
Volume 3, No. 2, February 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 29

DEVELOPING A RETARGETABLE COMPILER FOR MIPS32K AND

ARM7TDMI-S

Dr. Manoj Kumar Jain
*1

, Veena Ramnani
2

*1,2
Department of Computer Science, Mohanlal Sukhadia University, Udaipur, India

manoj@cse.iitd.ernet.in,

ramnaniv@yahoo.com

Abstract: The market of embedded systems is spreading faster than that of information technology. Mostly, the segments of embedded systems

are consumer markets, with very short product lifetimes and short market windows. Hence, time-to-market is an important factor. Cutting down
the time to market for products that became more and more complex is possible through “re-use”. Another important characteristics of the
embedded system market is the ease of incorporating late design changes, i.e. flexibility of the target technology, This led to the use of
processors in embedded systems. This in turn led to the use of embedded software. Traditional compiler technologies were not adequate for
applications and architectures of embedded systems; this led to the development of “retargetable compilers”. A compiler is said to be
retargetable, if it can be applied to a range of different target processors, by re-using most of the code. This means that target model cannot be an
implicit part, but must be specified explicitly. In this paper, we have described the development of a retargetable compiler. The developed
methodology has been used to generate and validate codes for MIPS and ARM processors. The objective of this research is to develop a

retargetable compiler that can generate efficient code in terms of code size, cycle count and retargetability efforts for a wide rnge of processors.

Keywords: ASIP; Design Space Exploration; Retargetable Compilers; Register Allocation; Instruction Scheduling;

INTRODUCTION

Modern system-level design libraries frequently consists of

Intellectual Property (IP) blocks such as processor cores that

span a spectrum of architectural styles, ranging from

traditional DSPs and superscalar RISC, to VLIWs and

hybrid ASIPs. Embedded systems facilitate easy re-design

of processor-memory based systems. The designer can

incorporate modifications in the behavior and operation

aspect of the architecture late in the design stage. ASIP are

a compromise between the non-programmable ASICs and

general purpose processors (GPP).

ASIP design [1][2][3][4] allows a wide range of memory
organizations and hierarchies to be explored and customized

for the specific embedded application. The ASIP designer is

faced with the task of rapidly exploring and evaluating

different architectural and memory configurations.

Furthermore, shrinking time-to-market has created an urgent

need to automatically generate compiler/simulator tool-kit.

There are two approaches for performance estimation using

ASIP design: scheduler based approach and simulator based

approach.

Scheduler Based Approach:

In scheduler based approach the problem is formulated as a

resource constrained scheduling problem. The application is

scheduled to generate an estimate of the cycle count.

Simulator Based Approach:

A retargetable compiler is constructed for each architecture

to be evaluated. This compiler is used to generate code. This

generated code is given as input to a retargetable simulator

which is also designed for the same architecture under

evaluation. This simulator generates the performance

estimates and other statistics.

RETARGETABLE COMPILERS

Retargetable compilers are a promising approach for

automatic compiler generation. A compiler is said to be

„retargetable‟ if it can be used to generate code for different

processor architectures by reusing significant compiler

source code. This has resulted in a paradigm shift towards a

language-based design methodology using Architecture

Description Language (ADL) for embedded System-on-

Chip (SOC) optimization, exploration of architecture

/compiler co-designs and automatic compiler/simulator

generation. However, whatever approach is used, the

performance depends on the back end of the compiler i.e.

instruction selection, register allocation and instruction
scheduling.

In this paper, we have discussed developing a retargetable

compiler which can generate code for MIPS architecture.

We have divided the description under the following heads:

development of Lexical Analyzer (Scanner), Development

of Syntax Analyzer (Parser), and Development of Back end.

Development of Lexical Analyzer:

The purpose of lexical analyser (Scanner) is to separate the

input file into logical units called tokens. The input file is a

C program for which we wish to generate assembly code.

The tokens in a C program can be keywords, constants

(Numeric –real and integer, string, character), variables,

operators, punctuation marks, etc. The lexical analyzer

chooses the tokens according to a prioritized list. Normally,

the order in which tokens are defined in the input to the

lexical analyzer indicates priority (earlier defined tokens
take precedence over later defined tokens). Hence, keywords

have been defined before variable names, which means that,

for example, the string “if” is recognized as a keyword and

not a variable name.

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (2), February 2012, 29-34

© JGRCS 2010, All Rights Reserved 30

The longest prefix of the input that matches any token is

chosen. The principle of the longest match takes precedence

over the order of definition of tokens. The principle of the

longest matching prefix is implemented in the program. The

tokens specified in the program are in the following order:

a. Operators (Arithmetic + , - , * , / , Assignment ,

Relational < , <= ,> , >= , == ,!= , Increment ++ ,

Decrement --)

b. Punctuation Marks ([,] ,) , (, { , } , ; ,”,”)

c. Integer Constants

d. Floating Point Constants
e. Keywords (int , long , float , for , if ,then ,else ,

continue , break , goto, while ,do, etc)

f. Variable Names

The tokens are represented by enclosing them in angle

brackets < > . For e.g.

a. Arithmetic Operators are represented as <+> , <- > ,

<*> , < / > , <= >

b. Increment and Decrement Operators as <INR> and

<DCR> respectively.

c. Relational Operators as <EQ>, <NE>, <GT>, <GE>,
<LT>, <LE>.

d. Punctuation Marks as <[> , <]> , <)> , <(> , <;> ,

< , >,etc.

e. Keywords as <INT> , <FOR> , <IF> , <ELSE>,etc.

The integer constants, floating point constants and

variable names are represented in slightly different manner.

Variable names are represented as <ID, variable name> and

integer and floating constants are written as <NUM,

constant>.

Development of Synatx Analyser (Parser):

While lexical analysis splits the input into tokens, the

purpose of syntax analysis (parsing) is to combine these

tokens into a syntactic structure called the syntax tree. As

the name indicates, this is a tree structure. The leaves of this

tree are the tokens found by the lexical analysis. The syntax

tree typically represents different program constructs like
expressions, if statement, for statement, etc.

The grammar used in the proposed Compiler handles

expressions and different statements like the “if” statement,

“while” statement , “do” statement, “for” statement ,

“break” , “continue”.The productions are as below :

Stmtsstmt stmts | є

Stmt loc = bool

 | if (bool) stmts

 | if (bool) stmts else stmts

 | while (bool) stmts

 | do stmts while (bool)
 | for (init_st ; bool ; update_st) stmts

 | break;

 | continue;

Stmt loc = B

loc id loc‟

loc‟ [bool] loc‟ | є

B J B‟

B‟ || J B‟ | є

J R J‟

J‟ && R J‟ | є

R E < E | E <= E | E > E | E>=E | E==E | E != E

E T E‟

E‟ + T E‟ | -T E‟ | є
T F T‟

T‟ *F T‟ | / F T‟ | є

F id | NUM | TRUE | FALSE | - F | !F | (B)

The above grammar belons to a class of LL(1) and we have

used predictive parser. Predictive parser is a top down parser

constructed for LL1(1) grammar. This parser scans the input

from left to right producing the leftmost derivation using

one input symbol of lookahead at each step to make parsing

decisions. As can be seen above , the LL(1) grammar is rich

enough to cover most programming constructs. Predictive
parser selects a proper production for a non-terminal by

looking at the current input symbol.

Syntax-Directed Translation:

A syntax-directed definition is a context-free grammar

together with attributes and rules. Attributes are associated

with grammar symbols and rules are associated with
productions. We associate information with a language

construct by attaching “attributes” to the grammar symbols.

Rules or semantic actions are enclosed withincurly brackets.

The position of a semantic action in a production dtermines

the order in which the action is executed. In our compiler,

we have done translation during parsing ,without building an

explicit tree. We first build the syntax tree and then convert

it to 3-address intermediate representation.The syntax-

directed translation for different programming constructs in

C is given in the table 1:

Development of Back End of the Compiler:

The back end of the compiler is the most crucial one , it is

concerned with generating machine code. The generation

encompasses of instruction selection , register allocation and

scheduling. We shall cover them one by one. In the

proposed retargetable compiler , we intend to generate code

for MIPS 32 K . We have considered the standard
instruction set of both these architectures.

Instruction Selection:

The proposed compiler generates machine code for MIPS 32

K and ARM. The standard instruction set of the two

processors in considered. The details of MIPS 32 instruction

set has been refereed from [5] [6] [7].

Table 1. Syntax-directed translation for c constructs

Production Semantic rules

Stmt loc = bool Stmt.value=(loc.value || “=” || bool.value)

Stmt if (bool) stmts Bool.true=newlabel()

Bool.false=stmts.next

Stmt.code=bool.code || label(bool.true) || stmt.code || label(bool.false)

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (2), February 2012, 29-34

© JGRCS 2010, All Rights Reserved 31

Stmt if (bool) stmts1 else stmts2 Bool.true=newlabel()

Bool.false=newlabel()

Stmts1.next = stmts2.next = stmt.next

Stmt.code = bool.code ||

 Label (bool.true) || stmts1.code

 Gen(„goto‟ stmt.next)

 Label(bool.false) || stmts2.code

Stmt while (bool) stmts1 Start=newlabel()

Bool.true=newlabel()

Bool.false=stmt.next

Stmts1.next=start

Stmt.code=label(start) || bool.code

 || label(bool.true) || stmts1.code

 || gen(„goto‟ start)

Stmt do stmts1 while (bool) Start=newlabel()

Bool.true=start

Bool.false=stmt.next

Stmts1.next=start

Stmt.code=label(start) || stmts1.code

 || bool.code

 || gen(„goto‟ start)

 || label(bool.false)

Stmt for (init_st ; bool ; update_st) stmts1 Bool.true=newlabel()

Bool.false=stmt.next

Stmts1.next=stmt.next

Stmt.code= gen(init_st)

 || label(bool.true) || bool.code

 || stmts1.code || gen(update_st)

 || gen(„goto‟ bool.true) || label(bool.false)

Register Allocation:

We have used a variation of linear scan algorithm proposed
by Poletto in [8]. Our algorithm is not based on graph

colouring . Rather, given the live ranges of variables in a

function, the algorithm scans all the live ranges in a single

pass, allocating registers to variables in a greedy fashion.

The original algorithm is used for global allocation, but we

have employed the same methodology for local allocation as

well, taking care of the variables which are being used

across the block. The formal algorithm for the above

methodology is given below :

Procedure last_use_info()

For every basic block do

 For every variable/constant/temporary do

 Begin

 Calculate the last use in basic block

 Calculate the last use in program

 End

End Procedure

Procedure get_free_register()

 For all the registers in the register_file do

 Begin

 If the register is holding a value which is dead,mark it as “empty”

 If the register is holding a value that will not be used in the current block

 But will be required globally, do not mark it as “empty”

 End

 Return the empty register

End Procedure

Procedure register_allocator()

 Call last_use_info

 Initialize all registers to “empty”

 For every basic block do

 begin

 For every variable/constant/temporary do

 Begin

 Reg=Get_free_register ()

 If there is a free register then

 Allocate reg to the variable/constant/temporary

 else

 Find registers holding values which will not be used in the block

 If no such register is found then

 Select the one with least usage count

 Spill the value in the selected register

 End if

 End if

 End

 At the end of the basic block :

 Free the registers , which are holding values which are dead

 End

End Procedure

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (2), February 2012, 29-34

© JGRCS 2010, All Rights Reserved 32

Instruction Scheduling

The problem facing an instruction scheduler is to reorder

machine code instructions to minimize the total number of

cycles required to execute a particular instruction sequence.
Unfortunately, sequential code executing on a pipelined

processor inherently contains dependencies between some

instructions. Any transformations performed during

instruction scheduling must preserve these dependencies in

order to maintain the logic of the code being scheduled. In

addition, instruction schedulers often have a secondary goal

of minimizing register lifetimes.

The Revised List Scheduling Algorithm:

We in our approach we have used a variation of list

scheduling algorithm, in the sense we have combined

register allocation along with list scheduling. First, the
dpg(data precedence graph) is built , each instruction is a

node and the data dependency between instructions is shown

by drawing edges between them. Next, priorities are

assigned to each node in the graph.

The formula below shows how the priority of a node is

calculated:

priority (n) = latency(n) if n is a leaf.

max(latency(n) + max(m,n)єE(priority(m)), otherwise

max(m,n)єE (priority(m)))

PERFORMANCE ESTIMATES AND VALIDATION

OF THE COMPILER

Validation of MIPS Code:

In order to validate the MIPS code, we have used MARS

(MIPS Assembler and Runtime Simulator). MARS [9] is an

Education- Oriented MIPS Assembly Language Simulator,

developed by University of Missouri State. MARS is an

Integrated Development Environment (IDE) controlled by a

modern GUI. The performance of the generated code is

judged on the basis of Code Size, Cycle Count and

compilation time.

Comparison of Code Size of code generated by our

Compiler and that of EXPRESS:

The length of the code is an important quality metric. It is

important that the size of the code generated by the compiler

is kept minimal. We have compared the code generated by

our compiler with the one generated by GCC cross compiler

and the code generated by EXPRESS. The GCC cross

compiler can generate machine code for various platforms.

We have configured GCC to generate code for MIPS and

ARM. We observe that our code is much smaller than the

code generated by GCC cross compiler for MIPS and ARM
code and it is comparable to the size of the code generated

by EXPRESS for MIPS code.

 Comparison of Cycle Count of code generated by our

Compiler and that of EXPRESS:

The performance of the MIPS code has been tested against

the code generated by standard tools. The cycle count is an
important parameter to see how fast the assembly code is.

We have tested the code in terms of cycle count and found

that our compiler is generating better code.

Since, we had based our research on the EXPRESS compiler

and we already have the cycle counts for the MIPS code of

the benchmarks. The cycle count for MIPS has been

calculated using SIM-A simulator, which is capable of

simulating the MIPS code. The table 2 gives the comparison

of results as obtained from SIMPRESS simulator and SIM-

A simulator. The results are shown graphically in the Figure

1.

Input: Data Precedence Graph (DPG) with priorities assigned to each node

Output: A schedule containing all nodes in the graph that satisfies the precedence constraints in the DPG and the resource constraints

of the machine

Algorithm:

Cycle = 1

Ready = Leaves of DPG

Active = ф

While (Ready U Active <> ф)

{

 For op= (all nodes in Ready in descending priority order)

 If (a functional unit exists for „op‟ to start at „cycle‟)

 {

 -remove „op‟ from Ready and add „op‟ to Active

 - add „op‟ to schedule at time „cycle‟

 - make operands available in registers and allocate a register for target

 }

 End for

 Cycle = cycle +1

 Update the Ready Queue

}

For op= (all nodes in Active)

 If („op‟ finishes at time „cycle‟)

 {

 -remove „op‟ from Active

 - Check nodes waiting for „op‟ in DPG and add to „ready‟ – if all operand are available

 }

End for

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (2), February 2012, 29-34

© JGRCS 2010, All Rights Reserved 33

Table 2: Validation Results

Benchmarks

Cycle Count for

EXPRESS code

(using SIMPRESS)

Cycle Count for code

generated by our

compiler (using Sim-A)

LL1 675 637

LL5 559 289

LL11 410 309

LL12 552 471

LL24 749 711

Figure 1 : Cycle Count Comparison for MIPS code

Similarly, the cycle count for ARM code has been calculated

using Keil µvision4. We have simulated the C Program and

calculated the cycle count and repeated the same for the

ARM assembly code generated by our compiler. The cycle
counts obtained from Keil are shown in Table 3: The results

are shown graphically in the Figure 2.

Table 3: Keil Simulation Results

Benchmarks C Program ARM Assembly Code

LL1 411 400

LL5 343 338

LL11 240 238

LL12 273 258

LL24 411 400

Figure 2 : Cycle Count Comparison for ARM code

We can conclude from the above results that the MIPS and

ARM code generated by our compiler is better than the

existing tools in terms of cycle count.

EFFICIENCY OF THE PROPOSED RETARGETABLE

COMPILER

We have used compilation time as the criteria to measure

performance. The compilation time basically tells us how

fast or slow the compiler is. Since, we had started the

research with the study of EXPRESS and EXPRESSION.

We shall be comparing the compilation time results of MIPS

code with those of EXPRESS. The timing from EXPRESS

and our compiler are given in the Table 4. The results are

graphically displayed in Figure 3.

Table 4: Compilation Time Comparison

Benchmarks EXPRESS Our Compiler

LL1.c 0.8 secs 0.3 secs

LL5.c 0.5 secs 0.2 secs

LL11.c 0.4 secs 0.2 secs

LL12.c 0.5 secs 0.3 secs

LL22.c 1.3 secs 0.3 secs

LL24.c 0.7 secs 0.2 secs

Compress.c 2.1 secs 1.6 secs

Figure 3 : Comparison of compilation time of MIPS code by EXPRESS and

our compiler

From the above results, we conclude that overall the

compiler developed by us takes less compilation time and

hence is better than the existing EXPRESS compiler.

CONCLUSIONS

We have developed a retargetable compiler in Visual Basic.

It is capable of generating MIPS and ARM code. Our

compiler is a user retargetable compiler. The retargetable

efforts are intermediate. Some of the information is entered

as parameters through the graphical user interface and rest is

used at the time of coding. The following can be provided to

the CPU: size of the register file, name of registers and

details of functional units. It is observed that the code is

Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 3 (2), February 2012, 29-34

© JGRCS 2010, All Rights Reserved 34

good in terms of code size, cycle count and compilation

times.

REFERENCES

[1] Jain,M.K., Kumar,A., Balakrishnan,M. and

Gangwar,A.(2005) Customizing Embedded Processors for

Specific Applications, In proceedings of Recent Trends in

Practice and Theory of Information Technology, Proc. of

NRB Seminar, 10-11 January 2005, NPOL, Cochin, pp. 261-

284

[2] Jain,M.K., Balakrishnan,M.and Kumar,A.(2001) ASIP Design

Methodologies: Survey and Issues, In proceedings of the

Fourteenth International Conference on VLSI Design, 2001,

3-7 Jan. 2001, Pages: 76-81

[3] Jain,M.K., Balakrishnan,M. and Kumar A.(2004), Efficient

Technique for Exploring Register File Size in ASIP Design',

IEEE TCAD of VLSI, vol. 23, No. 12, pp. 1693-1699, Dec.

2004.

[4] Jain,M.K. and Gaur,D.(2011)ASIP Design Space Exploration

:Survey and Issues ,International Journal of Computer Science

and Information Security,ISSN – 19475500,Volume 9, Issue 4

,pg. 141-145

[5] MIPS 32 Architecture for Programmers (2008) – Volume I:

Introduction to MIPS32 Architecture, Document Number:

MD00082, Revision 2.60

[6] MIPS 32 Architecture for Programmers (2009) – Volume II:

Introduction to MIPS32 Architecture, Document Number:

MD00086, Revision 2.62

[7] MIPS 32 Architecture for Programmers (2009) – Volume III:

Introduction to MIPS32 Architecture, Document Number:

MD00090, Revision 2.80

[8] M. Poletto, D.R. Engler and M.F.Kaashoek (1997). tcc: A

system for fast, flexible, and high-level dynamic code

generation. In Proceedings of the ACM SIGPLAN '97

Conference on Programming Language Design and

Implementation. Las Vegas, NV, 109-121.

[9] K.Vollmar and P.Sanderson (2006): MARS An Education-

Oriented MIPS Assembly Language Simulator, SIGCSE‟06,

March 1-5, 2006, Houston, Texas, USA.

Short Bio Data for the Authors

Dr.M.K. Jain received the M.Sc. degree from

M.L. Sukhadia University, Udaipur, India, in
1989. He received M.Tech. degree in Computer

Applications and PhD in Computer Science & Engineering

from IIT Delhi, India in 1993 and 2004 respectively. He is

Associate Professor in Computer Science at M.L. Sukhadia

University Udaipur. His current research interests include

application specific instruction set processor design,

wireless sensor networks, semantic web and embedded

systems.

Veena Ramnani is a research scholar in the Department of

Computer Science at Mohanlal Sukhadia University,
Udaipur, India. Her area of research is embedded systems

design and retargetable compilers.

