Increasing Order:

We have considered five processes P1, P2, P3, P4, P5

arriving at time 0 with burst time 30, 42,50,85,97

respectively and priority of each process shown in table
4.6.1. Table 4.6.2 shows the comparing result of RR,

DQRRR and our proposed algorithm (AMDRR).

Table 4.6.1.Data in increasing order

No. of

process

At Bt P St

P1 0 30 10 22

P2 0 42 15 31

P3 0 50 5 32

P4 0 85 7 54

P5 0 97 4 60

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 49

Table 4.6.2 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 50,41,6 37,31

CS 13 7 5

Awt 146.2 134.4 74.6

Atat 207 195.2 135.4

Qt= 25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P4 P5 P4 P5

0 25 50 75 100 125 130 147 172 197 222 247 272 282 304

Figure. 4.6.1: Gantt chart for RR in Table 4.6.1

 Qt=50 Qt=41 Qt=6

P1 P5 P2 P4 P3 P5 P4 P5

0 30 80 122 172 222 263 298 304

Figure. 4.6.2: Gantt chart for DQRRR in table 4.6.1

 Qt=37 Qt=31

P1 P2 P5 P3 P4 P4 P5

0 22 53 90 122 159 176 199

Figure. 4.6.3: Gantt chart for AMDRR in Table 4.6.1

Decreasing Order:

We have considered five processes P1, P2, P3, P4, P5

arriving at time 0 with burst time 105, 90, 60,45,7

respectively and priority of each process shown in table
4.6.3. Table 4.6.4 shows the comparing result of RR,

DQRRR and our proposed algorithm (AMDRR).

Table 4.6.3.Data in decreasing order

No. of

process

At Bt P St

P1 0 105 20 71

P2 0 90 10 58

P3 0 60 3 37

P4 0 45 15 33

P5 0 7 7 24

Table 4.6.4 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 60,37,8 42,46

CS 15 7 5

awt 214 152.4 82.2

atat 281 219.4 143.6

TQ=25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P1 P2 P1

0 25 50 75 100 125 150 175 200 220 230 255 280 290 315 330

335

Figure. 4.6.4: Gantt chart for RR in Table 4.6.3

 Qt=60 Qt=37 Qt=8

P5 P1 P4 P2 P3 P1 P2 P1

0 35 95 140 200 260 297 327 335

Figure. 4.6.5: Gantt chart for DQRRR in table 4.6.3

 Qt=42 Qt=46

 P5 P4 P1 P3 P2 P2 P1

0 24 57 99 136 178 194 223

Figure. 4.6.6: Gantt chart for AMDRR in Table 4.6.3

Random Order:

We have considered five processes P1, P2, P3, P4, P5

arriving at time 0 with burst time 92,70,35,40,80 respectively

and priority of each process shown in table 4.6.5. Table 4.6.6

shows the comparing result of RR, DQRRR and our
proposed algorithm (AMDRR).

Table 4.6.5 .Data in random order

No. of

process

At Bt P St

P1 0 92 10 53

P2 0 70 2 43

P3 0 35 5 23

P4 0 40 35 38

P5 0 80 4 47

Table 4.6.6 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 60,37,8 41,22

CS 15 7 7

Awt 214 152.4 92.4

Atat 281 219.4 155.8

Qt =25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P5 P1 P5

0 25 50 75 100 125 150 175 185 200 225 250 270 295 312

317

Figure.4.6.7: Gantt chart for RR in Table 4.6.5

 Qt=80 Qt=11 Qt=1

P3 P1 P4 P5 P2 P1 P2 P1

0 35 115 155 235 305 316 326 327

 Figure. 4.6.8: Gantt chart for DQRRR in table 4.6.5

 Qt=41 Qt=22

P3 P4 P1 P2 P5 P2 P5 P1

0 23 61 102 143 184 186 192 204

Figure. 4.6.9: Gantt chart for AMDRR in Table 4.6.5

CASE 2: without zero arrival time

Increasing Order:

We have considered five processes P1, P2, P3, P4, P5

arriving at time 0, 2,6,6,8 with burst time 28,35,50,82,110

respectively and priority of each process shown in table

4.6.7. Table 4.6.8 shows the comparing result of RR,

DQRRR and our proposed algorithm (AMDRR).

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 50

Table 4.6.7 .Data in increasing order

No. of

process

At Bt P St

P1 0 28 10 21

P2 2 35 2 22

P3 6 50 7 33

P4 6 82 15 55

P5 8 110 5 68

Table 4.6.8 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 28, 66, 30,14 21,45,31

CS 14 7 5

awt 139.8 112.2 72.2

atat 199.4 173.2 133.2

Qt =25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P4 P5 P4 P5 P5

0 25 50 75 100 125 128 138 163 188 213 238 263 270 295

305

Figure. 4.6.10: Gantt chart for RR in Table 4.6.7

 Qt= 28 Qt=66 Qt=30 Qt=14

P1 P2 P5 P3 P4 P5 P4 P5

0 28 63 129 179 245 275 291 305

Figure. 4.6.11: Gantt chart for DQRRR in Table 4.6.7

Qt=21 Qt=45 Qt=31

P1 P2 P5 P3 P4 P4 P5

0 21 43 88 121 166 176 199

Figure. 4.6.12: Gantt chart for AMDRR in Table 4.6.7

Decreasing Order:

We have considered five processes P1,P2,P3,P4,P5 arriving

at time 0,2,3,4,5 with burst time 80,72,65,50,43 respectively

and priority of each process shown in table 4.6.9. Table

4.6.10 shows the comparing result of RR, DQRRR and our

proposed algorithm (AMDRR).

Table 4.6.9.Data in decreasing order

No. of process At Bt P St

P1 0 80 12 53

P2 2 72 7 46

P3 3 65 2 40

P4 4 50 15 36

P5 5 43 6 26

Table 4.6.10 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 80,57,11,4 53,39,22

CS 13 7 5

awt 216.8 147.8 96

atat 280.2 209.2 158

Qt=25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P1

0 25 50 75 100 125 150 175 200 225 250 275 297 312 317

Figure. 4.6.13: Gantt chart for RR in Table 4.6.9

 Qt=80 Qt=57 Qt=11 Qt=4

P1 P5 P2 P4 P3 P2 P3 P2

0 80 123 180 230 287 298 306 310

Figure. 4.6.14: Gantt chart for DQRRR in Table 4.6.9

Qt=53 Qt=39 Qt=22

P1 P5 P2 P4 P3 P3 P2

0 53 79 118 154 193 194 201

Figure. 4.6.15: Gantt chart for AMDRR in Table 4.6.9

Random Order:

We have considered five processes P1,P2,P3,P4,P5 arriving

at time 0,1,2,5,7 with burst time 26,82,70,31,40 respectively

and priority of each process shown in table 4.6.11. Table

4.6.12 shows the comparing result of RR, DQRRR and our

proposed algorithm (AMDRR).

Table 4.6.11 .Data in random order

No. of process At Bt P St

P1 0 26 2 16

P2 1 82 7 52

P3 2 70 5 44

P4 5 31 4 20

P5 7 40 11 28

Table 4.6.12 comparison among RR, DQRRR and AMDRR

Algorithms RR DQRRR AMDRR

Qt 25 26,55,21,6 16,35,24

CS 12 7 5

awt 149.4 95.6 58.8

atat 199.2 145.4 108.6

Qt=25

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P2

0 25 50 75 100 125 128 151 178 182 197 222 242 249

Figure. 4.6.16: Gantt chart for RR in Table 4.6.11

 Qt=26 Qt=55 Qt=21 Qt=6

P1 P4 P2 P5 P3 P2 P3 P2

0 26 57 112 152 207 228 243 249

Figure. 4.6.17: Gantt chart for DQRRR in Table 4.6.11

Qt =16 Qt=35 Qt = 24

P1 P4 P2 P5 P3 P3 P2

0 16 36 71 99 134 143 160

Figure. 4.6.18: Gantt chart for AMDRR in Table 4.6.11

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 51

0

2

4

6

8

10

12

14

16

I D R

RR

DQRR

AMDRR

Figure 4.6.19 Context Switching (RR vs. DQRRR vs. AMDRR) with arrival

time=0

0

50

100

150

200

250

I D R

RR

DQRR

AMDRR

Figure 4.6.20 Avg. waiting time (RR vs. DQRRR vs. AMDRR) with arrival

time= 0

0

50

100

150

200

250

300

I D R

RR

DQRR

AMDRR

Figure 4.6.21 Average Turnaround time (RR vs. DQRRR vs. AMDRR) with

arrival time=0

0

2

4

6

8

10

12

14

I D R

RR

DQRR

AMDRR

Figure 4.6.22 Context switching (RR vs. DQRRR vs. AMDRR) with arrival

time

0

50

100

150

200

250

I D R

RR

DQRR

AMDRR

Figure 4.6.23 Average waiting time (RR vs. DQRRR vs. AMDRR) with

arrival time

0

50

100

150

200

250

300

I D R

RR

DQRR

AMDRR

Figure 4.6.19 Average turnaround time (RR vs. DQRRR vs. AMDRR) with

arrival time.

CONCLUSION

We have explored the nature of real-time systems in the

context of scheduling and it implies on the quality of

computation and the behavior of the system. Average

turnaround time, average waiting time decreases drastically

in the above proposed algorithm. Our proposed algorithm

can be further investigated to be useful in providing more

and more task oriented result in future.

REFERENCES

[1]. H.S Behera, R.Mohanty, Debashree Nayak “A New Proposed
Dynamic Quantum with readjusted Round Robin Scheduling
Algorithm and its Performance Analysis”, International
Journal of Computer Application(0975-8887) volume 5-
No.5,August 2010.

[2]. C. Yaashuwanth, Dr. R. Ramesh.”A New Scheduling
Algorithms for Real Time Tasks”, (IJCSIS) International

Journal of Computer Science and Information Security,
Vol.6, No.2, 2009.

[3]. Rami J. Matarneh.“Self-Adjustment Time Quantum in Round
Robin Algorithm Depending on Burst Time of Now Running
Processes”, American J. of Applied Sciences 6(10): 1831-
1837, 2009.

[4]. Sunita Mohan. “Mixed Scheduling (A New Scheduling
Policy)”. Proceedings of Insight’09, 25-26 November 2009.

[5]. Helmy, T. and A. Dekdouk, 2007. “Burst Round Robin as a
Proportional-share Scheduling Algorithm”, IEEEGCC,
http://eprints. kfupm.edu. sa/1462/.

C

O

N

T

E

X

T

S

W

I

T

C

H

I

N

G

BURST TIME

A

V

G

W

A

I

T

I

N

G

T

I

M
E

BURST TIME

BURST TIME

BURST TIME

A

V

G

T

U

R

N

A

R

O

U

N

D

T

I

M

E

BURST TIME

BURST TIME

BURST TIME

A

V

G

W

A

I

T

I

N

G

T

I

M

E

C

O

N

T

E

X

T

S

W

I

T

C

H

I

N
G

BURST TIME

BURST TIME

BURST TIME

A

V

G

T

U

R

N

A

R

O

U

N

D

T

I

M
E

H. S. Behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 46-52

© JGRCS 2010, All Rights Reserved 52

[6]. Rashid, M.M. and Z.N. Akhtar, 2006. “A New Multilevel
CPU Scheduling Algorithm”. J.AppliedSci, 6:2036- 2039.

DOI: 10.3923/jas. 2006. 2036. 2039.
[7]. Silberschatz, A., P.B.GalvinandG.Gagne, 2004. “Operating

Systems Concepts”. 7th Edn., John Wiley and Sons, USA. ,
ISBN: 13:978-0471694663, pp: 944.

[8]. Tanebun, A.S., 2008, “Modern Operating Systems”.3rd Edn.
Prentice Hall, ISBN: 13:9780136006633, pp: 1104.

[9]. BogdanCaprita, Wong Chun Chan, Jason Nieth, Clifford
Stein and Haoqiang Zheng. “Group Ratio Round-Robin: O(1)

Proportional share Scheduling for Uni-processor and
Multiprocessor Systems”. In USENIX Annual Technical
Conference, 2005.

[10]. Biju K Raveendran, Sundar Bala Subramaniam,
S.Gurunarayanan, “Evaluation of Priority Based Realtime
Scheduling Algorithms: Choices and Tradeoffs”, SAC’08,
March 16- 20, 2008, copyright 2008 ACM 978-1-
59593-753-7/08/003.

Short Bio Data for the Author

Prof H.S Behera is currently working as a Senior

Lecturer in Dept. of Computer Science and Engineering is

Veer Surendra Sai University of Technology (VSSUT),

Burla, Orissa, India. His research areas of interest include

Operating Systems, Data Mining and Distributed Systems.

Bijayalaxmi Panda is a Final year B. Tech. student in

Dept. of Computer Science and Engineering, Veer Surendra

Sai University of Technology (VSSUT), Burla, Orissa,

India.

Sreelipa Curtis is a Final year B. Tech. student in Dept.
of Computer Science and Engineering, Veer Surendra Sai

University of Technology (VSSUT), Burla, Orissa, India.

