
Volume 3, No. 1, January 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 35

DESIGN OF PHRASE-BASED DECODER FOR ENGLISH-TO-SANSKRIT

TRANSLATION

Mr.Sandeep Warhade*
1
and Mr.Prakash R.Devale

2

 1*Research Scholar, Deptt. of IT, Bharati Vidyapeeth Deemed University College of Engineering, Pune-India.

sandeepwarhade@gmail.com

2Professor & Head, IT Deptt., Bharati Vidyapeeth Deemed University College of Engineering, Pune-India.

 prdevale@bvucoep.edu.in

Abstract—This paper describes the Phrase-Based Statistical Machine Translation Decoder. Our goal is to improve the translation quality by
enhancing the translation table and by preprocessing the source language text. research. We discuss the major design objective for the decoder,

its performance relative to other SMT decoders, and the steps we are taking to ensure that its success will continue.

Keywords- Phrase-based Statistical Machine Translation, English-to-Sanskrit Translation.

INTRODUCTION

Phrase-based translation has been one of the major advances
in statistical machine translation [2] in recent years and is
currently one of the techniques which can claim to be state-
of-the-art in machine translation. Phrase-based models are a
development of the word based models as exemplified by the
[2]. In phrase-based translation, contiguous segments of
words in the input sentence are mapped to contiguous
segments of words in the output sentence.

In SMT, we are given a source language sentence, s, which is
to be translated into a target language sentence, t. The goal of
machine translation, t^, is to find the translation, t^ , which is
defined as:

t^ = arg max t p(t | s)

where p (t | s) is the probability model. The argmax implies
a search for the best translation t^ in the space of possible
translations t. This search is the task of the decoder, which
we will concentrate on in this paper.

There have been numerous implementations of phrase-based
decoders for SMT prior to our work. Early systems such as
the Alignment Template System (ATS) [3] and Pharaoh [4]
were widely used and accepted by the research community.
ATS is perhaps the crossover system, in that word classes
were translated as phrases but the surface words were
translated word by word. Pharaoh substituted the word
classes with surface words, thereby discarding the use of
word classes in decoding altogether.

Pharaoh was released in 2003 as a pre compiled binary with
documentation. This severely limited the extent to which
other researchers can study and enhance the decoder.
Without access to the decoder source code research was
generally restricted to altering the input, augmenting it with
extra information, or modifying the output or re-ranking the
n-best list output.

The main contribution of this paper is to show how we have
created an extensible decoder, has acceptable run time
performance compared to similar systems, and the ease of

use and development that has made it the preferred choice for
researchers looking for a phrase-based SMT decoder.

SMT SYSTEM FRAMEWORK

Phrase-based statistical machine translation approaches
continue to dominate the field of machine translation. The
translation service makes use of state-of-the-art phrase-based
SMT systems within the framework of feature-based
exponential models containing the following features:

a. Phrase translation probability
b. Inverse phrase translation probability
c. Lexical weighting probability
d. Inverse lexical weighting probability
e. Phrase penalty
f. Language model probability
g. Simple distance-based distortion model
h. Word penalty

Figure 1: SMT Framework

The basic framework within which all the MT systems were
constructed is shown in Figure
Translation examples from the respective bilingual text
corpus are aligned in order to extract phrasal equivalences
and to calculate the bilingual feature probabilities.
Monolingual features like the language model probability are
trained on mono lingual text corpora of the target language
whereby standard word alignment and language modeling
tools were used.

Sandeep Warhade et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 35-38

© JGRCS 2010, All Rights Reserved 36

Parallel Corpora:

SMT treats translation as a machine learning problem. This
means that we apply a learning algorithm to a large body of
previously translated text, known variously as a parallel
corpus, parallel text, bitext, or multitext. The learner is then
able translate previously unseen sentences. With an SMT
toolkit and enough enough parallel text, we can build an MT
system for a new language pair within a very short period of
time. be built for a wide variety of language pairs within
similar time frames. The accuracy of these systems depends
crucially on the quantity, quality, and domain of the data, but
there are many tasks for which even poor translation is useful
[5].

Language Model:

Statistical language modeling is the science (and often art) of
building models that estimate the prior probabilities of word
strings. Language modeling has many applications in natural
language technology and other areas where sequences of
discrete objects play a role, with prominent roles in speech
recognition and natural language tagging (including
specialized tasks such as part-of-speech tagging, word and
sentence segmentation, and shallow parsing). As pointed out
in [6], the main techniques for effective language modeling
have been known for at least a decade, although one suspects
that important advances are possible, and indeed needed, to
bring about significant breakthroughs in the application areas
cited above—such breakthroughs just have been very hard
to come by [7,8].

Translational Model:

Translational models allow us to enumerate possible
structural relationships between pairs of strings. However,
even within the constraints of a strict model, the ambiguity of
natural language results in a very large number of possible
target sentences for any input source sentence. Our
translation system needs a mechanism to choose between
them.

This mechanism comes from modeling: parameterization.
We design a function that allows us to assign a real-valued
score to any pair of source and target sentences. The general
forms of these models are similar to those in other machine
learning problems. There is a vast number of approaches;, for
more detail, the reader is referred to a general text on
machine learning, such as [9].

Decoding Model:

Now that we have a model and estimates for all of our
parameters, we can translate new input sentences. This is
called decoding. We call this the decision rule.

The phrase-based decoder we developed for purpose of
comparing different phrase-based translation models
employs a beam search algorithm, similar to the one by [10].
The Sanskrit output sentence is generated left to right in form
of partial translations (or hypotheses).

We start with an initial empty hypothesis. A new hypothesis
is expanded from an existing hypothesis by the translation of
a phrase as follows: A sequence of untranslated foreign
words and a possible English phrase translation for them is
selected. The English phrase is attached to the existing
English output sequence. The foreign words are marked as
translated and the probability cost of the hypothesis is
updated.

The cheapest (highest probability) final hypothesis with no
untranslated foreign words is the output of the search. The
hypotheses are stored in stacks. The stack contains all
hypotheses in which foreign words have been translated. We
recombine search hypotheses as done by [11]. While this
reduces the number of hypotheses stored in each stack
somewhat, stack size is exponential with respect to input
sentence length. This makes an exhaustive search
impractical.

Thus, we prune out weak hypotheses based on the cost they
incurred so far and a future cost estimate. For each stack, we
only keep a beam of the best hypotheses. Since the future
cost estimate is not perfect, this leads to search errors. Our
future cost estimate takes into account the estimated phrase
translation cost, but not the expected distortion cost.

We compute this estimate as follows: For each possible
phrase translation anywhere in the sentence (we call it a
translation option), we multiply its phrase translation
probability with the language model probability for the
generated English phrase. As language model probability we
use the unigram probability for the first word, the bigram
probability for the second, and the trigram probability for all
following words.

Given the costs for the translation options, we can compute
the estimated future cost for any sequence of consecutive
foreign words by dynamic programming. Note that this is
only possible, since we ignore distortion costs. Since there
are only such sequences for a foreign input sentence of
length , we can pre-compute these cost estimates beforehand
and store them in a table.

During translation, future costs for uncovered foreign words
can be quickly computed by consulting this table. If a
hypothesis has broken sequences of untranslated foreign
words, we look up the cost for each sequence and take the
product of their costs.

The beam size, e.g. the maximum number of hypotheses in
each stack, is fixed to a certain number. The number of
translation options is linear with the sentence length. Hence,
the time complexity of the beam search is quadratic with
sentence length, and linear with the beam size.

PHRASE-BASED SMT SYSTEM

We decided to develop the decoder as a English to Sanskrit
translator. Java is chooses for it’s rich library and multi-
platform support would have been useful.

The decoder is fully compatible with Pharaoh 1.2 in the
algorithms that are implemented, input files (configuration
file, translation table, language models) and command line.

Algorithm used for decoding:

Here the algorithm we described used for our beam search.
For each number of foreign word covered, a hypotheses stack
is created. The initial hypothesis is placed in the stack for
hypothesis with no foreign words covered. Starting with this
hypothesis, new hypothesis are generated by committing
phrasal translations that covered previously unused foreign
words. Each derived hypothesis is placed in stack based on
the number of foreign words it covers.

initialize hypothesesStack[0..nf];
create initial hypothesis hype_init;

Sandeep Warhade et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 35-38

© JGRCS 2010, All Rights Reserved 37

add to stack hypothesesStack[0]
for i=0 to nf-1:
for each hyp in hypothesesStack[i]:
for each new_hyp that can be derived from hyp:
nf[new_hyp] = no. of foreign words covered by
new_hyp
add new_hyp to hypothesesStack[nf[new_hyp];
prune hypothesesStack[nf[new_hyp];
find new hypothesis best_hyp in
hypothesisStack[nf];
output best path that leads to best_hyp;
We proceed through this hypothesis stack, going through

each hypothesis in the stack, deriving new hypothesis for this
hypothesis and placing them into new appropriate stack.
After a new hypothesis placed into stack, the stack may have
to be pruned by threshold or histogram pruning, if it has
become too large. In the end, the best hypothesis of the ones
that cover all foreign words is the final state of the best
translation. We can read off the English words of the
translation by following the back links in each hypothesis.

Data structure in phrase-base model:

In addition to efficient algorithms for decoding, we also need
efficient data structures and strategies to store a model with
millions of parameters. and strategies to store a model with
millions of parameters. A common data structure in phrase-
based models is the phrase table. This structure enumerates
all of the phrase pairs in the model and maps them to their
phrase translation probabilities. In practice, these phrase pairs
may be extracted from parallel corpora containing tens or
hundreds of millions of words. Even the most conservative
extraction heuristics will produce a huge number of phrases
under this condition. Efficient algorithms for storage and
access are necessary for practical decoding algorithms. Since
the quantity of available parallel data is always increasing,
this is particularly important.

To generate a translation table for each pair of languages
starting from a sentence-aligned parallel corpus, we used a
modified version of the Moses training software. The
software also required GIZA++ word alignment tool [12].
We generated for each phrase pair in the translation table 5
features: phrase translation probability (both directions),
lexical weighting [4] (both directions) and phrase penalty
(constant value).

Design Goals

This decoder mainly implements the phrase-based decoding
in order to improve its performance, optimizations focused in
three areas:
a. minimize the cost to build a hypothesis state (that is

added to a stack)
b. minimize the cost of adding the hypothesis state to a

stack
c. minimize the chance of building a hypothesis state that

will not "stick" to its assigned stack (that will end up
being thrown out from the stack, because it's out of the
search parameters defined by the beam size and the
beam threshold).

The configuration used for benchmarking:
i. Beam size: 50 hypotheses

ii. Distortion limit: 4 (Pharaoh's semantics)
iii. Max. phrase length: 5 words
iv. Beam threshold:
v. Translation table threshold: 10 .

Modularity:

Firstly, software modularity enables us to work on one
component of the decoder without affecting other
components. A modular design reduces the learning curve to
understand the entire system if they are only developing a
specific part.

Modularity also assists in the re-using of components by
separating the implementation details from the module
interface.

We takes advantage of JAVA support for object-oriented and
generic programming to enable modularity. The simple
application which currently comes with the decoder enables
users to use the system via the command line .

Therefore, the current typical compilation of the decoder
would combine the libraries from IRSTLM, SRILM,
decoder, and decoder-cmd to create a binary executable.

Figure 2 : Project Dependencies

The input into the decoder is simple string (sentence).
Language models are abstracted to enable different
implementations to be used and provide a framework for
more complex models such as factored LM and the Bloom
filter language model [13]. Similarly, phrase tables are
abstracted to provide support for multiple implementations.

Figure 3 : Input Type

Parameters for running system.

There are optimizations related to the probability calculation.
Standard data files (LM and translation table data files) will
have all probabilities <= 1 (log-probabilities <= 0). Using
this assumptions, decoder can optimize the decoding process,

Sandeep Warhade et al, Journal of Global Research in Computer Science, 3 (1), January 2012, 35-38

© JGRCS 2010, All Rights Reserved 38

eliminating up to 50% of the computation time (under the
following parameters:
i. dl 4 -b 0.01 -ttable-limit 10 -s 50 -x-max-phrase-length

5 and with fast vocabulary-based language model).
ii. read (1) -- reads the input file instead of reading it from

StdIn
iii. write (1) -- writes the input file instead of writting it to

StdOut

CONCLUSION

This decoder delivers a very good baseline system. This is
capable of estimating parameters over a large develop ment
corpus in a reasonable time, thus it is able to generate highly
relevant parameters. We have applied the sound software
engineering principles and design to the implementation of
the decoder which has enabled other researchers to use and
extend its functionality. We believe this has been a major
factor for the widespread adoption of Moses within the SMT
community. We hope that the design of the decoder will
enable it to maintain it leading edge status into the future.

REFERENCES

[1] Philipp Koehn, Hieu Hoang, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,

Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra

Constantin, Evan Herbst, ―Moses: Open Source Toolkit for

Statistical Machine Translation‖, Proceedings of the ACL

2007 Demo and Poster Sessions, pages 177–180, June 2007.

[2] Brown, P. F., J. Cocke, et al. (1990). "A statistical approach to

machine translation."

[3] Och, F. J. and H. Ney (2004). "The alignment template

approach to statistical machine translation." Computational

Linguistics.

[4] Koehn, P. (2004). Pharaoh: a Beam Search Decoder for

Phrase-Based Statistical Machine Models. AMTA.

[5] CHURCH, K. AND HOVY, E. 1993. Good applications for

crummy machine translation. Mach. Transl. 8, 239–258.

[6] P. Clarkson and R. Rosenfeld, ―Statistical language modeling

using the CMU-Cambridge toolkit‖, in G. Kokkinakis, N.

Fakotakis, and E. Dermatas, editors, Proc. EUROSPEECH,

vol. 1, pp. 2707–2710, Rhodes, Greece, Sep. 1997.

[7] F. Jelinek, ―Up from trigrams! The struggle for improved

language models‖, in Proc. EUROSPEECH, pp. 1037–1040,

Genova, Italy, Sep. 1991.

[8] R. Rosenfeld, ―Two decades of statistical language modeling:

Where do we go from here?‖, Proceedings of the IEEE, vol.

88, 2000.

[9] MITCHELL, T. M. 1997. Machine Learning. McGraw-Hill.

[10] Jelinek, F. (1998). Statistical Methods for Speech

Recognition. The MIT Press.

[11] Och, F. J., Ueffing, N., and Ney, H. (2001). An efficient A*

search algorithm for statistical machine translation. In Data-

Driven MT Workshop.

[12] Franz Josef Och and Hermann Ney. 2003. A system atic

comparison of various statistical alignment mod els.

Computational Linguistics, 29(1):19–51.

[13] Talbot, D. and M. Osborne (2007). Smoothed Bloom filter

language models: Tera-Scale LMs on the Cheap. EMNLP,

Prague, Czech Republic.

