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ABSTRACT 

Objective:  The present study aimed to evaluate four criteria —Kaiser, empirical  

Kaiser, parallel analysis, and profi le l ikelihood for determining the 

dimensionality of binary variables.  

Methods:  A large scale Monte Carlo simulation was conducted to evaluate 

these criteria across combinations of correlation matrices (Pearson r or tetra 

choric ρ) and analysis methods (principal component analysis or exploratory  

factor analysis), and combinations of study characteristics  sample sizes (100, 

250, 1000), variable splits (10%/90%, 25%/75%, 50%/50%), dimension (1, 3, 

5, 10), and items per dimension (3, 5, 10).  

Results:  Parallel analysis performed best out of the four criteria, recovering 

dimensionality in 87.9% of replications when using principal component 

analysis with Pearson correlations.  

Conclusion:  Our findings suggested that dimensional ity of a binary  variable 

data matrix is best determined by parallel analysis using the combination of 

principal component analysis with a correlation matrix based on Pearson r. We 

provided recommendations for selecting criteria in different study conditions . 

Keywords: Dimensionality determination; Binary variable; Dichotomous variable; 

Principal component analysis;  Parallel analysis; Factor analysis  
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INTRODUCTION 

Growing consensus establishes a set of criteria for determining dimensionality of continuous variables u nder a variety 

of conditions , such as Kaiser’s criterion and parallel analysis . New methods, e.g.,  empirical Kaiser criterion , are also 

being presented in the l iterature that may outperform benchmark methods in some circumstances. Despite their 

ubiquity, criteria for determining dimensionality from binary/dichotomous ind icators are not yet established . Although 

some previous research suggests the best approaches for determining the dimensionality of continuous indicators 

may not work as well with binary indicators, these studies have typically considered only one analysis method (e.g.,  

factor analysis), a selected few criteria, and/or a l imit ed number of study conditions. Furthermore, prior research has 

not subjected the same data sets to direct comparisons by different combinations of analysis method and data matrix. 

It raises questions about whether these findings generalize across the range of conditions typical for  research in the 

behavioral, health, social, and educational sciences  [ 1 ] .  

Binary data and matrices 
Binary (or dichotomous) data arise across nearly every discipline and can correspond with many different types of 

commonly encountered types of data (e.g.,  true/false, yes/no, correct/incorrect, agree/disagree, present/absent,  

observed/missing, positive/negative, dropout/retained etc.) . Such data are often conceptualized as resulting from an 

underlying continuous (e.g. , Gaussian) distribution where the obser vation’s value is determined in relation to some 

underlying cut point or threshold, equatable with a particular split  in the data (e.g., 50%/50% or 10%/90%; or the 

difficulty parameter). The data matrix for each would be identical for comparable criteria, regardless of how the 

underlying data were conceptualized or generated  [ 2 ] .  

Although analysis of binary indicators as though they were continuous is commonplace in disciplines l ike economics, 

conventional wisdom, backed with some previous research, leads  to an expectation that tetrachoric correlation 

coefficients outperform Pearson r for binary data in some applicati ons, such as data reduction . Except under 

conditions reflecting relatively extreme splits in the data, we should generally expect differences  to be small based on 

the extent to which Gaussian, logit, and probit distributions have been shown largely to overlap once standardized for 

differences in means and variances. In the current study we considered conditions for which these comparisons may 

not have been systematically evaluated by previous research, we evaluate all  methods using both Pearson r and 

tetrachoric ρ coefficients  [ 3 ] .  

Dimension reduction 
Researchers across a wide range of disciplines frequently need to perform data reduction on bi nary data matrices. We 

focus on two of the most widely used analyses that invol ve dimensionality determination principal component analysis 

and factor analysis (or principal axis factoring or exploratory factor analysis), since other approaches appropriate  to 

binary data such as singular value decomposition and non-negative matrix factorization are not yet widely 

encountered in most areas of the behavioral, educational, health, social sciences. Likewise, we do not consider 

confirmatory approaches here, such as Confirmatory Factor Analysis (CFA) , where dimensionality is specified a pr iori , 

or latent class analysis , which relies on very different approaches to determining dimensionality fr om the methods 

considered here and can place considerable demands on sample sizes  [ 4 ] .  

Principal component analysis 
Principal Component Analysis (PCA)  seeks to reduce the dimensionality of multivariate  data containing multiple inter 

correlated variables in a way that retains maximal variation present in the data set. This is accomplished by a 

standardized l inear project ion which maximizes the variance in the projected space and also minimizes the squared 

reconstruction error . As such, the first few principal components retain most of  the variation present in the original 

set of variables. In other words, weights are applied to form linear combinations of the o riginal variables, such that  

the first component has the largest inertia ( i .e.,  variance), the second component is computed such that it is 

orthogonal to the first component and has the largest remaining variance, and so forth unti l the same number of  

components as the observed variables are computed . A key decision for the researcher then is to determine the 

number of principal components to retain to accomplish the goal of sufficiently extracting the information with a 

parsimonious structure a reduced set of principal components, sufficient for the aims of data reduction task (e.g., ≥  % 

variance recovered, identifying the most important signals in the data, denoising, etc.) .  

Important goals of principal component analysis are to (1) extract the most import ant information from the 

multivariate data matrix, (2) reduce the data matrix by retaining only the orthogonal principal components with 

maximal variance of the original data matrix, and thereby (3) clarify the structure of the observations and the 

variables in the multivariate data matrix (4) to denoise a dataset . Therefore, for data reduction PCA’s emphasis is on 

accounting for maximal variance, rather than capturing maximal covariance or explaining inter -relations between 

observed variables in the original data matrix. Mathematically, the principal components are empirical aggregates of 

the inter correlated observed variables, without much underlying theory about which variables should be associated 
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with which components [ 5 ] .  

Factor analysis 
Factor Analysis (FA), in contrast, hypothesizes a set of underlying latent common factors that potentially explain the 

associations among observed variables . In a common factor model, the factors influence the observed variables ( i .e.,  

factor indicators), as mode led in the linear regression functions of observed variables which are dependent on the 

latent factors. The factors ( i .e.,  predictors in the linear regressions) are shared among the observed variables with 

different regression coeffic ients ( i .e.,  factor loadings), whereas the regression residuals, representing the variances 

unrelated to the common factors, are unique to the observed variables. As such, the total variance of an observed 

variable is partitioned into the variance contributed by the common fact ors ( i .e.,  communality) and the variance 

unrelated to the common factor ( i .e.,  uniqueness). Factor analysis estimates communalities to minimize unique and 

error variance from the observed variables. This is a key difference from principal  component analysi s, which provides 

a mathematically determined empirical solution with all variances included  [ 6 - 1 0 ] . The key to estimating the varying 

factor loadings for different observed variables lies in the covariance (or correlation) structure among the original 

observed variables and the common factor model implied covariance structure. Unlike principal component analysis, 

principal factor analysis is an analysis of the covariances among the observed variables in the original data matrix, 

and its purpose is primaril y to seek the underlying theory ( i .e.,  the common factors) about why the observed variables 

correlate to the extent they do  [ 1 1 ] .   

Despite the distinctions in goal of analysis and extraction technique, factor analysis is similar to principal component 

analysis in its uti lity in reducing a large number of observed variables down to a few latent factors/components ( i .e. ,  

the underlying dimensions). Factor analysis achieves a reduction in dimensions by invoking a common -factor model  

relating observed variables  to a smaller number of latent common factors  [ 1 2 ] .  

As noted above, PCA and FA differ in terms of their goals, objectives, purpose, and the kinds of applications to which 

they are best suited, but are simila r in terms of an essential step determining dimensionality based on eigenvalue 

decompositions. For this reason, we compared the two analyses with the primary emphasis of correctly identifying the 

dimensionality of a set of b inary variables using different determination criteria.  

Determining dimensionality 
There is a vast literature on criteria for determining dimensionality (or retaining underlying factors/components) of 

multivariate variables that can be applied to different approaches to data reduction, e.g., principal component 

analysis and factor analysis. One of the most widely applied is the Kaiser criterion (also ca lled the Kaiser -Guttman 

rule, which retains all dimensions with eigenvalues greater than one ( i .e.,  the dimensions that explain at least as 

much variance as a typical standardized item). The Kaiser criterion is the default approach in most statistical 

packages (e.g., SPSS), although some studies have suggested this approach may lead to over  extraction of 

components in many applications  [ 1 3 ] .  

Kaiser’s method ignores the fact that eigenvalues are sorted from largest to smallest, thus capitalizing on chance 

differences associated with sampling variance. To addres s this issue, parallel analysis  uses data simulated under an 

independence assumption to subtract out this sampling error  variance, and solutions can be evaluated using several 

different criteria (e.g., mean, median, 95%ile). A wide variety of simulation studies have suggested that parallel 

analysis provides an unbiased estimate of the number of underlying components and wor ks well in practice, but its 

effectiveness is less clear with binary indicators such as in the current paper  [ 1 4 ] .  

Quite recently, parallel analysis has been extended to consider data generated under data structures with varying 

numbers of components in the Comparison Data method, with additional components being added to the simulated 

data for as long as they produce better agreement with the structure of the original data. We do not consider this 

method here because it : (a) can be quite computationa lly intensive and (b) generally agrees quite well with results 

from parallel analysis; however, it represents a potentially important addition to the methods available for 

determining the number of components to be retained  [ 1 5] .  

In empirical contexts, many researchers rely on visual scree plots in order to determine the number of componen ts to 

retain in an analysis . A plot of eigenvalues against the eigenvalue number is used to identify an “elbow” or “large gap” 

in the data at the point where the useful  “signal” degenerates into noise, or “scree.” However, this method provides 

no definite quantitative cutoffs, and hence is difficult to use for empirical evaluation. T he method of profi le l ikelihood  

attempts to address this shortcoming by quantifying the n umber of retained components that maximize the observed 

data likelihood, thus providing an empirical (and automatic) method for determining the point at which a “gap” or 

“elbow” occurs within a scree plot.  

Finally, an Empirical Kaiser Criterion (EKC) has recently been presented in the l iterature. This approach is grounded in 

statistical theory and accounts for the serial nature of eige nvalues. In a Monte Carlo study , the EKC approach 

generally performed at least as well as parallel analysis, particularly wi th larger sample sizes and a smaller number of 

variables [ 1 6 ] .  

There has not been consensus, however, on which criteria may perform well to determine dimensionality of binary 

variables in various circumstances. A recent simulation study indicated that, whi le parallel analysis generally 

performed well, it  was not as effective in factor analy sis with dichotomous indicators . Adapted from tradit ional use of 



Research & Reviews: Journal of Statistics and Mathematical Sciences

RRJSMS | Volume 9 | Issue 2 | March, 2023          4  

confirmatory factor analysis, Finch recommended using the root mean square error of approximation to dete rmine the 

number of factors. However, the results also suggested that lack of convergence may often be expected under the 

kinds of circumstances faced by applied researchers (e.g. , smaller sample sizes and larger number of variables), 

which would make it  considerably less robust in the applied research.  

Similarly to Finch’s approach , the hull  method also uti lizes fit indices (e.g., comparative fit index) together with degree 

of freedom, which are traditionally for confirmatory factor analysis, to assist in  determining the number of underlying 

factors to extract for an exploratory factor analysis . Although a heuristic approach, the performance was largely 

dependent on the choice of a fit  index to yield the hull variant, which is suited for specific kind(s) of model estimator.  

We do not consider the hull method here due to the additional within  method conditions one needs to consider, which 

are not shared by dimension determination approaches such as Kaiser, p arallel analysis, and EKC.  

To our knowledge, research effort on binary data dimensionality criteria has focused on parallel analysis, but the 

findings were not conclusive. In an earlier simulation study , the researchers investigated parallel analysis as an  

approach to dimensionality determination for unidimensional binary data. They found that with the 95 t h  and 99 th  

percenti les of random data eigenvalues as criteria, parallel analysis was accurate in identifying the unidimensionality 

in the simulated binary variables. On the other hand, in a similar study  that evaluated parallel analysis in determining 

binary variables sharing a single underlying dimension, the results did not agree. The researchers concluded that 

parallel analysis generally did not perform well with FA in determining unidimensionality among a set of binary 

variables when a Pearson correlation matrix was analyzed, with the tetrachoric correlation matrix and parallel analysis 

providing somewhat better,  but sti l l unsatisfactory, results. Their f indings also pointed to other influencing factors on 

the performance of parallel analysis, including sample size, and factor loading  [ 1 7 ] .   

Study overview 
The purpose of this study was to evaluate the performance of different methods for correctly determ ining the 

dimensionality underlying a set of binary indicators across a range of conditions typical for multivariate social, 

behavioral, and educational research. Specifically, we conducted a large -scale simulation to evaluate several criteria 

(Kaiser’s cr iterion, empirical Kaiser’s criterion, parallel analysis, and profi le l ikelihood) for determining the 

dimensionality of binary variables given combinations of methods (principal component analysis or exploratory factor 

analysis) and matrices (Pearson r or tetrachoric ρ), sample sizes (100, 250, 1000), variable splits (10%/90%, 

25%/75%, 50%/50%), underlying dimensions (1, 3, 5, 10), and items per dimension (3, 5, 10) with 1000 replications 

per condition. We focused on determining dimensionality since it is e stablished in identical fashion for both PCA and 

PAF. 

MATERIALS AND METHODS 

Design 
In order to consider a range of conditions typical of many real  world applications with binary variables (e.g., 0/1, 

incorrect/correct, observed/missing) we u sed a factorial design. Between subjects factors, which represent various 

characteristics of study data, included: (1) the number of underlying dimensions -1, 3, 5, or 10; (2) the number of 

items per dimension-3, 5, or 10; (3) sample size 100, 250, or 1000; and (4) binary variable splits 90%/10%, 

75%/25%, or 50%/50%. Within subjects factors, which represent researcher  selected analytic approaches, were: (i)  

correlation matrix  Pearson r or tetrachoric ρ;  and ( ii )  analysis method  PCA or PAF.  

Outcomes 
We evaluated four different criteria for determining dimensionality  the number of underlying dimensions. These 

included: 1) Empirical Kaiser Criterion (EKC), 2) Kaiser criterion, 3) parallel analysis with 95%ile criterion, and 4) 

profi le l ikelihood. We considered a criterion performed successfully in a specific condition if it recovered the correct 

number of underlying dimensions in at least 95% of replications  [ 1 8 ] .  

Data and procedure 

Between subject:  We constructed 1000 replications in each condition with distinct between subject factors, for 

example, 1000 replications with (1) one underlying dimension, (2) t hree items per dimension, (3) N=250, and (4) a 

10%/90% split . Population correlations were set at  70 within variables on the same dimension and 30 between 

variables on different dimensions, and all data were drawn from multivariate normal distributions. Consistent with our 

hypothesized latent variable model , data were dichotomized via a probit l ink function. Variables were dichotomized 

based on whether observed values of the function exceeded the threshold associated with the population %ile cut  

point for that condition  [ 1 9 ] .  

Within subject:  For each replication, the binary data matri x was converted to correlation matrices (Pearson r and 

tetrachoric ρ) and analyzed by Principal Component Analysis (PCA) and principal axis Factoring (FA). The number of 



Research & Reviews: Journal of Statistics and Mathematical Sciences

RRJSMS | Volume 9 | Issue 2 | March, 2023          5  

dimensions indicated by each criterion was determined for each of the four combinations of correlation matrix and 

analysis method.  

Whether the dimensionality was correctly recovered was determined for each criterion under each combination of 

method and matrix. A nominal indicator (1=parallel analysis, 2=empirical Kaiser, 3=Kaiser, and 4=profi le likelihood)  

was constructed with the value referring to the criterion performed best in a condition.  

Statistical analysis:  Descriptive statistics and factorial Analysis of Variance (ANOVA) were used to examine the 

association of each between and within subject factor with recovery of the correct number of dimensions. Factorial 

ANOVA was in preference to logistic regression owing to the large number of conditions where some criteria performed 

perfectly, which can lead to estimation difficult i es with l ikelihood based techniques. We also conducted a recursive 

partit ioning analysis (or, Classificati on and Regression Trees (CART) ) to classify the simulation results, with the tree 

pruned based on the minimum value of Mallow’s  Cp. The R statistical package was used for all data simulation and 

analyses. All  code and data generated are available from an online data repository . 

RESULTS 
Convergence 
Convergence was achieved for 99.98% of data sets, regardless of matrix -analysis combination. Failed convergence 

occurred only for N=100 and when the split was 10%/90%. The lowest conv ergence rate (98.6%) was when N=100, 

with 1 underlying dimension, 3 items per dimension, and a 10%/90% split , likely due to variables having insufficient 

variance/covariance for analysis.  

Criterion performances 
Parallel analysis was the best performing criterion of the four (all >86%; Table 1) in all combinations of matrix and 

analysis, except in PAF/ρ where EKC was the criterion that correctly determined dimensionality for the most  

replications (77.3%). Note, however, the performances of dimension determination criteria not only varied across the 

four matrix  analysis combinations as shown above, but also differed by the between -subject factors. This calls for a 

detailed examination of performances by sample size, the number of underlying dimensions, the number of items per 

dimension, and the variable split , within a combinat ion of matrix and analysis type, which we elaborate below.  

Among the four matrix analysis combinations, PCA/r had the highest average percentage of correctly recovered 

replications (77.0%; Table 1), and in this combinatio n the best performing criterion parallel analysis correctly 

determined the highest percentage of replications (87.9%) compared to any criter ion in any other matrix analysis 

combination. Given these results, we present the detailed evaluation of criteria only for the com bination of PCA with 

Pearson r (Supplementary Table 1). Full results are available as supplementary material for researchers whose 

application suggests a different combination.  

Table 1.  Percentage of replications with dimensionality correctly determined by the four criteria given method and 

correlation matrix .  

Analysis Correlation Criteria averaged EKC Kaiser ParaAn ProfLik 
PCA Pearson 77.00% 79.30% 73.40% 87.90% 67.40% 

PCA Tetrachoric 71.10% 73.70% 73.70% 86.20% 50.80% 

FA Pearson 67.50% 58.90% 63.90% 86.10% 61.10% 

FA Tetrachoric 61.40% 77.30% 76.70% 44.10% 47.40% 

 Note:  Boldfaced indicates the method/criterion that performed the best with each 

combination. PCA: Principal Component Analysis ; FA: Factor Analysis. 

Criterion performances given PCA with Pearson r 
Our design included four between subject factors 3 sample sizes × 4 numbers of underlying dimensions × 3 numbers 

of items per dimension × 3 splits of variable values, which created a total of 108 conditions given the combination of 

PCA and Pearson r (and 432 conditions overall) . Due to the large number of replications, ANOVAs indicated that all 

model effects were statistically significant usi ng α=.05, including the 5 way interaction. For this reason, we 

summarize the key findings and influences for each criteri on (Figures 1-9). 
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Figure 1. Proportion of rep. recovering the correct dimensionality (N=100, 10%/90% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  dimensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion; Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis ; and ProfLik: Profi le Likelihood.  

Figure 2. Proportion of rep. recovering the correct dimensionality (N=100, 25%/75% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  di mensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion;  Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis; and ProfLik: Profi le Likelihood.  
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Figure 3. Proportion of rep. recovering the correct dimensionality (N=100, 50%/50% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis repr esents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  dimensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion;  Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis ; and ProfLik: Profi le Likelihood.  

Figure 4. Proportion of rep. recovering the correct dimensionality (N=250, 10%/90% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 



Research & Reviews: Journal of Statistics and Mathematical Sciences

RRJSMS | Volume 9 | Issue 2 | March, 2023          8  

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  di mensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion;  Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis;  and ProfLik: Profi le Likelihood.  

Figure 5. Proportion of rep. recovering the correct dimensionality (N=250, 2 5%/75% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  dimensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion;  Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis;  and ProfLik: Profi le Likelihood.  

Figure 6. Proportion of rep. recovering the correct dimensionality (N=250, 50%/50% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of items per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 
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the proportion of replications that recover the correct  dimensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion ; Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis; and ProfLik: Profi le Likelihood.  

Figure 7. Proportion of rep. recovering the correct dimensionality (N=1000, 10%/90% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  di mensionality, and the dotted l ine is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion; Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis; and ProfLik: Profi le Likelihood.  

Figure 8. Proportion of rep. recovering the correct dimensionality (N=1000, 25%/75% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis rep resents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  dimensionality, and the dotted l ine  is the 95% reference l ine. 
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EKC: Empirical Kaiser Criterion; Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis ; and ProfLik: Profi le Likelihood.  

Figure 9. Proportion of rep. recovering the correct dimensionality (N=1000, 50%/50% split) . 

Note:  The rows of the bar graph matrix represent numbers of underlying dimensions/components and the columns 

represent numbers of Items Per Component ( IPC). The X axis represents the 4 criteria/method, the Y axis represents 

the proportion of replications that recover the correct  di mensionality, and the dotted l ine  is the 95% reference l ine. 

EKC: Empirical Kaiser Criterion; Kaiser:  Eigenvalue>1.0; ParaAn: Parallel Analysis ; and ProfLik: Profi le Likelihood.  

Parallel analysis 
Parallel analysis performed the best among the four criteri a given the PCA/r combination. Parallel analysis’s 

performance was driven primarily by sample size and the number of underlying dimensions. Parallel analysis correctly 

recovered the number of underlying dimensions at least 95% of the time  under all 36 conditions when N=1000 in 

Figures 7-9, 31 of 36 conditions when N=250 in Figures 4-5, and 14 of 36 conditions when N=100 in Figures 1-3. PA 

also performed less well when the number of underlying dimensions was larger (e.g., 10 dimensions).  Th e next 

influential factor was the number of items per dimension. Most of the fail ing cases for parallel analysis occurred given 

fewer items per dimension. The binary value split  did not matter for the performances of PA.  

Empirical Kaiser criterion 
Performance of the empirical Kaiser criterion was driven primarily by sample size and binary value split . Better 

performances were observed when sample sizes were larger (e.g., 1000; Figures 7 -9) and with a more even split (e.g.,  

50%/50%). The next influential factors were the number of underlying dimensions and items per dimension. EKC 

performed better when there were fewer underlying dimensions and fewer items per dimension.  

Overall , EKC did not outperform parallel analysis as a criterion for determining the dim ensionality of binary variables 

in most conditions examined in the present study. The only conditions where EKC correctly determined the number of 

underlying dimensions in more replications th an parallel analysis was when N=100 or 250, the true number of 

dimensions was 3, 5, or 10, and given 3 items per dimension . 

Kaiser 
Performance of the Kaiser criterion was driven primarily by sample size and the number of items per dimension. 

Better performances were observed given a larger sample size and few items pe r dimension. The next influential 

factors were the number of underlying dimensions (favoring fewer), followed by the binary value split (favoring a more 

even split) .  

Overall , the Kaiser criterion did not outperform parallel analysis as a criterion for dete rmining the dimensionality of  

binary variables in most conditions we examined. It only outperformed parallel analysis in the same conditions where 

EKC also outperformed parallel analysis, in which its performances were not as well as EKC.  
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Profile likelihood 
Performance of profi le l ikelihood was driven primarily by the number of underlying dimensions. With a greater number 

of underlying dimensions, profi le likelihood performed better. The next influential factor was sample size, favoring a 

larger sample size. Overall , profi le likelihood did not outperform parallel analysis as a criterion for determining the 

dimensionality of binary variables in almost all  conditions we examined in the present study.  

Guidance for selecting a criterion 
We obtained a classification and regression tree from the PCA/r results. Our data support using parallel analysis given 

PCA with Pearson correlations, except in four scenarios. First, use EKC when there are 3 items per dimension, >1 

underlying dimensions, and N=250. Second, use the Kaiser criterion when there are 3 items per dimension, > 1 

underlying dimensions, and N=100. Third, use EKC when there are 5 or 10 underlying dimensions, N=100, and 5 

items per dimension (Figure 10). Finally, use profi le l ikelihood only when the underlying structure is unidimensional  

with 10 items per dimension, N=100, and the value split is an extreme 10%/90%. We note that in this case profi le 

likelihood (99.5%) outperformed parallel analysis (9 3.1%) only by a small degree (Supplemental Figures 1-3 for the 

CART for the other three matrix -analysis combinations.)  

Figure 10.  Classification and regression tree for dimension determination criteria given PCA with Pearson r .  

Note: Left (blue path) if node statement is true, right (black path)  if node statement is false. IPC : number of items per 

component/dimension; F: number of dimensions; N: sample size; PA: Parallel Analysis with 95%ile; EKC: Empirical  

Kaiser Criterion; PL: Profi le Likelihood. 

Although parallel analysis generally outperformed the other methods under most circumstances when PCA was used 

with Pearson r, researchers should consider the closest scenario to their own from the conditions considered in our 

simulation. Then, dimensional ity should be determined using one or all acceptable criteria for that combination of 

conditions and, in situations where there is disagreement a sensit ivity analysis should be performed to make a final  

determination.  

DISCUSSION 

Dimensionality determination is crit ical across a range of disciplines and applications and represents the first and 

most crit ical step in data reduction, but criteria are not well established for binary data. Without clear criteria for first  

determining the dimensions underlying the large set of binary variables, subsequent steps (e.g., factor/component 

rotations) cannot be carried out and further analytic goals (e.g., data reduction, obtaining factor scores)  cannot be 

achieved. This large scale simulation study examined the performance of four criteria ( i .e.,  parallel analysis, EKC, 

Kaiser, and profile l ikelihood) for determining dimensionality of binary variables under a considerably wider range of 

conditions than previous research. Specifically, we used a factorial des ign with 4 between subject factors -sample size, 

number of underlying dimensions, number of items per dimension, and variable value split . More importantly, this is 

the first study, to our knowledge, that directly compares criterion performance across combi nations of method of 

analysis (principal component analysis vs . factor analysis) and type of matrix analyzed (Pearson correlations vs . 

tetrachoric correlations).  

Our findings suggest that dimensionality of a binary variable data matrix is best determined using the combination of 

PCA with a correlation matrix based on Pearson r, regardless of how the data wil l ultimately be analyzed. This is 

important because numerous disciplines (e.g., educational testing, clinical assessment, personality research)  

1,6,32,33,37 rely heavily on dichotomously scored measures and computationally intense tetrachoric ρ, which has 

risks of over estimating l inear relations. We also find that parallel analysis is the criterion that most frequently 
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recovers the correct underlying dimensionality, expanding on prior research  on parallel analysis of continuous 

variables to that of binary or dichotomous variables as a reliable approach to dimensionality determination. We 

discuss each important finding below.  

FA was originally developed to  identify common factors among normally di stributed continuous variables ; however,  

many assessments and questionnaires are made up of dichotomo us or ordered categorical items. Prior l iterature calls 

EFA with categorical variables “ Item Factor Analysis ( IFA)”1. Conceptually, the least squares approach to IFA is based 

on the assumption that underlying each categorical indicator is a normally distributed continuous latent response 

variable 5,39. An individual’s standing on this latent variable relative to a set of thresholds determines which 

response category they fall into. For example, for a dichotomous item, if the individual’s standing on the latent 

response variable is below a certain threshold they wil l endorse a score of 0, whereas if they are above this threshold 

they wil l  endorse a score of  1.  

Previous comparisons of criteria for dimensionality determination with binary data have concluded that FA with 

tetrachoric correlations outperforms FA with Pearson’s correlations. Our results found similar pe rformance under 

these conditions, but further demonstrated that the results for dimensionality determination are poorest under 

precisely these conditions. Instead, parallel analysis combined with PCA using Pearson’s correlations most often 

correctly determines dimensionality. We note that this does not in any way detract from the application of FA with 

binary data, which l ikely should be performed using tetrachoric correlations once dimensionality is established, in 

order to correctly estimate factor struct ure.  

In several regards, results of this large  scale simulation study differ from conventional wisdom, perhaps due to the 

broader range of conditions we considered, and also perhaps because we compared criterion performance across 

methods and matrices head-to-head on identical data sets. Most importantly, these results suggest that it  is not 

necessary or beneficial to use tetrachoric correlation matrices in preference to Pearson r for the purposes of 

dimensionality determination, regardless of the combinati on of method and matrix ult imately used for analysis. Again, 

we believe that this should generally be the case except in situations with extreme splits on binary variables or other 

potentially i l l conditioned circumstances . This is important because numerous fields and disciplines rely heavily on 

dichotomously scored measures. For example, abil ity testing in educational settings, and symptom assessment in 

cl inical psychology, are often based on questionnaires in which responses can fall into either one of t wo categories 

( i .e.,  correct/incorrect and symptom present/symptom absent), and the computationally intense tetrachoric ρ have 

often been used for analyses of these binary data, which may cause issues such as difficulty in estimation, over  

estimation of l inear relationships. 

Another finding that can be considered surprising is that, for the purposes of dimensionality determination, PCA 

outperforms FA. This is important because in educational and psychological research, factor analysis is primarily used 

in developing validity arguments for scales and theory development (e.g.,  intell igence, perso nality, executive 

functioning) , because of its focus on identifying the underlying latent constructs that lead to correlations among 

observed variables. Dimension reduction is both a necessary step toward the research goal and an inevitable 

byproduct of process. Principal component analysis on the other hand is used to achieve a parsimonious summary of 

high-dimensional, multivariate data, so, arguably, data reduction is  the most important goal of PCA. These results 

suggest that, although common practice is to apply either PCA or FA to a dataset exclusively for the entire analysis, it 

might be more effective, particularly in exploratory contexts, to use PCA for dimensiona lity determination, regardless 

of whether analyses wil l  ult imately rely on PCA or FA.  

A third important finding from the current study is that parallel analysis is the criterion that most frequently recovers 

the correct dimensionality. Tradit ional EFA, an d the tools used to guide determinations of dimensionality, were 

developed for use with continuous data, and the application of these techniques to categorical data, especially 

dichotomous data, can lead to more suspect and diff icult to interpret results . For example, parallel analysis might be 

less effective when scales contain dichotomous items . Parallel analysis can also be effective, but is less accessible 

for models with categorical  indicators , and has also demonstrated a tendency to over  factor in certain circumstances 

or under extract in others. However, contrary to these concerns, our large  scale simulation results indicated generally 

more accurate performance of parallel analysis for binary variable dimensionality determination in various conditions  

tested. 

In specific circumstances, EKC and Kaiser (and, in a very unique condition, profi le l ikelihood), may be the most 

effective criteria to use. Some researchers consider using the Kaiser criterion to determine dimensions a common 

mistake with factor analysis. This is somewhat surprising since prior l iterature has shown that the Kaiser criterion 

tends to extract too many dimensions in FA with continuous variables . However, as a method to determine the 

dimensionality of multivariate dichotomous data, th e tradit ional Kaiser criterion and its recent extension showed good 

performance in some conditions.  

CONCLUSION 

Our study provided empirical evidence for criteria to use f or dimensionality determination the first and most  important 

step in a variety of data reduction techniques. We directly compared the performance of four widely used cr iteria in a 

variety of study conditions and given different combinations of analysis method and type of matrix analyzed. Our 
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result supported using PCA with a Pearson corre lat ion matrix as a preferred approach to determine how many 

dimensions that underlie a large set of binary variables for a variety of circumstances examined.  

Limitations 
The current study has some limitations. Although we considered a much wider range of conditions than most previous 

research addressing this topic, we only considered a single set of correlations among and within dimensions. Future 

research should consider more complex data structures. These include considering a number of conditions, such as 

different correlation structures, combinations of oblique and orthogonal dimensions (components or factors), 

deviations from simple structure, and even ordered categori cal latent variables and finite mixture models.   
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