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Abstract—This paper describes the Phrase-Based Statistical Machine Translation Decoder. Our goal is to improve the translation quality by 
enhancing the translation table and by preprocessing the source language text. research. We discuss the major design objective for the decoder, 

its performance relative to other SMT decoders, and the steps we are taking to ensure that its success will continue. 
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INTRODUCTION 

Phrase-based translation has been one of the major advances 
in statistical machine translation [2] in recent years and is 
currently one of the techniques which can claim to be state-
of-the-art in machine translation. Phrase-based models are a 
development of the word based models as exemplified by the 
[2]. In phrase-based translation, contiguous segments of 
words in the input sentence are mapped to contiguous 
segments of words in the output sentence. 
 
In SMT, we are given a source language sentence, s, which is 
to be translated into a target language sentence, t. The goal of 
machine translation, t^, is to find the translation, t^ , which is 
defined as: 

t^ = arg max t p(t | s ) 
 
where p (t | s ) is the probability model. The argmax implies 
a search for the best translation t^ in the space of possible 
translations t. This search is the task of the decoder, which 
we will concentrate on in this paper. 
 
There have been numerous implementations of phrase-based 
decoders for SMT prior to our work. Early systems such as 
the Alignment Template System (ATS) [3] and Pharaoh [4] 
were widely used and accepted by the research community. 
ATS is perhaps the crossover system, in that word classes 
were translated as phrases but the surface words were 
translated word by word. Pharaoh substituted the word 
classes with surface words, thereby discarding the use of 
word classes in decoding altogether. 
 
Pharaoh was released in 2003 as a pre compiled binary with 
documentation. This severely limited the extent to which 
other researchers can study and enhance the decoder. 
Without access to the decoder source code research was 
generally restricted to altering the input, augmenting it with 
extra information, or modifying the output or re-ranking the 
n-best list output.   
 
The main contribution of this paper is to show how we have 
created an extensible decoder, has acceptable run time 
performance compared to similar systems, and the ease of 

use and development that has made it the preferred choice for 
researchers looking for a phrase-based SMT decoder.      

SMT SYSTEM FRAMEWORK 

Phrase-based statistical machine translation approaches 
continue to dominate the field of machine translation. The 
translation service makes use of state-of-the-art phrase-based 
SMT systems within the framework of feature-based 
exponential models containing the following features: 

a. Phrase translation probability 
b. Inverse phrase translation probability 
c. Lexical weighting probability 
d. Inverse lexical weighting probability 
e. Phrase penalty 
f. Language model probability 
g. Simple distance-based distortion model 
h. Word penalty 

 

Figure 1: SMT Framework 

The basic framework within which all the MT systems were 
constructed is shown in Figure  
Translation examples from the respective bilingual text 
corpus are aligned in order to extract phrasal equivalences 
and to calculate the bilingual feature probabilities. 
Monolingual features like the language model probability are 
trained on mono lingual text corpora of the target language 
whereby standard word alignment and language modeling 
tools were used. 



Sandeep Warhade et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 35-38 

© JGRCS 2010, All Rights Reserved         36 

Parallel Corpora: 

SMT treats translation as a machine learning problem. This 
means that we apply a learning algorithm to a large body of 
previously translated text, known variously as a parallel 
corpus, parallel text, bitext, or multitext. The learner is then 
able translate previously unseen sentences. With an SMT 
toolkit and enough enough parallel text, we can build an MT 
system for a new language pair within a very short period of 
time. be built for a wide variety of language pairs within 
similar time frames. The accuracy of these systems depends 
crucially on the quantity, quality, and domain of the data, but 
there are many tasks for which even poor translation is useful 
[5]. 

Language Model: 

Statistical language modeling is the science (and often art) of  
building models that estimate the prior probabilities of word  
strings. Language modeling has many applications in natural 
language technology and other areas where sequences of 
discrete objects play a role, with prominent roles in speech 
recognition and  natural language tagging (including 
specialized tasks such as part-of-speech tagging, word and 
sentence segmentation, and shallow  parsing). As pointed out 
in [6], the main techniques for effective language modeling 
have been known for at least a decade, although one suspects 
that important advances are possible, and indeed needed, to 
bring about significant breakthroughs in the application areas 
cited above—such breakthroughs just have been very  hard 
to come by [7,8]. 

Translational Model: 

Translational models allow us to enumerate possible 
structural relationships between pairs of strings. However, 
even within the constraints of a strict model, the ambiguity of 
natural language results in a very large number of possible 
target sentences for any input source sentence. Our 
translation system needs a mechanism to choose between 
them. 
 
This mechanism comes from modeling: parameterization. 
We design a function that allows us to assign a real-valued 
score to any pair of source and target sentences. The general 
forms of these models are similar to those in other machine 
learning problems. There is a vast number of approaches;, for 
more detail, the reader is referred to a general text on 
machine learning, such as  [9]. 

Decoding Model: 

Now that we have a model and estimates for all of our 
parameters, we can translate new input sentences. This is 
called decoding. We call this the decision rule.  
 
The phrase-based decoder we developed for purpose of 
comparing different phrase-based translation models 
employs a beam search algorithm, similar to the one by [10]. 
The Sanskrit output sentence is generated left to right in form 
of partial translations (or hypotheses). 
 
We start with an initial empty hypothesis. A new hypothesis 
is expanded from an existing hypothesis by the translation of 
a phrase as follows: A sequence of untranslated foreign 
words and a possible English phrase translation for them is 
selected. The English phrase is attached to the existing 
English output sequence. The foreign words are marked as 
translated and the probability cost of the hypothesis is 
updated. 
 

The cheapest (highest probability) final hypothesis with no 
untranslated foreign words is the output of the search. The 
hypotheses are stored in stacks. The stack contains all 
hypotheses in which foreign words have been translated. We 
recombine search hypotheses as done by [11]. While this 
reduces the number of hypotheses stored in each stack 
somewhat, stack size is exponential with respect to input 
sentence length. This makes an exhaustive search 
impractical. 
 
Thus, we prune out weak hypotheses based on the cost they 
incurred so far and a future cost estimate. For each stack, we 
only keep a beam of the best hypotheses. Since the future 
cost estimate is not perfect, this leads to search errors. Our 
future cost estimate takes into account the estimated phrase 
translation cost, but not the expected distortion cost. 
 
We compute this estimate as follows: For each possible 
phrase translation anywhere in the sentence (we call it a 
translation option), we multiply its phrase translation  
probability with the language model probability for the 
generated English phrase. As language model probability we 
use the unigram probability for the first word, the bigram 
probability for the second, and the trigram probability for all 
following words. 
 
Given the costs for the translation options, we can compute 
the estimated future cost for any sequence of consecutive 
foreign words by dynamic programming. Note that this is 
only possible, since we ignore distortion costs. Since there 
are only such sequences for a foreign input sentence of 
length , we can pre-compute these cost estimates beforehand 
and store them in a table. 
 
During translation, future costs for uncovered foreign words 
can be quickly computed by consulting this table. If a 
hypothesis has broken sequences of untranslated foreign 
words, we look up the cost for each sequence and take the 
product of their costs. 
 
The beam size, e.g. the maximum number of hypotheses in 
each stack, is fixed to a certain number. The number of 
translation options is linear with the sentence length. Hence, 
the time complexity of the beam search is quadratic with 
sentence length, and linear with the beam size. 

PHRASE-BASED SMT SYSTEM 

We decided to develop the decoder as a English to Sanskrit 
translator. Java is chooses for it’s rich library and multi-
platform support would have been useful. 
 
The decoder is fully compatible with Pharaoh 1.2 in the 
algorithms that are implemented, input files (configuration     
file, translation table, language models) and command line.  

Algorithm used for decoding: 

Here the algorithm we described used for our beam search. 
For each number of foreign word covered, a hypotheses stack 
is created. The initial hypothesis is placed in the stack for 
hypothesis with no foreign words covered. Starting with this 
hypothesis, new hypothesis are generated by committing 
phrasal translations that covered previously unused foreign 
words. Each derived hypothesis is placed in stack based on 
the number of foreign words it covers. 

initialize hypothesesStack[0..nf]; 
create initial hypothesis hype_init; 
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add to stack  hypothesesStack[0] 
for i=0 to nf-1: 
for each hyp in  hypothesesStack[i]: 
for each new_hyp that can be derived from hyp: 
nf[new_hyp] = no. of foreign words covered by  
new_hyp 
add new_hyp to  hypothesesStack[nf[new_hyp]; 
prune hypothesesStack[nf[new_hyp]; 
find new hypothesis best_hyp in 
hypothesisStack[nf]; 
output best path that leads to best_hyp; 
We proceed through this hypothesis stack, going through 

each hypothesis in the stack, deriving new hypothesis for this 
hypothesis and placing them into new appropriate stack. 
After a new hypothesis placed into stack, the stack may have 
to be pruned by threshold or histogram pruning, if it has 
become too large. In the end, the best hypothesis of the ones 
that cover all foreign words is the final state of the best 
translation. We can read off the English words of the 
translation by following the back links in each hypothesis. 

Data structure in phrase-base model: 

In addition to efficient algorithms for decoding, we also need 
efficient data structures and strategies to store a model with 
millions of parameters. and strategies to store a model with 
millions of parameters. A common data structure in phrase-
based models is the phrase table. This structure enumerates 
all of the phrase pairs in the model and maps them to their 
phrase translation probabilities. In practice, these phrase pairs 
may be extracted from parallel corpora containing tens or 
hundreds of millions of words. Even the most conservative 
extraction heuristics will produce a huge number of phrases 
under this condition. Efficient algorithms for storage and 
access are necessary for practical decoding algorithms. Since 
the quantity of available parallel data is always increasing, 
this is particularly important. 
 
To generate a translation table for each pair of languages 
starting from a sentence-aligned parallel corpus, we used a 
modified version of the Moses training software. The 
software also required GIZA++ word alignment tool [12]. 
We generated for each phrase pair in the translation table 5 
features: phrase translation probability (both directions), 
lexical weighting [4] (both directions) and phrase penalty 
(constant value). 

Design Goals 

This decoder mainly implements the phrase-based decoding  
in order to improve its performance, optimizations focused in 
three areas: 
a. minimize the cost to build a hypothesis state (that is 

added to a stack) 
b. minimize the cost of adding the hypothesis state to a 

stack 
c. minimize the chance of building a hypothesis state that 

will not "stick" to its assigned stack (that will end up 
being thrown out from the stack, because it's out of the 
search parameters defined by the beam size and the 
beam threshold). 

The configuration used for benchmarking: 
i. Beam size: 50 hypotheses 

ii. Distortion limit: 4 (Pharaoh's semantics) 
iii. Max. phrase length: 5 words  
iv. Beam threshold: 
v. Translation table threshold: 10 . 

Modularity: 

Firstly, software modularity enables us to work on one 
component of the decoder without affecting other 
components. A modular design reduces the learning curve to 
understand the entire system if they are only developing a 
specific part. 
 
Modularity also assists in the re-using of components by 
separating the implementation details from the module 
interface. 
 
We takes advantage of JAVA support for object-oriented and 
generic programming to enable modularity.  The simple 
application which currently comes with the decoder enables 
users to use the system via the command line . 
 
Therefore, the current typical compilation of the decoder 
would combine the libraries from IRSTLM, SRILM, 
decoder, and decoder-cmd to create a binary executable. 

 

Figure 2 :   Project Dependencies 

The input into the decoder is simple string (sentence). 
Language models are abstracted to enable different 
implementations to be used and provide a framework for 
more complex models such as factored LM and the Bloom 
filter language model [13]. Similarly, phrase tables are 
abstracted to provide support for multiple implementations. 

 

Figure 3 :   Input Type 

Parameters for running system. 

There are optimizations related to the probability calculation. 
Standard data files (LM and translation table data files) will 
have all probabilities <= 1 (log-probabilities <= 0). Using 
this assumptions, decoder can optimize the decoding process, 
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eliminating up to 50% of the computation time (under the 
following parameters: 
i. dl 4 -b 0.01 -ttable-limit 10 -s 50 -x-max-phrase-length 

5 and with fast vocabulary-based language model). 
ii. read (1) -- reads the input file instead of reading it from                    

StdIn 
iii. write (1) -- writes the input file instead of writting it to 

StdOut 

CONCLUSION 

This decoder delivers a very good baseline system. This is 
capable of estimating parameters over a large develop ment 
corpus in a reasonable time, thus it is able to generate highly 
relevant parameters. We have applied the sound software 
engineering principles and design to the implementation of 
the decoder which has enabled other researchers to use and 
extend its functionality. We believe  this has been a major 
factor for the widespread adoption of Moses within the SMT 
community. We hope that the design of the decoder will 
enable it to maintain it leading edge status into the future. 
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