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Abstract: In this project an attempt has been made to adopt an LQR controller design approach for PITCH axis 
stabilization of 3DOF Helicopter System. The presentation in this report is not limited to only design a controller for the 
stabilization of PITCH axis model of 3DOF Helicopter but at same time it shows good performance. Some useful basic 
control systems concept related to Riccaati equation, controllability of the system and PID controller have been also 
presented to understand the content of the project. The report first develops a transfer function and state space model to 
represent the PITCH axis dynamics of 3DOF Helicopter system and then LQR controller design steps are explained in 
brief. 
The investigated state feedback controller design technique is an optimal design method and it is directly applicable to 
unstable pitch axis model of 3DOF Helicopter. 
To show the effectiveness of the investigated method, the report also demonstrates the comparative studies between LQR 
and PID controllers. The results of the closed loop system performance with LQR controller and PID controller separately 
are also shown. 
 

1.INTRODUCTION 
3DOF Helicopter System (shown in Fig. 1.1) is composed of the base, leveraged balance, balancing blocks, propellers and 
some other components. Balance posts to base as its fulcrum, and the pitching. Propeller and the balance blocks were 
installed at the two ends of a balance bar. The propeller rotational lift, turning a balance bar around the fulcrum so pitching 
moves, using two propeller speed difference, turning a balance bar along the fulcrum to do rotational movement. Balance 
the two poles installed encoder, used to measure the rotation axis, pitch axis angle, in the two propeller connecting rod 
installed an encoder, which is used to measure overturned axis angle. Two propellers using brushless DC motors, provide 
the impetus for the propeller. By adjusting the balance rod installed in the side of the balance blocks to reduce propeller 
motor output. All electrical signals to and from the body are transmitted via slip ring thus eliminating the possibility of 
tangled wires and reducing the amount of friction and loading about the moving axes.Preparation of the experimental 
guidance on the purpose is to tell users how to design a controller, to control the helicopter in accordance with the desired 
angle and speed of movement. 
 

.  
Figure 1.1: 3 DOF Helicopter systems 

 
The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system 
dynamics are described by a set of linear differential equation and the cost is described by a quadratic functional called LQ 
problem, one of the main results in the theory is that solution is provided by the LQR, a feedback controller. First, we make 
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a detail analysis and modelingon 3DOF helicopter from its mechanism and features and get its modeling motion equations 
by the knowledge of physics. From the analysis of the model, the system is with the problem of non-linear and state 
interference. First, we get the linear state space through linearity of the system, and then we use the theory of LQR to get 
the optimal state feedback controller from the linear state space. 
 
 
1.2 Motivation 
The motivation for doing this project was primarily an interest in undertaking a challenging project in an interesting area of 
research. I found the 3DOF Helicopter system as an appropriate area of research of my interest, and using LQR controller 
design methods for checking its controllability and robustness was my contribution in this research paper. LQR controller is 
usually used in industry especially in chemical process and aerospace industry. LQR problem is one of the most 
fundamental and challenging control problems and  
inthis method; controller is very easy to design and also increases the accuracy of state variable by estimating the state. It 
takes care of the tedious work done by the control system engineers in optimizing the controllers. However the engineer 
needs to specify the weighting factor and compare the result with the specified desired goals. This means that the controller 
synthesis is an iterative process, where the engineer judges to produce optimal controllers through simulation and 
computation and then adjusts the weighting factor to get a controller more in line with the specified design goals this 
computing and simulation work for controller synthesis, motivated us to work on this project. 
 
1.3Objectives 
Design and simulation of LQR controller for pitch axis stabilization of 3 DOF helicopter system (using MATLAB). 
 

II. MATHEMATICAL MODELLING 
It is composed of the base, leveraged balance, balancing blocks, propellers and some other components. Balance posts to 
base as its fulcrum, and the pitching. Propeller and the balance blocks were installed at the two ends of a balance bar. 
The propeller rotational lift, turning a balance bar around the fulcrum so pitching moves, using two propeller speed 
difference, turning a balance bar along the fulcrum to do rotational movement. Balance the two poles installed encoder, 
used to measure the rotation axis, pitch axis angle, in the two propeller connecting rod installed an encoder, which is used 
to measure overturned axis angle. 
Two propellers, using brushless DC motors, provide the impetus for the propeller. By adjusting the balance rod installed in 
the side of the balance blocks to reduce propeller motor output. All electrical signals to and from the body are transmitted 
via slip ring thus eliminating the possibility of tangled wires and reducing the amount of friction and loading about the 
moving axes. 
Three differential equations to describe the dynamics of the system. A simple set of differential equations is developed as 
follows: 
 
2.1 Pitch axis 
Consider the diagram in Fig.2.1 Assuming the roll is zero, then the pitching axis torque by two propeller motors lift the 
F1 and F2. Therefore, the pitch propeller axis total lift Fh＝F1＋F2.When the lift Fh is greater than the 
gravityGHelicopter rise. Instead the helicopter dropped. Now,assuming zero roll, the differential equation is: 

 
Figure 2.1: Pitch axis dynamics 

ܨ ଵ݈ =̈ ߝܬ − ݈ଵܩ = ݈ଵ(1ܨ + (2ܨ − ݈ଵ(2.1)          ܩ 
݈ଵ(ܸ1ܭ =̈ ߝܬ + ܸ2)− ܶ = ݈ଵܭ ௦ܸ − ܶ        (2.2) 
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Where, 
 =݈݉ଵܬ,is the moment of inertia of the system about the pitch axisܬ

ଶ  + ݈݉ଶଶ. 
݉is the mass of balance blocks. 
݉is the total mass of two propeller motor. 
ଵܸand ଶܸ are voltages applied to the front and back motors resulting in force ܨଵ and ܨଶ. 
 .is the force constant of the motor /propeller combinationܭ
݈ଵis the distance from the pivot point to the propeller motor. 
݈ଶis the distance from the pivot point to the  balance blocks.Ignoring Tg in equation 3.2.2 we get 
݈ଵܭ ̈=ߝܬ ௦ܸ(2.3) 
Now, Taking Laplace transform of (2.2.3) we get: 
 (࢙)࢙ࢂࢉࡷ= (࢙)Єࡿࢋࡶ                       
 
Є(࢙)
(࢙)࢙ࢂ

ࢉࡷ = 
ࡿࢋࡶ

 
 
Substitutingthe value of ݇=12N/V, ݈ଵ=0.88m, ݆=1.8145kg.݉ଶin the above equation,we can get the transfer function of 3 
DOF helicopter system. 
Є(࢙)
(࢙)࢙ࢂ

= ହ.଼ଶ
ࡿ

 
This equation gives the pitch transfer function of 3 DOF. 
 
2.2State Space Modelling of Pitch axis for 3DOF: 
We know that: 
̇ߝ =  (2.10)̇ߝ
 =̇  (2.11)̇
̈ߝ =l1V1ܭc/Je  + l1V2ܭc/ Je (2.12) 
̈ =lpV1ܭc/Jp  +    l1V2ܭc/Jp(2.13) 
ݎ̇ =  l1p/Jt(2.14)ܩ
Assuming that : 
̇ߞ = ߳(2.15) 
ߛ̇ =  (2.16)ݎ
Now we have to find A and B matrix for 3DOF Helicopter system using the above seven linear differential equation: 

ܣ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
ଵ݈ܩ
௧ܬ

0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ܤ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
 0 0
݈ଵܭ
ܬ

݈ଵܭ
ܬ

݈ܭ
ܬ

−
݈ܭ
ܬ

 0 0
 0 0
 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

So we have the linearized equation of above state-space A and B as: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
߳̇
̇
̈ߝ
̈
ݎ̇
̇ߞ
⎦ߛ̇
⎥
⎥
⎥
⎥
⎥
⎤

ܣ     =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ߝ

߳̇
̇
ݎ
ߞ
⎦ߛ
⎥
⎥
⎥
⎥
⎥
⎤

ܤ +   ቂܸ1
ܸ2ቃ 

 
III.RESERACH METHODOLOGY 

 
3.1 LQR controller design method 
The LQR optimal control principle is, by system equations: 
ܺ̇= AX + Bu      
Determine matrix K that gives the optimal 
Controlvector:u (t) = -K*x(t)                                                                                           
Such that   the performance index is minimized: 
J = ∫ (ܺ ′ܳܺ∞

 +  ݐ݀(ݑܴ′ݑ
In which Q is positive definite (or semi -positive definite)hermitian or real symmetric matrix R is positive definite 
hermitian orreal symmetric matrix. 
 

 
 

Fig. 3.1: Optimal LQR controller diagram 
The second term on the right of the equation is introduced in concern of energy loss. Matrix Q and R determine the relative 
importance of error and energy loss. Here, it is assumed thatthe controlvector u(t)  is unbounded.  
 
Weighting Matrices selection 
One way of expressing the performance index mathematically is through an objective function of this form: 
J =∫ ݐ݀ݔ்ܳݔ + ∫ ∞ݐ݀ݑ்ܴݑ


∞
  

For Simplicity we assume Q and R as Diagonal matrix. Thus the Objective J reduces to : 
J = ݍଵݔଵଶ + ⋯+ ଶݔݍ   + ଵଶݑଵݎ   +⋯+ ଶݑݎ  
Here, the Scalars q1...,qn, r....,rm  can be looked upon as relative weights between different performance terms in the 
objective J. The key design problem in LQR is to translate performance specifications in terms of the rise time, overshoot, 
bandwidth, etc. into relative weights of the above form. There is no straightforward way of doing this and it is usually 
done through an iterative process either in simulations or on an experimental setup. Once the matrices Q and R are 
completely specified, the controller gain K is found by solving the Riccati equation. 

ܴ = ଵݑ  
ିଶ 0
0 ଶିଶݑ

൨(3.1) 

U1 and U2 are the maximum acceptable value of the input voltages. And matrix Q can be found using Bryson’s rule:Q 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ଵଵݍ 0 0 0 0 0 0
0 ଶଶݍ 0 0 0 0 0
0 0 ଷଷݍ 0 0 0 0
0 0 0 ସସݍ 0 0 0
0 0 0 0 ହହݍ 0 0
0 0 0 0 0 ݍ 0
0 0 0 0 0 0 ⎦ݍ

⎥
⎥
⎥
⎥
⎥
⎤
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Where according to Bryson’s rule: 
Q11 is1/ maximum acceptable value of (pitch angle) 2 
Q22 is 1/ maximum acceptable value of (roll angle) 2 
Q33 is 1/ maximum acceptable value derivative of (pitch angle) 2 
Q44 is 1/ maximum acceptable value of derivative of (roll angle) 2 
Q55 is 1/ maximum acceptable value of (travel rate) 2 
Q66 is 1/ maximum acceptable value of (damping ratio) 2 
Q77 is 1/ maximum acceptable value of (�) 2 
Substituting the above values: 

Q =  

 
3.2 PID controller design approachpitch axis of 3DOF Helicopter system 
The PID control scheme is named after its three correcting terms, whose sum constitutes the manipulated variable. The 
proportional, integral, and derivative terms are summed to calculate the output of the PID controller.  

 
Figure 3.2: PID controller 
As seen in Fig.2.2 the different terms associated with the controller and its operations are being explained in detail below. 
The block contains the three different parameters namely Proportional, Integral and derivative. The final form of the PID 
algorithm is: 

(3.0) 
Where, =Proportional Gain, =Integral Gain, 

=Derivative Gain, e =Error, t =Instantaneous time 
Proportional term 
The proportional term produces an output value that is proportional to the current error value. The proportional response 
can be adjusted by multiplying the error by a constant called the proportional gain constant. A high proportional gain results 
in a large change in the output for a given change in the error. If the proportional gain is too high, the system can become 
unstable. 
Integral Term 
The contribution from the integral term is proportional to both the magnitude of the error and the duration of the error. The 
integral in a PID controller is the sum of the instantaneous error over time and gives the accumulated offset that should 
have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller 
output. The integral term eliminates the residual steady-state error that occurs with a pure proportional controller. 
Derivative Term  
The derivative of the process error is calculated by determining the slope of the error over time and multiplying this rate of 
change by the derivative gain. The magnitude of the contribution of the derivative term to the overall control action is 
termed the derivative gain. The derivative term slows the rate of change of the controller output. Derivative control is used 
to reduce the magnitude of the overshoot produced by the integral component and improve the combined controller-process 
stability. 
Pitch PID Controller 
The Pitch axis model is given by equation (2.3): 
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Where, V1+V2 = Vs 
We design the PID controller of the form as follows: 
௦ܸ = ߝ)ܭ − (ߝ + +̇ߝௗܭ ܭ ߝ)∫ −  )(3.1)ߝ
�is the actual pitch angle, �is the desired pitch angle 
Now substituting the values we get: 
ߝܬ =̈ ߝ)ܭ]݈ଵܭ − (ߝ + +̇ߝௗܭ ܭ ߝ)∫ −  )]       (3.2)ߝ
Taking Laplace transform, the closed loop Transfer function is given by : 

.(ݏ)ߝܬ ଶݏ = (ݏ)ߝܭ݈ଵܭ (ݏ)ߝܭ݈ଵܭ− ௗܭ݈ଵܭ+ .ݏ. (ݏ)ߝ +
ߝ)ܭ݈ଵܭ − (ߝ

ݏ  
ఌ(ௌ)
ఌ(௦)= - 

భ.௦ାభ಼
௦యିభ௦మିభ.௦ିభ

(3.3) 

 
IV.RESULTANALYSIS 

4.1 Controllability of the system 
A  system is  said  to be controllable at time t, if it  is  possible  by means  of an unconstrained control vector  to transfer  
the  system from any  initial  state x(t) to any  other state  in a  finite  interval  of time.  In fact, the conditions 
ofcontrollability may governthe existence of a completesolution tothe control system design problem. The solution tothis 
problem may notexist if the systemconsidered is not controllable. Although most physical systems are controllable, 
corresponding mathematical models may not possess the property of controllability.Then it is necessary to know the 
conditionsunder whicha systemis controllable.  
 
4.1.1 Complete State Controllability of Continuous-Time Systems:  
Consider the continuous-time system. 
ܺ̇= AX + Bu        (4) 
Where: 
x = statevector (n-vector),u = control signal (scalar) , 
A = n X n matrix, B = n X 1 matrix 
The system described by Equation  (4.0) is  said  to be state controllable at t  =  to if  it is  possible to construct  an 
unconstrained  control signal  that  will transfer  an initial  state to any final  state in a  finite time interval  to t0≤t≤t1,. If 
every stateis controllable, then the systemis said to be completely state controllable.  
We now derive the condition for complete state controllability. Without  loss  of generality, we can assume  that  the  final 
state is  the  origin  of  the  state space  and that  the initial time  is  zero. 
The solution of equation (4.0) is: 
X(t) = ݁௧X(0) + ∫ ݁(௧ିఛ)ݑܤ(߬)݀߬௧

 (4.1)Applying the definition of complete state controllability: 
X(ݐଵ) = 0 = ݁௧భX(0) + ∫ ݁(௧భିఛ)ݑܤ(߬)݀߬௧భ

   (4.2)                        
Or,We know that: 
X(0) =  −∫ ݁ିఛݑܤ(߬)݀߬௧భ

            (4.3) 
݁ିఛ =  ∝୩ (τ)A୩ିଵ

ୀ                (4.4) 
Substituting the equation (4.4) in (4.3) we get: 
X(0)=− A୩ିଵ

ୀ B ∫ ∝୩ (τ)ݑ(߬)݀߬௧భ
 (4.5) 

Let us put,∫ ∝୩ (τ)ݑ(߬)݀߬௧భ
 ߚ  =    

The equation (4.5) becomes: 
X(0)  = − A୩ିଵ

ୀ Bߚ  

=   − [B⋮ AB⋮ ⋯ ⋮ ିଵB]ܣ
ߚ
⋮

ିଵߚ
൩           (4.6) 

If  the  system is  completely  state controllable, then, given any initial state x(O),This requires that  the  rank of  the  n  X  n  
matrix be ‘n’. 
[B⋮ AB⋮ ⋯ ⋮  [ିଵBܣ
From this analysis, we can  state the  condition for complete state controllability  as fol1ows:The system given by Equation 
(4.0)  is completely  state controllable if  and only if  the  vectors B, AB,  . .  .  .  An-1Bare linearly independent, or the n X n 
matrix is of rank n. 

 



 ISSN 2278 - 8875 

   International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 
                                   Vol. 1, Issue  5, November  2012 
 

Copyright to IJAREEIE                                                                              www.ijareeie.com                                                                            357      

[B⋮ AB⋮ ⋯ ⋮  [ିଵBܣ
The  result  just  obtained  can  be extended  to the  case where  the control  vector u  is r-dimensional. If the systemis 
described by 

ܺ̇= AX + Bu 
Where u is an r-vector, thenit can be proved that the condition for complete stateControllability is that the n X nr matrix. 
[B⋮ AB⋮ ⋯ ⋮  [ିଵBܣ
B of rank n, or contain n linearly independent column vectors. The matrix 
[B⋮ AB⋮ ⋯ ⋮  [ିଵBܣ
Is commonly called the Controllability matrix. 
 
Controllability for Pitch axis dynamic model of 3 DOF Helicopter system 
We have a state space model of the helicopter system as follows: 

A=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 2.0655 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

ܤ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0
 0 0

5.8197 5.8197
63.9498 −63.9498

 0 0
 0 0
 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Using MATLAB the controllability matrix of the system is obtained, M= 

⎣
⎢
⎢
⎢
⎢
⎡

0 0 5.8197 5.8197 0 0 0 0 0 0 0 0 0 0
0 0 63.9498 −63.9498 0 0 0 0 0 0 0 0 0 0

5.8197 5.8197 0 0 0 0 0 0 0 0 0 0 0 0
63.9498 −63.9498 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 132.0883 −132.0833 0 0 0 0 0 0 0 0
0 0 0 0 5.8197 5.8197 0 0 0 0 0 0 0 0
0 0 0 0 0 0 132.0833 −132.0833 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

The rank of the above matrix M is 7 which is equal to order of the system matrix A[MATLAB]
.  

Therefore the system is controllable. 
 
4.2 Open loop response for pitch axis 
The differential equation for pitch axis dynamics from equation (2.3) is given by: 

݈ଵ(ܸ1ܭ =̈ ߝܬ + ܸ2)− ܶ = ݈ଵܭ ௦ܸ − ܶ  
Ignoring Tg in the above equation we get: 
݈ଵܭ ̈=ߝܬ ௦ܸ 
Now, Taking Laplace transform of we get: 
 (࢙)࢙ࢂࢉࡷ = (࢙)Єࡿࢋࡶ                          
 
Є(࢙)
(࢙)࢙ࢂ

ࢉࡷ = 
ࡿࢋࡶ

 
Substitutingthe value of ݇=12N/V,݈ଵ=0.88m,݆=1.8145kg.݉ଶin the above equation,we can get the transfer function of 3 
DOF helicopter system.Finally the open loop transfer function is: 
 
Є(࢙)
(࢙)࢙ࢂ

= ହ.଼ଶ
ࡿ
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Figure 4.1: Open loop response 

The Pitch axis model of Helicopter system is unstable as it gives unbounded output for the bounded input signal. It is 
shown in the figure 4.1 

4.3 State feedback controller of Pitch axis model for Helicopter system: 

The plant state space model is already explained in section 2.2.4 and it follows that 

ܣ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
ଵ݈ܩ
௧ܬ

0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ܤ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   0 0
   0 0
݈ଵܭ
ܬ

݈ଵܭ
ܬ

݈ܭ
ܬ

݈ܭ−
ܬ

0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The weighting matrices Q & R are selected based on the theory which is explained in the section 3.1.  The Matrices Q and 
R are finally chosen by the equations 3.1 and 3.2. 

ܳ =

⎣
⎢
⎢
⎢
⎢
⎡
51.0204 0 0 0 0 0 0

0 4.1649 0 0 0 0 0
0 0 1.0129 0 0 0 0
0 0 0 0.5609 0 0 0
0 0 0 0 0.1014 0 0
0 0 0 0 0 11.1100 0
0 0 0 0 0 0 4.000⎦

⎥
⎥
⎥
⎥
⎤
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ܴ = ቂ0.01 0
0 0.01ቃ 

Now using the MATLAB command:[K S E] =LQR (A, B, Q/1000, and R), the state feedback gain matrix and closed loop 
pole of the system are given by the matrices K and E 
respectively:ܭ = ቂ1.8596 0.8379 0.6084 0.2028 0.6066 0.7453 0.4472

1.8596−0.83970.6084−0.2028−0.60660.7453−0.4472ቃ 

ܧ = [−3.3070 +  2.7595݅;−3.3070 −  2.7595݅;−0.4676;−21.2420;  −2.8192 ;−0.9415 +  1.0423݅; −0.9415 
−  1.0423݅] 

Here, all the closed loop poles (Eigen values) of the system are either lying in the left half of the s-plane or on the 
imaginary axis, therefore our designed system is stable. 

Natural frequency and damping ratio of the closed loop system is also found using MATLAB code:[Wn,Z,P]=damp(A-
B*K)and we found that response  for the 2nd order system for each value of natural frequency (Wn) and damping factor (Z) 
are acceptable. It is shown in the following figure. 

 

Figure   4.2:   Response for diff. Wn and Z 

4.4 Pitch PID Controller using the values of state feedback gain K 

The state feedback gain matrix K is given by [Section 4.3] 

ܭ = ቂ1.8596 0.8379 0.6084 0.2028 0.6066 0.7453 0.4472
1.8596−0.83970.6084−0.2028−0.60660.7453−0.4472ቃ 

And we can also write the above Matrix K  as: 

ܭ = ܭଵଵ ଵଶܭ ଵଷܭ ଵସܭ ଵହܭ ଵܭ ଵܭ
ଶଵܭ ଶଶܭ ଶଷܭ ଶସܭ ଶହܭ ଶܭ ଶܭ

൨ 

And full state feedback results in a controller those feedback two voltages: 

 ଵܸ

ଶܸ
൨ = −ܭଵଵ ଵଶܭ ଵଷܭ ଵସܭ ଵହܭ ଵܭ ଵܭ

ଶଵܭ ଶଶܭ ଶଷܭ ଶସܭ ଶହܭ ଶܭ ଶܭ
൨  ݔ
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ܭ = ܭଵଵ ଵଶܭ ଵଷܭ ଵସܭ ଵହܭ ଵܭ ଵܭ
ଵଵܭ ଵଶܭ− ଵଷܭ ଵସܭ− ଵହܭ− ଵܭ ଵܭ−

൨ 

ଵܸ + ଶܸ = −2݇ଵଵ(ߝ − −(ߝ 2݇ଵଷ̇ߝ − 2݇ଵ(4.7)ߞNow comparing the result with equation (3.1): 

௦ܸ = ଵܸ + ଶܸ = ߝ)ܭ − (ߝ + ߝ)නܭ+̇ߝௗܭ −  ̇(ߝ

Now comparing the above two equations, the gains we obtain from LQR design can still be used for pitch controller as 
follows: 

ܭ = ଵଵܭ2− = −3.7192 

ௗܭ = ଵଷܭ2− = −1.2168 

ܭ = ଵܭ2− = −1.4096 

4.4.1 Simulation results 

Using equation 3.3 the closed loop transfer function of the system is given by: 

ఌ(ௌ)
ఌ(௦)= - 

భ.௦ାభ಼
௦యିభ௦మିభ.௦ିభ

 

Now, substituting the values Kc=12, l1=0.88, Je= 1.8145, Kep= -3.7192, Ked= -1.2168 and Kei= -1.4906, we got: 

ఌ(ௌ)
ఌ(௦)= ଷଽ.ଶସ଼௦ାଵହ.ସ

ଵ.଼ଵସହ௦యିଵଶ.଼ସଽସ௦మିଷଽ.ଶସ଼௦ିଵହ.ସ
 

The above transfer function is obtained using extracted valuesKep, Kei and Ked from designed state feedback gain matrix 
K as explained in section 4.3. 

The response of the above closed loop transfer function is obtained and it is shown in figure 4.3.

 

Figure 4.3: Designed closed loop system response 
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Now, substituting the values Kc=12, l1=0.88, Je= 1.8145, Kep= -2.0852, Ked= -0.8698 and Kei= -0.2, we get: 

ఌ(ௌ)
ఌ(௦)= ଶଶ.ଵଽ௦ାଶ.ଵଵଶ

ଵ.଼ଵସହ௦యିଽ.ଵ଼ହଵ௦మିଶଶ.ଵଽ௦ିଶ.ଵଵଶ
 

The response of the above closed loop transfer function is obtained and it is shown in figure 4.4. 

 

Figure4.4: Closed loop system response for reference PID value 

4.4.2 Real time system response 

The real time simulation is done using Helicopter PID control diagram [6] 

 

Figure 4.5:3DOF Helicopter MATLAB Real Time Control Diagram 
Double click the “Pitch PID” block to set pitch PID parameters. 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

Am
pl

itu
de



 ISSN 2278 - 8875 

   International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 
                                   Vol. 1, Issue  5, November  2012 
 

Copyright to IJAREEIE                                                                              www.ijareeie.com                                                                            362      

 

Figure 4.6: Pitch PID block diagram 
 
Double click the “Kp” block to set proportional parameter of pitch PID as the simulation results, and double click “OK” to 
save parameters. 

 

Figure 4.7: Kp Block 
Double click the “Ki” block to set integral parameter of pitch PID as the simulation results, and double click “OK” to save 
parameters 

 

Figure 4.8: Ki Block 
Double click the “Kd” block to set derivative parameter of pitch PID as the simulation results, and double click “OK” to 
save parameters. 
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Figure 4.9:Kd Block 
Case 1: System response for 35 degrees (reference) pitch angle 

 

Figure 4.10: Tracking for 35 degree 
Result: We found that system is stable and tracking the reference input succesfully. 

Case 2: System response for 45 degrees: 

 

Figure 4.11: Tracking for 45 degrees 
Result: In this case also system is stable and tracking the input signal. 

Case 3: System response for 55 degrees:- 
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Figure 4.12: Tracking for 55 degrees 
Result: The system is stable and tracking the reference signal. 

4.6 Comparative studies between LQR and PID controllers 

The PID controller parameters Kp, Kdand Ki have been found using LQR state feedback gain matrix K [section 4.3] and then 
closed loop system performance analysed. The following time domain performance parameters are obtained. 

 

Figure 4.13: Designed closed loop response 

RiseTime: 0.4291s,Settling Time: 4.8948sOvershoot: 14.6289%,Peak: 1.1463,Peak Time: 1.0470s 

Again we have taken PITCH PID controller values and closed loop system response obtained which is shown in the figure 
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Figure 4.14: Closed loop response of reference PID values 

Rise Time:0.6021s,Settling Time:7.9956s,Overshoot: 7.6368%Peak: 1.0764,Peak Time: 1.3321s 

V.CONCLUSION AND FUTURE SCOPE OF WORK 

5.1 Conclusion 

In this project an optimal design approach has been chosen to design a state feedback controller for PITCH axis model of 
3DOF Helicopter system. First we developed the Mathematical model of 3DOF Helicopter system and then stability & 
performance of the modelled system is carried out. 

The theory of LQR controller design has been investigated and a different approach based on Bryson rule has been also 
adopted to select the weighting matrices which are used in controller synthesis. 

The selected project is also demonstrated successfully in real time platform and it is followed by the comparison with 
existing design. Simulation analysis is also shown in the report. 

5.2 Future Work: 

In this project an LQR controller is synthesized for PITCH axis stabilization for 3 DOF helicopter systems and the same 
approach can be extended for Travel and Roll axes for the same system. 
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