

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

Design and Validation of threshold Model Using BSIM3v 3.2.2

Sunil Jadav, Munish Vashistaha,

Faculty, YMCA University of Science & Technology, Faridabad, Haryana-121106, India

Abstract: This paper presents a BSIM3v3.2.2 threshold model validation using SPICE simulations and mathematical models of BSIM are computed using MATLAB simulation and comparison between the mathematical and simulation model is presented. Further the short channel and narrow channel effects are analyzed and effect on threshold voltage is investigated.

Keywords: Threshold, Narrow channel, short channel, Threshold.

I. INTRODUCTION

The threshold voltage, commonly abbreviated as V_{th} , of a MOSFET is usually defined as the gate voltage where an inversion layer forms at the interface between the insulating layer (oxide) and the substrate (body) of the transistor. An accurate modelling of the threshold voltage is one of the most important requirements for precise description of device electrical characteristics. It also serves as a useful reference point for the evaluation of device operation regimes. By using threshold voltage, the whole device operation regime can be divided into three operational regions. Reverse short-channel effect (RSCE) is a result of non-uniform channel doping (halo doping) in modern processes[1]. And helps in controlling the threshold voltage. First, if the gate voltage is greater than the threshold voltage, the inversion charge density is larger than the substrate doping concentration and MOSFET is operating in the strong inversion region and drift current is dominant.

Second, if the gate voltage is smaller than V_{th} , the inversion charge density is smaller than the substrate doping concentration. The transistor is considered to be operating in the weak inversion (or sub threshold) region where diffusion current is now dominant [2 -7]. Lastly, if the gate voltage is very close to V_{th} , the inversion charge density is close to the doping concentration and the MOSFET is operating in the transition region. As the channel length of MOSFETs is scaled down to deep-sub micrometer or sub-180 nm regime, short-channel effects, such as, steep threshold voltage roll-off, increased off-state leakage current and bulk punch through have been observed [2].

In this work threshold voltage dependence investigated over Doping concentration (uniform & Non uniform), Short Channel effect and Narrow Channel effect [8] and detailed analysis of device is targeted with number of device parameters.

The paper is organized as section II presents previous model used by BSIM v.3.3 and in section III results are formulated and finally conclusion.

II. BSIM THRESHOLD MODEL

For MOSFET's with long channel length/width and uniform substrate doping concentration V_{th} is given by [8]:

$$V_{th} = V_{fb} + \phi_{s} + \gamma (\sqrt{\phi_{s} - V_{bseff}} - \sqrt{\phi_{s}}$$

And
$$V_{th} = V_{tideal} + \gamma (\sqrt{\phi_{s} - V_{bseff}} - \sqrt{\phi_{s}}$$
(1)

Copyright to IJAREEIE

www.ijareeie.com

4773

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

Where V_{fb} is the flat band voltage and V_{tideal} is the threshold voltage of the long channel device at zero substrate bias and γ is the body bias coefficient and is given by:

$$\gamma = \frac{\sqrt{2\epsilon_{si}qN_a}}{C_{ox}} \tag{2}$$

where N_a is the substrate doping concentration. The surface potential is given by:

$$\phi_{\rm s} = 2 \frac{\kappa_b T}{q} \ln(\frac{N_a}{n_i}) \tag{3}$$

Equation (2.1) assumes that the channel is uniform and makes use of the one dimensional Poisson equation in the vertical direction of the channel. This model is valid only when the substrate doping concentration is constant and the channel length is long. Under these conditions, the potential is uniform along the channel.

(a) Vertical non-uniform doping effect

Modifications have to be made when the substrate doping concentration is not uniform and/or when the channel length is short, narrow, or both. Then the threshold model in (1) will become:

$$V_{th} = V_{tideal} + K_1 (\sqrt{\phi_s - V_{bs}} - \sqrt{\phi_s}) - K_2 V_{bs}$$
⁽⁴⁾

The distribution of impurity atoms inside the substrate is approximately a half Gaussian distribution

 K_1 and K_2 can be determined by the criteria that V_{th} and its derivative versus V_{bs} should be the same at V_{bm} , where V_{bm} is the maximum substrate bias voltage. Therefore, using equations (2.1) and (2.4), K_1 and K_2 [3] will be given by the following:

$$K_1 = \gamma_2 - 2K_2 \sqrt{\phi_s - V_{\rm bm}} \tag{5}$$

$$K_2 = \frac{(\gamma_1 - \gamma_2)(\sqrt{\phi_s} - V_{bx} - \sqrt{\phi_s})}{2\sqrt{\phi_s}(\sqrt{\phi_s} - V_{bm} - \sqrt{\phi_s}) + V_{bm}}$$
(6)

where γ_1 and γ_2 are body bias coefficients when the substrate doping concentration are equal to N_{ch} and N_{sub}, respectively:

$$\gamma_1 = \frac{\sqrt{2\epsilon_{\rm si}qN_{\rm ch}}}{c_{\rm ox}} \tag{7}$$

$$\gamma_2 = \frac{\sqrt{2\epsilon_{\rm siq} N_{\rm sub}}}{C_{\rm ox}} \tag{8}$$

 V_{bx} is the body bias when the depletion width is equal to X_t . Therefore, V_{bx} satisfies:

$$\frac{qN_{ch}X_{t}^{2}}{2\epsilon_{si}} = \phi_{s} - V_{bx}$$
(9)

(b) Lateral non-uniform doping effect

For some technologies, the doping concentration near the source/drain is higher than that in the middle of the channel. This is referred to as lateral non-uniform doping. As the channel length becomes shorter, lateral non-uniform doping will cause

Copyright to IJAREEIE

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

 $V_{\rm th}$ to increase in magnitude because the average doping concentration in the channel is larger. The average channel doping concentration can be calculated as

$$N_{eff} = N_a \left(1 + \frac{NLX}{L}\right)$$
(10)
Due to the lateral non-uniform doping effect, (4) becomes:

$$V_{th} = V_{th0} + K_1 \sqrt{\phi_s - V_{bs}} - K_2 V_{bs} + K_1 \left(\sqrt{1 + \frac{NLX}{L_{eff}}} - 1\right) \sqrt{\phi_s}$$
(11)

This effect gets stronger at a lower body bias.

(c) Short Channel Effect

A MOS transistor is called a short-channel device if its channel length is on the same order of magnitude as the depletion region thicknesses of the source and drain junctions. Alternatively, a MOSFET can be defined as a short-channel device if the effective channel length L_{eff} is approximately equal to the source and drain junction depth X_j . The short-channel effects that arise in this case are attributed to two physical phenomena:

(i) The limitations imposed on electron drift characteristics in the channel,

(ii) The modification of the threshold voltage due to the shortening channel length.

The threshold voltage of a long channel device is independent of the channel length and the drain voltage. Its dependence on the body bias is given by (4). However, as the channel length becomes shorter, the threshold voltage shows a greater dependence on the channel length and the drain voltage. The dependence of the threshold voltage on the body bias becomes weaker as channel length becomes shorter, because the body bias has less control of the depletion region. The short-channel effect is included in the V_{th} model as

$$V_{th} = V_{th0} + K_1 (\sqrt{\phi_s - V_{bs}} - \sqrt{\phi_s}) - K_2 V_{bs} + K_1 \sqrt{(1 + \frac{NLX}{L_{eff}} - 1)} \sqrt{\phi_s} - \Delta V_{th}$$
(12)

where ΔV_{th} is the threshold voltage reduction due to the short channel effect. $\Delta V_{th} = \theta_{th}(L)(2(V_{bi} - \varphi_s) + V_{ds})$

(13)

Many models have been developed to calculate ΔV_{th} . This quasi-2D model concluded that:

$$\Delta V_{\rm th}(V_{\rm ds}) = \theta_{\rm dibl}(L)((E_{\rm ta0} + E_{\rm tab}V_{\rm bs})V_{\rm ds}$$
(14)

(d) Narrow Channel Effect

Earlier, we have analysis the effect of Length that's get short is referred to as short channel effect and now after the short channel the narrow channel effect is considered that is the width of the devices are getting narrow. Considering the NMOS device the actual depletion region in the channel is always larger than what is usually assumed under the one-dimensional analysis due to the existence of fringing fields [2]. This effect becomes very substantial as the channel width decreases and the depletion region underneath the fringing field becomes comparable to the "classical" depletion layer formed from the vertical field. The net result is an increase in V_{th} .

$$V_{th} = V_{th0ox} + K_{1ox}\sqrt{\phi_s - V_{bseff}} - K_{2ox}V_{bseff} + K_{1ox}\left(\sqrt{1 + \frac{NLX}{L_{eff}}} - 1\right)\sqrt{\phi_s}(K_3 + K_{3b}V_{bs})\frac{T_{ox}}{W'_{eff} + W_0}\phi_s - V_{bseff}$$

Copyright to IJAREEIE

www.ijareeie.com

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

$$D_{vt0w}\left(exp\left(-D_{vt1w}\frac{W'_{eff}L_{eff}}{2l_{tw}}\right)+2exp\left(D_{vt1w}\frac{W'_{eff}L_{eff}}{l_{tw}}\right)\right)(V_{bi}-\phi_{s})-D_{vt0}\left[exp\left(\frac{-D_{vt1}L}{2l_{t}}\right)+2exp\left(-\frac{D_{vt1}L}{l_{t}}\right)\right](V_{bi}-\phi_{s})-\left[exp\left(\frac{-D_{sub}L}{2l_{to}}\right)+2exp\left(-\frac{D_{sub}L}{l_{to}}\right)\right]((E_{ta0}+E_{tab}V_{bseff})V_{ds})$$

$$(15)$$

III. RESULT & DISCUSSION

The above approximated model is validated by using 180nm CMOS process parameters. Length and width of the device is taken as 180 nm and 270 nm and the temperature on which the device simulation is done i.e. 300 K. The supply voltage V_{DD} is 1.8v and the gate to source input voltage maximum limit is set to 1.8v. And the DC analysis of the NMOS device is performed on the SPICE EDA tool. Figure 1 shows the schematic of NMOS used for simulation.

Figure 3 Built-in-potential versus source/drain doping

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

Figure 5. ΔV_{th} versus the length (nm) at Channel doping conc. of 2.8469e-18 cm-3

The threshold voltage which is calculated by the SPICE and MATLAB simulator is shown in table 1. And is highlighted by yellow mark. And no of parameters used by MATLAB simulator is detailed in table 2. (with the default values of BSIM and used in this work). Figure 2 shows the threshold voltage at which NMOS device is ON.

The above figure 3 reflects the effect on the built-in-potential (V_{bi}) versus source/drain doping concentration (N_d) [8].

And ΔV_{th} is the threshold voltage reduction due to the short channel of the device. Now considering the variation in ΔV_{th} with respect to the built-in-Voltage. The relation between the ΔV_{th} and the built-in-Voltage is given by the (13) and relation between V_{bi} and ΔV_{th} is validated as shown in figure 4.

If the parameter in the equation (13) are remain constant and the built-in-Voltage vary according to the formulation they are directly related to each other as built-in-Voltage increases the ΔV_{th} increases and similarly if the built-in-Voltage decrease the ΔV_{th} will decrease. Further w.r.t. to length of device the BSIM model is validated. The parameter Length is the major parameter in the sub-micron technology as the technology moving toward the sub-micron the Length of the device getting shorter so the impact of the length on the ΔV_{th} is expressed graphically in figure 5.

The ΔV_{th} is the function of length according to the equation (13) that means the ΔV_{th} depend upon the length as the length of the device is increases the ΔV_{th} will decrease. One major consideration is that the channel doping concentration is 2.8469e-18cm-3.

IV.CONCLUSION

Based on device parameters approximation the mathematical models of BSIM3v3.2.2 threshold model is validated with the SPICE simulations. The threshold voltage calculated is 0.436V and it is 98% close to the simulated model. Scaling effect is also investigated in terms of short Channel Effect. And the increase in the length the ΔV_{th} is increased and resulted threshold voltage is decreased.

Further it is also concluded that the first order coefficient of the Narrow channel shows the decrease in the threshold voltage but the second coefficient and has a negligible effect on the threshold voltage. This work will help to the users of VLSI modelling i.e how to work with 49 and 57 Level MOS parameters.

REFERENCES

- M. Miura-Mattausch, M. Suetake, H. J. Mattausch, S. Kumashiro, N. Shigyo, S. Oganaka, and N.Nakayam, "Physical modeling of the reverse short channel effect for circuit simulation," *IEEE Transactions on Electron Devices*, vol. 48, pp. 2449–2452, Oct. 2001.
- [2] G.W. Taylor, "Sub threshold Conduction in MOSFET's," *IEEE Trans. Electron Devices*, vol ED-25, p.337, 1978.
- [3] H.S. Lee. "An Analysis of the Threshold Voltage for Short-Channel IGFET's," Solid-State Electronics, vol.16, p.1407, 1973.
- [4] T. Toyabe and S. Asai, "Analytical Models of Threshold Voltage and BreakdownVoltage of Short-Channel MOSFET's Derived from Two-Dimensional Analysis," *IEEE J. Solid-State Circuits*, vol. SC-14, p.375, 1979.

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

- [5] D.R. Poole and D.L. Kwong, "Two-Dimensional Analysis Modeling of Threshold Voltage of Short-Channel MOSFET's," IEEE Electron Device Letter, vol. ED-5, p.443, 1984.
- [6] J.D. Kendall and A.R. Boothroyd, "A Two-Dimensional Analytical Threshold Voltage Model for MOSFET's with Arbitrarily Doped Substrate," IEEE Electron Device Letter, vol. EDL-7, p.407, 1986.
- [7] Z.H. Liu, C. Hu, J.H. Huang, T.Y. Chan, M.C. Jeng, P.K. Ko, and Y.C. Cheng, "Threshold Voltage Model For Deep-Submicrometer MOSFETs," IEEE Tran. Electron Devices, vol. 40, pp. 86-95, Jan., 1993.

[8] BSIM3v3.2.2 MOSFET Model user manual.

									Large L.		
							VFB	Vfb	Flat-band voltage	Calculated	-1.0
Table 1. Th	nreshold vol	tage calculation.					K1	K1	First order body effect coefficient	0.5	0.5935169
T	SIMULATED			CALCULATED			K2	K2	Second order body effect coeff.	0.0	2.38533E-3
1	Threshold Voltage(mV)		Threshold Voltage(V)			K3	К3	Narrow width coefficient	80.0	1E-3	
MODE	LN	MMOS	R	2.0709e-12	2 2.0709	2.0709	K 3b	K3b	Body effect coefficient of k3	0.0	3.1905105
TYPE	1	NMOS	S	6.7350e-12	2 6.7350	6.7350	WO	W0	Narrow width	2.5e-6	1E-7
REGI	ON S	Saturation		300	300	300	Nlx	Nlx	Lateral non-uniform	1.74e-7	1.786849E-7
ID		237.30793u	Tox	4.1000e-0	9 4.1000	4.1000			doping		
IBS		0.	Toxm	3.5200e-0	9 3.5200	3.5200	Mbm	Vbm	Parameter Maximum applied	-3.0	-3.0
IBD		0.	V	1.3927e+0	4 1.3927	1.3927	, com	, one	body bias in Vth	510	5.0
VGS		1.80000	V1	1.4203	1.4203	1.4203	Deat0	0 tests	calculation	2.2	1 7202791
VDS		1.80000	V2	0.4267	0.4267	0.4267	DVIO	avio	short-channel effect	2.2	1.7203781
VBS		0	V3	27.9015	27.9015	27.9015			on Vth		
100		436 44052m	V4	1.600/	1.6007	1.6007	Dvt1	dvt1	Second coefficient of short channel	0.53	0.4308344
VID	÷.	130.11052m	V5	3./513	3./513	3./513			effect on Vth		
VDSA	1	534./9629m	VO	0.0235	0.0235	0.0235	Dvt2	dvt2	Body-bias	-0.032	0.0467521
BEIA		838.91838u	V/	4./1000-14	4 4./100	4./103			channel		
RS		0.	V8	1.1/450+0	I/ I.1/43	1.1/43			effect on Vth		
RD		0.	V9	1.0090e+0	4 1.0393	1.0395	Dvt0w	dvt0w	First coefficient of	0	0
GM		196.81154u		-0.0902	-0.0902	-0.0902			width effect on Vth		
GDS		10.70712u		0.4304	0.4304	0.4504			for small		
GMB		44.51193u		0.9460	0.9465	0.9460	Dvt1w	dvtw1	Second coeff. of	5.3e6	0
GBD		0.		0.7000	0.7000	0.7000			narrow width effect		
GBS		0.	VTUArek	0.7000	0.7000	0.7000			on Vth for small channel length		
CDTO	Т	809.56165a	VIEN	1 2027	0.7300	1 202	Symbols	Symbol	Descriptions	Default	Used
CGTO	т	639.53182a	Vbi	2 /020	2 /020	2 1020	used in	used in			
CSTO	-	1 08778f	Vhm	-2	-2	.2	Equation	SFICE			
CBTO	T	1.45316f	Vhe	-5	-5	0	Dvt2w	dvt2w	Body-bias	-0.032	0
COR	1	441 740015	Vhseff	0	0	0			narrow width effect		
CGD		100.07770-	Vds	1,8000	1 8000	1 8000			for small channel		
CGD		166.9///Ua	Vas	1.8000	1.8000	1,8000	0	110	length Mobility at Temp -	670.0	269.0635418
CGB		8.80511a	Vasteff	0.0037	0.0037	0.0037	μο	uo	Tnom	250.0	209.0055418
CBD		619.77374a	Vth1	1,8034	1.8034	1.8034			NMOSFET		
CBS		767.35713a					Ua	Ua	First-order mobility	2.25e-9	-1.188565E-9
									degradationCoeff.		
		Table 2.					Ub	Ub	Second-order mobility	5.87e-19	1.930877E-18
The TSMC	C 180 nm pa	rameter is used in	the analyse	es whicl	h are shown:				degradation oeff.		
-	I						Uc	Uc	Body-effect of	mobMod=1,2:-	2.224818E-
Symbols	Symbol	Descriptions	Defa	ult	Used	7			degradation	4.30e-11, mobMod=3:-	11
used in Equation	used in SPICE								Coefficient	0.046	0.68800714
1							Vsat	Vsat	Saturation velocity at Temp =Tnom	8.0e4	9.67502E4
VthO	vtb0	Thrashold voltage	07		0.2706590	1				1	

Copyright to IJAREEIE

vth0

Vth0

Threshold voltage

@Vbs=0 for

0.7

www.ijareeie.com

A0

a0

Bulk charge effect

coefficient

1.0

0.3796589

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

		for channel length		
Ags	Ags	gate bias coefficient of Abulk	0.0	0.4169677
B0	b0	Bulk charge effect coefficient for channel width	0.0	-1.063955E-8
B1	b1	Bulk charge effect	0.0	-1E-7
Keta	Keta	Body-bias coefficient of	-0.047	-7.704208E-3
Al	a1	bulkcharge effect First non-saturation	0.0	7.99632E-4
		effect Parameter		
A2	a2	Second non- saturation factor	1.0	0.999873
Rdsw	Rdsw	Parasitic resistance per unit Width	0.0	105
Symbols	Symbol	Descriptions	Default	Used
used in Equation	used in SPICE			
Prwb	Prwb	Body effect coefficient of	0	-0.2
		Rdsw		
Prwg	Prwg	Gate bias effect coefficient of Rdsw	0.5	
Wr	Wr	Width Offset from Weff for Rds calculation	1.0	1
Wint	Wint	Width offset fitting parameter from I-V without Bias	0.0	2.025957E-9
Lint	Lint	Length offset fitting parameter from I-V without Bias	0.0	1.028309E-8
dWg	Dwg	Coefficient of Weff's gate	0.0	-6.4982E-10
dWb	Dwb	Coefficient of Weff's substrate body bias dependence	0.0	1.217904E-8
Voff	Voff	Offset voltage in the sub-threshold region at large W and L	-0.08	-0.0901723
Nfactor	factor Nfactor Sub-threshold		1.0	2.3820479
		swing factor		
Eta0	eta0	DIBL coefficient in sub-threshold Region	0.08	1.448044E-3
Etab	Etab	Body-bias coefficient for the sub-threshold DIBL effect	-0.07	-2.754731E-4
Dsub	Dsub	DIBL coefficient exponent in Sub-threshold	Drout	0.0110906
Symbols used in	Symbol used in	Descriptions	Default	Used

Equation	SPICE			
Cdscd	Cdscd	Drain-bias sensitivity	0.0	0
Pclm	Pclm	Channel length	1.3	= 1.0622551
Pdiblc1	pdible 1	First output resistance	0.39	0.3172281
		DIBL		
		parameter		
Pdiblc2	pdible 2	Second output	0.0086	3.755701E-3
		effect correction		
Pdiblch	Pdiblch	parameter Body effect coefficient	0	-0.1
rubleb	1 dibleb	of DIBL correction	0	0.1
Drout	Drout	parameters L dependence	0.56	0.783102
		coefficient of the		
		parameter in Rout		
Pscbe1	pscbe1	First substrate current	4.24e8	5.995957E10
Pvag	Pvag	Gate dependence of	0.0	0.3568363
δ	Delta	Early voltage Effective Vds	0.01	0.01
0	Dona	parameter	0.01	0.01
Cit	Cit	Interface trap capacitance	0.0	0
Cdsc	Cdsc	Drain/Source to	2.4e-4	2.4E-4
		Capacitance		
Cdscb	Cdscb	Body-bias sensitivity of Cdsc	0.0	0
Xpart	Xpart	Charge partitioning	0.0	0.5
CGS0	Cgso	Non LDD region	Calculated	7.45E-10
	-	source-gate		
		per channel length		
CGD0	Cgdo	Non LDD region drain-gate	Calculated	7.45E-10
		overlap capacitance		
		length		
Symbols	Symbol	Descriptions	Default	Used
used in	used in			
Equation	SPICE			
CGB0	Cabo	Gate bulk overlap	0.0	1E-12
CODO	CEUU	capacitance per unit	0.0	12 12
Cj	Cj	channel length Bottom junction	5.0e-4	9.725136E-4
	Í	capacitance per unit		
Mj	Mj	Bottom junction	0.5	0.3610145
-		capacitance grating		
Mjsw	Mjsw	Source/Drain side wall	0.33	0.1
		junction canacitance grading		
		coefficient		
Cjsw	Cjsw	Source/Drain side wall junction capacitance	5e-10	2.269386E-10
Cirro	Ci	per unit area	Cirro	2.25.10
Cjswg	Cjswg	Source/drain gate side wall junction	Cjsw	3.3E-10
		capacitance grading		
Mjswg	Mjswg	Source/drain gate side	Mjsw	0.1
		wall junction canacitance grading		
		Coefficient		
Pheny	Pbsw	Source/drain side wall	1.0	0.6351005

Copyright to IJAREEIE

www.ijareeie.com

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 10, October 2013

		potential		
Pb	Pb	Bottom built-in potential	1.0	0.7292509
Pbswg	Pbswg	Source/Drain gate side wall junction built-in potential	Pbsw	0.6351005
Cf	Cf	fringing field capacitance	Calculated	0
Wl	Wl	Coefficient of length dependence for width offset	0.0	0
Wln	Wln	Power of length dependence of width offset	1.0	1
Ww	Ww	Coefficient of width dependence for width offset	0.0	0
Symbols used in Equation	Symbol used in SPICE	Descriptions	Default	Used
Wwn	Wwn	Power of width dependence of width offset	1.0	1
Wwl	Wwl	Coefficient of length and width cross term for width offset	0.0	0
Ll	LI	Coefficient of length dependence for length offset	0.0	0
Lln	Lln	Power of length dependence for length offset	1.0	1
Lw	Lw	Coefficient of width dependence for length	0.0	0
x		Uliset		

		offset		
Lwl	Lwl	Coefficient of length and width cross term for length offset	0.0	0
Tox	Tox	Gate oxide thickness	1.5e-8	4.1E-9
Toxm	Toxm	Tox at which parameters are extracted	Tox	27
Xj	Xj	Junction Depth	1.5e-7	1E-7
γ1	gamma1	Body-effect coefficient near the Surface	Calculated	
γ2	gamma2	Body-effect coefficient in the Bulk	Calculated	
Nch	Nch	Channel doping concentration	1.7e17	2.3549E17
Nsub	Nsub	Substrate doping concentration	6e16	0.0110906
Vbx	Vbx	Vbs at which the depletion region width equals xt	Calculated	
Xt	Xt	Doping depth	1.55e-7	1.55e-7