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Abstract—Dimensionality reduction is vital in many fields, 
and alignment-based methods for nonlinear dimensionality 
reduction have become popular recently because they can 
map the highdimensional data into a low-dimensional 
subspace with the property of local isometry. However, the 
relationships between patches in original high-dimensional 
space cannot be ensured to be fully preserved during the 
alignment process. In this paper, we propose a novel 
method for nonlinear dimensionality reduction called local 
coordinates alignment with global preservation. We first 
introduce a reasonable definition of topology-preserving 
landmarks (TPLs), which not only contribute to preserving 
the global structure of datasets and constructing a 
collection of overlapping linear patches, but they also 
ensure that the right landmark is allocated to the new test 
point. Then, an existing method for dimensionality 
reduction that has good performance in preserving the 
global structure is used to derive the low-dimensional 
coordinates of TPLs. Local coordinates of each patch are 
derived using tangent space of the manifold at the 
corresponding landmark, and then these local coordinates 
are aligned into a global coordinate space with the set of 
landmarks in low-dimensional space as reference points. 
The proposed alignment method, called landmarks-based 
alignment, can produce a closed-form solution without any 
constraints, while most previous alignment-based methods 
impose the unit covariance constraint, which will result in 
the deficiency of global metrics and undesired rescaling of 
the manifold. Experiments on both synthetic and real-world 
datasets demonstrate the effectiveness of the proposed 
algorithm. 
Index Terms—Isometric mapping, manifold learning, 
nonlinear dimensionality reduction, tangent space. 
 

I. INTRODUCTION 

THE PROBLEM of dimensionality reduction arises 
in many fields, such as machine learning, neural 
computation, data mining, and pattern recognition. The 
task of dimensionality reduction is to recover meaningful 

low-dimensional structures hidden in high-dimensional 
data. An example might be a set of pixel images of an 
individual’s face observed under different poses and 
lighting conditions; the task is to identify the 
underlyingvariables (pose angles, direction of light, etc.,) 
given only the high-dimensional pixel image data. In 
manycases of interest, the observed data are found to lie 
on an embedded submanifold of the high-dimensional 
space. The degrees of freedom along this submanifold 
correspond to the underlying variables. In this form, the 
dimensionality reduction problem is known as manifold 
learning. Spectral methods have recently emerged as a 
powerful tool for dimensionality reduction and manifold 
learning. These methods are able to reveal low-
dimensional structure in highdimensional data from the 
top or bottom eigenvectors of specially constructed 
matrices. To analyze data that lie on a low-dimensional 
submanifold, the matrices are constructed from sparse 
weighted graphs whose vertices represent input patterns 
and whose edges indicate neighborhood relations. The 
main computations for manifold learning are based on 
tractable polynomial-time optimizations, such as shortest 
path problems, least squares fit, semidefinite 
programming, and matrix diagonalization. Principal 
component analysis (PCA) [1] and metric 
multidimensional scaling (MDS) [2] are simple spectral 
methods for linear dimensionality reduction. Recently, 
from the viewpoint of manifold learning, some new 
linear methods have been  proposed, such as locality 
preserving projection [3], neighborhood preserving 
embedding [4], local discriminant embedding [5], 
unsupervised discriminant projection [6], and orthogonal 
neighborhood preserving projections [7]. These methods 
are successfully only when the data manifold is linear. 
Recently, progress has been made in developing efficient 
algorithms to be able to learn the low-dimensional 
structure of nonlinear data manifolds. These proposed 
methods 
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include isometric mapping (Isomap) [8], [9], locally 
linear embedding (LLE) [10], [11] and its variations 
[12]–[15], 
Laplacian eigenmap (LE) [16], Hessian eigenmap [17], 
local tangent space alignment (LTSA) [18], maximum 
variance unfolding (MVU) [19], diffusion map [20], [21] 
and semisupervised generalized discriminant analysis 
[22]. The following 
two strategies are shared in most of these algorithms: 
1) exploiting the local geometry around each data point; 
and 
2) mapping the manifold nonlinearly to a lower 
dimensional space based upon the learned local 
geometric information. Of course, these algorithms are 
different in the performance of local information 
xtraction and global embedding. For example, LLE 
extracts the linearity by representing each point as a 
linear combination of its neighbors and then determines a 
low-dimensional embedding that preserves the locally 
linear combination structures. LLE is computationally 
efficient because it involves only sparse matrix 
computations which  may yield a polynomial speedup; 
however, it neglects the global properties of the dataset. 
As a result, if two data points in the high-dimensional 
space are remote, LLE cannot ensure their corresponding 
data points in a lower dimensional space be remote. 
Some methods, such as Isomap, distance penalization 
embedding (DPE) [23], etc., try to keep both local and 
global properties; however, they have deficiencies to 
some extent. Isomap estimates the pairwise geodesic 
distance based on Euclidean distances between neighbors 
and then maps the high-dimensional points into a lower 
dimensional Euclidean space by preserving the geodesic 
distances. The derived geodesic distance matrix is 
inaccurate. In most cases, distances between neighbors 
are slightly smaller than the true value, and distances 
between far away data points are always larger than true. 
As a result, Isomap cannot derive local structure well. In 
addition, the mechanism of keeping the distances is 
effective only for globally isometric manifolds. For those 
manifolds that cannot be isometrically mapped to a 
lowerdimensional Euclidean space, Isomap may fail. 
DPE tries to make the neighboring points to be still in the 
neighborhood and the remote points still to be remote by 
penalizing the distances. However, the penalization on 
local distances, as a looser constraint on neighborhood 
than constraints such as isometry and linear 

reconstruction, may distort the true structure of the 
neighborhood. Sun et al. [23] proposed a two-step 
framework for nonlinear dimensionality reduction: in the 
first step, DPE is used to obtain the embedding of part of 
data points, and, in the second step, an additional 
constraint on the neighborhood relationships is imposed 
to refine local description by employing semisupervised 
manifold learning algorithms. However, the algorithm is 
very sensitive to parameters, and the parameter 
selections rely on some kind of performance evaluation 
of the dimensionality reduction algorithm, which is still 
an open problem. By combining the ideas of MVU and 
LE, Wang and Li [24], [25] proposed a manifold method 
that unfolds the dataset by maximizing the global 
variance subject to the proximity relation preservation 
constraint originated in LE. However, the method brings 
undesirable concentration on the boundary of the low-
dimensional representation and its performance is very 
sensitive to parameters. Wang et al. [26] proposed 
locality-preserved maximum information projection 
(LPMIP) which considers both within locality and 
between locality in the processing of manifold learning. 
However, LPMIP is essentially linear and cannot provide 
reliable and robust solutions to nonlinearity distributions. 
Since Zhang et al. [18] proposed LTSA, which uses PCA 
to construct an approximation for the tangent space at 
each data point, and these tangent spaces are then aligned 
by a set of optimized affine transformations to give the 
global embedding, alignment technology has been a 
concern to many manifold learning researchers. The 
main advantage of alignmentbased algorithms is that 
they can map the high-dimensional data into a low-
dimensional subspace with the property of local 
isometry. LLE and LE are reformulated, respectively, 
using alignment technology in [27] and [28]. Three key 
issues in manifold learning determine the effectiveness 
of alignment-based algorithms. One issue is how to find 
a finite open cover of the manifold. A commonly used 
method is to constitute a neighborhood for each data 
point, and all of these neighborhoods naturally constitute 
a finite open cover of the manifold [18], [29]. However, 
the patches obtained this way are heavily overlapped and 
many of them can be ignored with little effect on 
manifold learning. To overcome it, Li [30] uses a greedy 
algorithm to combine a number of these patches into a 
larger patch. However, it is argued that the resulting 
patches will have the same fixed size and cannot be 
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suitable to deal with the data nonuniformly sampled from 
a manifold [31]. In [32], a maximal linear patch (MLP) is 
first constructed for each data point under a geodesic 
distance constraint, and then a minimum subset of these 
MLPs is selected as a finite open cover of the manifold. 
The second issue is local isomorphic mapping. At 
present, PCA is often used to get the local coordinates of 
manifold [18], [30]. The last but not least issue is that of 
alignment, i.e., aligning the local coordinates of the 
manifold in the d-dimensional Euclidean space to form 
the global coordinate of the manifold. The most 
commonly used methods are the so-called global 
alignment methods. These methods align all local 
coordinates of the manifold, all simultaneously, by 
solving an eigenvalue problem [18], [27], [28], [30]. 
However, the large data size will lead to a large-scale 
eigenvalue problem which is hard to solve even for the 
state-of-the-art eigensolvers [33]. Moreover, the 
normalization constraints make them fail to preserve 
geodesic distances. Additionally, some progressive 
alignment methods [34], [35] select the local coordinate 
of a patch as the base local coordinate and then 
progressively expand the base local coordinate by 
aligning other local coordinates to the base local 
coordinate patch by patch until the base local coordinate 
becomes the global coordinate of the manifold. These 
progressive algorithms cannot ensure the minimum 
alignment error during each alignment, and the 
alignment errors will be accumulated and propagated 
during the process of progressive alignment. In this 
paper, we propose a new method for nonlinear 
dimensionality reduction, called local coordinates 
alignment with global preservation (LCA-GP). 
Compared with the existing methods, our method has the 
following features. 
1) LCA-GP introduces a novel concept of 
topologypreserving landmarks (TPLs), which can 
preserve the global topological structure of manifold and 
construct a finite open cover of the manifold, i.e., a set of 
overlapped linear patches. The global nonlinear data 
structure is then represented by a collection of local 
coordinates as wellas the set of TPLs. 
2) LCA-GP learns the local manifold structures on a set 
of overlapping linear patches rather than on the 
neighborhood of each data point, which will reduce the 
redundancy. 

3) LCA-GP aligns the local coordinates into a global 
low-dimensional coordinate space by landmarks-based 
alignment (LA), which can well preserve both the local 
geometry and the global structure of the manifold. 
4) LCA-GP only needs to solve a linear system rather 
than an eigen problem with a unit covariance constraint 
as most spectral methods do. This kind of constraint will 
 result in the deficiency of global metrics and undesired 
rescaling of the manifold. 
5) LCA-GP approximately learns a nonlinear invertible 
mapping function in a closed form. Thus, the mapping 
can analytically project the test data points. This paper is 
organized as follows. Section II describes the motivation 
and basic ideas of the proposed LCA-GP. The detailed 
implementation of LCA-GP along with theoretical 
analysis is given in Section III. Section IV presents 
results of experiments on both synthetic and real-world 
datasets. Section V concludes this paper with directions 
for future work. 
 

II. MOTIVATION AND BASIC IDEAS 
Most spectral methods for nonlinear dimensionality 
reduction try to preserve the local geometry around each 
point 
and solve optimization problems to obtain the global 
embedding. The global structure cannot be fully 
preserved by these methods due to their ignorance of the 
global properties of manifold. Moreover, the unit 
covariance constraint is imposed to obtain a unique 
solution, and the optimization problem turns into an 
eigenvalue problem. However, the imposed constraint 
should bring undesired relations among components of 
the embedding coordinates, which will result in the 
deficiency of global metrics and undesired rescaling of 
the manifold, as also pointed out in [31]. The question is 
how to preserve global structure as well as local 
geometry and avoid imposing the unit covariance 
constraint during solving the optimization problem. As 
described in the introduction, some works attempted to 
address all or part of these problems; however, each of 
them has some disadvantages. Inspired by the two-step 
framework for dimensionality reduction proposed by Sun 
et al. [23], we can select a set of representative points 
and use some global algorithm for dimensionality 
reduction to obtain lowdimensional coordinates of these 
points in the first step, and then develop some manifold 
learning algorithm, in which the optimization problem 
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under the constraint of a set of representative points can 
be transformed into a problem of solving linear system, 
to derive the embedding of all data points. There are two 
issues in the first step: one involves the selection of 
representative points and the other is to get the 
embedding coordinates of these selected points. The 
focus of this paper is the first issue. Representative data 
points, which we call landmarks, are selected from 
datasets that lie on an embedded manifold of the high-
dimensional space. These landmarks should preserve the 
topology of the manifold and should be capable of 
learning the structure of certain curved manifolds. A 
criterion to test whether a landmark set can accurately 
and reliably represent the manifold was proposed in [36]. 
The criterion ensures that the individual Voronoi cells 
generated by the landmarks in the ambient space do not 
intersect the manifold at distant locations but it leaves 
out to ensure the linear structure of each cell. In [23], the 
centers of those neighborhoods that constitute a 
minimum set that cover the dataset are taken out as 
landmarks. The landmarks found in this way depend 
largely on the distribution density rather than some 
topological structurerelevant factors, such as curvature 
and so on. 

  
 

Fig. 1. Illustration of manifold M, tangent space T at 
a landmark xl, and projection of the vector xi − xl 
on T , Ul θi, where θi is the coordinate of Ul θi 
under Ul , i.e., the local coordinate of a point xi . 
 
In this paper, we find a set of landmarks that not only 
ensures that for new test points the closest landmark in 
terms of Euclidean distance is also close in terms of 
geodesic distance on the manifold [36] but also can 
construct a set of corresponding neighborhoods such that 
these neighborhoods are linear and overlapped with each 
other and all together cover the whole dataset. 

Specifically, for the latter, the approximation error of the 
point to the tangent space at the landmark is small 
enough. Consider the linear structure of a neighborhood 
of landmark xl = f (yl), where f : Rd → RD, d << D, 
which can be characterized by the tangent space of the 
manifold at xl . 
A neighbor xi = f (yi ) of xl can be represented by xi = xl 

+ J f (yl)(yi − yl) + ε(yi , yl) (1) where J f (yl) is the 
Jacobian matrix of f at yl , whose columns span the 
tangent space, and ε(yi , yl ) is a second order term of 

yi − yl , which measures the approximation error of xi to 
the tangent space. Consider that the second-order term 
should be small, i.e., the first-order term should be close 

to xi − xl .With the assumption that the manifold is 
smooth enough and dataset is dense enough, we have 

 
 where η < 1 is a parameter. If a set of orthogonal 
bases Ul of the tangent space of the manifold at each 
landmark, 
where UT l Ul = I , have been attained and Ulθi ∈ T is a 

tangent vector [37], we have θi = UT 

l (xi − xl), where θi is the coordinate of Ulθi under Ul. 

Then Ulθi is the estimation  of J f (yl )(yi − yl). 

Evidently, _Ul θi_ = _θi_. So we consider the 
following practical model: 

  
as a criterion to test whether a set of landmarks can 
reliably represent the manifold (see Fig. 1 for an 
illustration). Based on this criterion, in this paper we give 
a new concept of TPLs and propose an adaptive TPL 
selection method. 
The second step is about the landmark-constrained 
manifold learning algorithm. As described in the 
introduction, three key issues in manifold learning 
determine the effectiveness of alignment based 
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algorithms. If there are a set of TPLs as well as their low-
dimensional coordinates, landmarks-based methods on 
the three issues are proposed. At first, each data point is 
the neighbor of its two nearest landmarks, and the 

neighborhoods of all landmarks constitute the finite open 
cover of the manifold. We take each neighborhood as a 
patch . There should be common points in adjacent 
patches, and all patches 

are approximately linear. Then tangent space of manifold 
at the landmark point, instead of at the mean point of 
patch, is used to derive the local coordinates of each 
patch. Finally, we take the low-dimensional coordinates 
of landmarks as constraints and transform the 
optimization problem in alignment into solving a linear 
system to obtain the last embedding. We call this LA. 
Briefly, the novelty of the proposed LCA-GP is twofold: 
the concept of TPLs and the LA method, which lead to 
several highlighted characteristics as described in the 
introduction part. 
 

III. LCA-GP 
In this section, we first introduce the concept of TPL,and 
the proposed method for TPL construction, as well as 
finite open cover construction. Then, the learning 
procedure of LCA-GP is presented in detail, including 
obtaining the global coordinates of TPLs, the 
construction of local model, and the landmarks-based 
alignment, i.e., the LA method. Finally, theoretical 
analyses of LCA-GP and comparisons of LCA-GP with 
other relevant methods are discussed. 
A. TPLs and Finite Open Cover 
Landmarks introduced in our algorithm not only 
contribute to preserving the global properties of the 
dataset and constructing a proper finite open cover of 
manifold but also ensure to allocate the right landmark to 
a new test point. The principal insight of the qualified set 
of landmarks lies in three criteria: 
1) topological structure of manifold is well preserved by 
landmarks; 2) each data point is the neighbor of its two 
nearest landmarks, and the neighborhood of each 
landmark constitutes a patch, which spans a near linear 
subspace; and 3) for new test points, the closest 
landmark in terms of Euclidean distance is also close in 
terms of geodesic distance on the manifold. Those 
landmarks satisfying the above three criteria are called 
TPLs. 
The first two criteria can consider that the approximation 
errors of each data point to the tangent space at its two 
nearest landmarks are small enough. As to the third one, 
we use the method proposed in [36]. Specifically, to each 
data point, the nearest landmark measured with 

Euclidean distance is the nth nearest one measured with 
geodesic distance, where n ≤ d+1 and d is the intrinsic 

dimension of the manifold. Suppose X = {x1, . . . , 

xN } is a set of N data points, where xt ∈ RD, t = 1, . . . 
, N, which are assumed to be drawn from a probability 
density, which is supported on a d-dimensional manifold 
M embedded in RD, where d < D; and the landmarks will 
be chosen from X. Let the landmarks’ indices be L = l1, 
l2, . . . . Then XL is the set of landmarks, and xli 
represents the i th landmark. A sketch of finding TPLs 
algorithm is given in Algorithm 1. The parameter α is 
the proportion of alternative initial landmark points. We 
set α as 0.05 without careful selection because it makes 
little difference to the result due to the following step of 
removing redundant landmarks. If the approximation 
error of one landmark xlR to the tangent space at one of 
the other landmarks is small, xlR is thought to be 
redundant and will be removed from the set of 
landmarks. The set T contains 

 

all of the topological error points (TEPs) corresponding 
to the current set of landmarks. The matrices LE and LM 
will be described in the next paragraph. The goal of the 
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algorithm is to find a set of landmarks. These landmarks 
can reliably represent the manifold, and can be used to 
construct linear patches. These landmarks also can 
generate individual Voronoi cells in the ambient space 

that do not intersect the manifold at distant locations. If 
there are some TEPs, new landmarks should be added.  
Topological error points: let dE (.,.) stand for the  
 

including both xt and xL j M(xt ), j = 1 or 2 does not span a 
near linear subspace. However, the problem of how to 
define the criterion for enough on an unknown manifold 
is inherently ill-posed. According to the analysis in the 
above section and in [36], we thus turn to defining 
element of the vector LE in Algorithm 1 is [LE (xt )], and 

the tth column of the matrix LM is [L1 M(xt ) ... L(d+1) M 

(xt )]T . We denote the inverse map for L j M(xt ) as Cellj 

M (l) = {xt |L j M(xt ) =l}. The meaning of the “cell 
map” is as follows: given a landmark, find the data points 
that take this landmark as the j th landmark. TEP 
indicates that the projection error of xt  onto the tangent 
Euclidean distance in RD, and dM(.,.) stand for the 

geodesic distance in M (we derive the geodesic distance 
between two data 
points using the algorithm in [8]). Given xt ∈ M, LE (xt ) 

denotes the index of its nearest landmark with respect to 
dE(・, ・), and L j M(xt ) denotes the index of its j th 

nearest landmark with respect to dM(., .) on M. The tth  
 space of manifold at xL1 M(xt ) or xL2 M(xt ) is large, or xt 
and xLE(xt ) are distant enough from each other such that 
the connection between them makes a short-circuit of 
that manifold. If only given the first criterion, xL1 M(xt ) 
will be enough. Given the second criterion, as a res ult, 
both xL1 M(xt ) and xL2 M(xt ) are considered here. Then, the 
question is how to test whether xt is a TEP. One needs to 
judge that whether the projection error of xt onto the 
tangent space of manifold at xL1 M(xt ) and xL2 M(xt ) is 
large enough such that one patch  

 

 

heuristics. 
1) Given a data point xt , we find the number n such 
thatLE (xt ) = Ln M(xt ). Compute the xt ’s local 
coordinates 
in the tangent space of manifold at xL j M(xt ) , θ j t , j = 
1, 2. If _θ j t _/_xt −xL j  M(xt ) _ < η, j = 1 or 2, or n > 

d+1, xtis taken as a TEP, where η is the parameter to 
determine the local linearity. Redundant landmarks can 
also be removed by this criterion (see step 3 in Algorithm 
1). Specifically, if _θ L mn _/_xlm xln _ > η, where θ L 
mn is xlm s local coordinate in the tangent space of 
manifold at xln, then xlm is redundant and will be 
removed. We go through landmarks in a random order 
and remove the redundant ones sequentially. To 
eliminate the TEPs, new landmarks should be added. A 
simple solution is to choose a new landmark among 
those TEPs (step 13 in Algorithm 1). We first cluster 
TEPs, i.e., all x ∈ T , according to their L1 M(x). The 
second step is to choose a point in the biggest cluster 
C(lm) as the new landmark xlq by picking up the one 
that is the farthest from xlm. When a new landmark xlq is 
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acquired, we need to update LE (xt ) and L j M(xt ), j = 
1, . . . , d + 1 for all xt ∈ X (step 13 in 
Algorithm 1). The procedure is shown in Algorithm 2. 
Fig. 2 shows the unevenly sampled S-curve and the 
chosen 
landmarks for it by three methods, i.e., method in [36], 
method in [23], and our method. There are too few 
landmarks to preserve the global structure in Fig. 2(b). In 
Fig. 2(c), the landmarks are distributed unevenly as the 
origin data points do. There are too few landmarks to 
preserve the global structure in the sparse part and too 
many landmarks which will result in redundancy in 
dense part. In contrast, the TPLs found by our method 
can reflect the structure of manifold better [see Fig. 2 
(d)]. Since the set of TPLs has been settled, the 
construction procedure for overlapping patches is 
straightforward. Suppose XL = {xl1, . . . , xl p } is the 
set of TPLs. There are p overlapping linear patches 
corresponding to these landmarks. The i th patch 

 

Fig. 2. Synthetic S-curve dataset. (a) 800 points sampled 
unevenly on S-curve manifold. (b) 41 landmarks chosen 
by method in [36]. (c) 173 landmarks chosen by method 
in [23]. (d) 138 TPLs. (For interpretation of the 
references to color in these figures, the reader is referred 
to the online version of this paper.) 
is 

 

B. Global Coordinates of TPLs 
Some existing methods, such as MVU [19], Isomap [8], 
diffusion map [20], RML [31], and DPE [23], etc., which 
have good performance in preserving the global 
structure, can be used to derive the low-dimensional 
coordinates of TPLs. Because this point is not the focus 
of this paper and in view of the Isomap as a well-known 
classical algorithm, we chose an improved Isomap called 
topologically constrained isometric embedding (TCIE) 
proposed in [38] recently. All data points are used in the 
step of looking for the boundary points, and then TCIE is 
run on TPLs. We call it the global TCIE on landmarks. 
Suppose X = _x1 ・ ・ ・ xN _ is the matrix of D-

dimensional data, and XL = _xl1 ・ ・ ・ xl p _ is the 
matrix of p landmark points which are the output of 
Algorithm 1. Global 
TCIE on landmarks (G-TCIE) has four steps. 1) 
Compute the N × N matrix of geodesic distances   

DM = dM(xi , x j ). (In fact, this step has been done in 
Algorithm 1 in order to obtain LM.) Then, the geodesic 
distance matrix of landmarks is DL = ST L DMSL, where 

SL is a 0–1 data selection matrix such that XL = XSL .  
2) Detect the boundary points ∂M of the data manifold. 
(Refer to [38].) 
3) Detect a subset of consistent distances according to 
either (criterion 1) ￣P 1 = {(li , l j ) : cM(xli , xl j ) ∩ 
∂M= ∅} where cM(xli , xl j ) is the geodesic connecting 
xli and xl j , or (criterion 2, we use this criterion in our 
experiments) ￣P 2 = {(li , l j ) : dM(xli , xl j ) ≤ dM(xli 

, ∂M) + dM(xl j , ∂M)} where dM(x, ∂M) = in 

fx_∈∂MdM(x, x_) denotes the distance of x from the 
boundary of M. 
4) Solve the MDS problem for consistent pairs only Y ∗ L 
= argmin YL_ li<l j wi j (dli l j (YL ) − dM(xli , xl j ))2 
where wi j = 1 if (li , l j ) ∈ ￣P and wi j = 0 otherwise. 

C. Local Coordinates and Landmark-Based Alignment 
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By (4), we obtain p overlapping patches corresponding to 
p landmarks. We denote these patches as X1. . . . . X p, and 
the i th patch consists of a set of ni data points in X. For a 
patch Xi with ni data points, where the corresponding 
landmark is xli and the matrix of the other ni − 1 points is  

 
be the neighborhood matrix of xli . By SVD, we have 

 

Here, d << D, and the column vectors of can 
be regarded as the orthonormal basis of the tangent space 

of manifold at xli ;  is then the 
projection of  onto the tangent space. It is clear that 

 
We find d largest eigenvalues λ1,………λd and the 
corresponding eigenvectors Ui = [ui1... uid ] of  Xi . The 
local low-dimensional coordinates of the data points 
denoted by i = [θi1 . . . θi(ni−1)] in patch ˆX i are 
formulated as 

 
It is easy to see that the local low-dimensional coordinate 
of xli is a d-dimensional zero vector. Then we obtain the 
local coordinates of the whole patch i . Because the 
approximation errors of the data points in eacpatch to the 
tangent space at the corresponding landmark are small 
and these data points are thought to reside on a local 
linear space, the usage of the coordinates of data points 
on the tangent space of the manifold at landmark to 
obtain the local 

representations becomes reasonable in our work. Let Yˆ 
= [y1 . . .  yN−p]be the global coordinates of all 
input data points excluding p landmark points. i 
represents the local geometry of the manifold in patch Xi 

, and Yˆ can be constructed by aligning all patches 
through translation, rotation, and scaling with landmarks 
as reference points, called LA. Formally, let Yi represent 
the global coordinate of  i in Rd . The low-dimensional 
coordinate of the i th landmark derived by TCIE is yli, 
and let yli ∈ Yi , correspondingly, its local coordinate is 
θli , θli 
∈ i . As mentioned before, θli is a d-dimensional zero 
vector. Firstly, each patch is translated such that the 
corresponding landmark point θli meets yli . In order to 
express easily, we can assume the i th landmark yli to be 
the ni th point in its patch Yi . Taking out yli from Yi , we 
have Yˆi = [yi1 . . .  yi(ni−1)]. Subtracting yli from all the 

data points in Yˆi , we have where _ = _1 ・ ・ ・ 1_T . 
Next we rotate and scale the patch to 

 
find the best Ai such that 

 
In (9), Ai represents a linear transformation matrix. The 
alignment error of local representations Ei can be 
expressed 
as 

 
In order to minimize the Frobenius norm _Ei_, we need 
to solve Ai using a least-squares fitting method. The 
solution is given by 

 
we can obtain 
 
Let  
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and Si be 0–1 data selection matrix such that Yˆi = Yˆ Si . 
The squared alignment error of the data in patch Xi can 
be written as 

  

From the global view, we need to seek a low-
dimensional Yˆ to minimize the total alignment squared 
error of all p  patches. Thus, the final objective function 
of patches alignment can bederived as 

 
where 
 

 
To minimize E in (15), we can find optimal Yˆ by 
directly solving the linear system 
 

 
The last embedding can be expressed by 

 
where H†1= HT 1 (H1HT 1 )−1 is the Moore–Penrose 

pseudoinverse of H1. Put YL and Yˆ together, we get  
embedding of all data points Y . 
 
D. Proposed Algorithm and Approximate Analytic 
Projection 
The main computation steps of LCA-GP can be 
summarized as follows. 
1) Find a set of TPLs, XL , by Algorithm 1. 
2) Apply global TCIE on XL and obtain the embedding 
YL in Rd . 
3) Construct the overlapping patches set based on the 
landmarks by (4). 
4) Obtain the local tangent coordinates of each patch Xi 
by (7) and compute Wi by (13). 
5) Compute H1 in (16) and H2 in (17) and obtain the 
embedding Yˆ by (19). 
6) Put YL and Yˆ together to get the last embedding Y . In 
the first step, computing LM and updating it involves 
calculating shortest paths from p TPLs to other nodes on 
the graph. With Fibonacci heap, these take O(pNlogN). 
Computing LE and updating it take O(pN). As to run 
TCIE, since the geodesic distances between TPLs has 
been 
calculated in the previous step, solving the MDS 
optimization problem takes O(p2D) and the boundary 
detection takes O(p2). Calculating the local coordinates 
of all patches takes O(NDmin(2N/p, D)). The fifth 
step is to solve a linear system with the computational 
complexity O(N3) and for alarge dataset it consumes 
most of the time.Like almost all other methods for 
nonlinear dimensionality reduction, LCA-GP provides an 
embedding of a train set of 
data points. Often, we need to project a test data point 
that is outside the train set. The problem is an “out-of-
sample extension” [39]. In our algorithm, each data point 
belongs to two patches, patch i and patch j. We have 
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where ei and e j are error terms and are very small. If the 
error term is ignored, then we approximately find 
transformation from each local linear model to the global 
coordinate space as follows: 

 
The mapping function gives an explicit forward mapping 
from the observation space to the embedding space. 
Furthermore, its reverse mapping can be easily deduced 
in an entirely inverse manner 

 
Once the mapping function between the two spaces is 
built through a mixture of linear transformations, when 
applying to new test data, LCA-GP only needs first to 
identify to which patch the test data belongs and then to 
perform the corresponding transformation. Specifically, 
Algorithms 3 and 4 are designed to generalize the train 
results to unseen cases in the observation and embedding 
space, respectively. As a result, 
the train set is no longer required for subsequent process, 
leading to significant computational and storage savings. 

 

 
E. Comparisons With Previous Work 
It can be seen that LCA-GP bears some resemblance to 
LTSA and subsequent methods [30], [34]. Generally 
speaking, these methods all share the (similar) 
philosophy of aligning local coordinates in a global 
coordinate space. 
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However, there are some significant differences between 
LCA-GP and the other methods. First, the constituted 
finite 
open covers of the manifold by these methods are 
different from each other. Second, LCA-GP solves the 
problem of optimum alignment differently from other 
methods. Progressive alignment method used in [34] and 
[35] is absolutely different from the proposed one. It 
aligns local coordinates patch by patch. Both LCAGP 
and the one in [18] and [30] try to minimize the global 
alignment error; however, as to minimize objective 
function, due to the introduction of landmarks, our LA 
algorithm is quite different from others which we call 
conventional alignment (CA). CA first translates each 
patch such that the local coordinate (which equals to 
zero) of the mean point of the patch meets its global 
coordinate (which is unknown), and then rotates and 
scales all patches to minimize the global alignment error 
as follows: 
 
where Si is selection matrix, Wi can be derived by local 
coordinates of the i th patch 

 
and M_ = B_B_T . Consider that the problem to minimize 

(23) is ill-posed, and a constraint, i.e., YYT = I , is 
imposed to remove arbitrary translation and scaling. The 
LA method does not need to do so, and it first translates 
each patch such that the corresponding landmark’s local 
coordinate (which equals to zero) meets its global 
coordinate (which is known), and then rotates and scales 
all patches to minimize the global alignment error as in 
(15) which can be translated into a linear system in (18) 
without any constraints. LCA-GP has properties similar 
to those of FusionGL [23]. First, both LCA-GP and 
FusionGL use landmarks to preserve the global structure 

of manifold. Second, they fill the local models into the 
global coordinate space. We compare LCA-GP and 
FusionGL on these two issues. First, the two methods to 
select landmarks are different. It has been described in 
Section II. And the visualized comparison 
results are shown in Fig. 2. Second, FusionGL uses 
semisupervised manifold learning methods with inexact 
inputs, i.e., it minimizes an objective function that 
combines the mapping error of landmarks with a 
regularization term. Sun et al. use SS-LLE and mention 
that SS-LTSA can be used as well. We first compare LA 
with SS-LTSA. From alignment standpoint, SS-LTSA is 
same as LTSA on the first two steps, i.e., the 
neighborhood of each data point constitutes one patch 
and PCA is used to derive local coordinates of all 
patches. As to the third step, SS-LTSA 
translates each patch such that the local coordinate of the 
mean point of the patch meets its global coordinate,  and 
then rotates and scales all patches such that the local 
coordinates of the landmarks meet their global 
coordinates, while the global alignment error is 
minimized, i.e., adds a constraint on (23). Then 

 
where SL is a selection matrix such that XL = XSL. From 
the semisupervised manifold learning standpoint, (15) in 
LA 
can be reformulated as follows: 

 
where Si and Wi , i = 1,. . . .  p, have the similar 
meaning of (14), Ri is 0–1 data selection matrix such that 
Y Ri = yli_T 
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and M = BBT . Partitioning Y and M, minimization of 
(26) becomes 

 
where Y1 = YL . By setting the gradient of the above 
objective function to zero, we get 

 
We see that the global low-dimensional coordinates can 
be computed by solving a linear system of equations. 
Obviously, M in (26) is different from M_ in (25). For 
inexact landmarks information, FusionGL in fact 
minimizes 
an objective function that combines the mapping error 
with a regularization term as follows: 

 
where Y ∗ 1 = YL , β is the regularization parameter that 
reflects the confidence level in landmarks information. In 
this way, the global coordinates of ladmarks can be 
optimized, but an approximate mapping function in 
closed form between highdimensional data space and 
low-dimensional embedding space cannot be derived and 
the out-of-sample problem will not be settled. 
 
 IV. EXPERIMENTS 
In this section, we systematically compare our method 
with other dimensionality reduction algorithms on both 
synthetic and real-world data. All algorithms are 
straightforwardly implemented in MATLAB. 
In most experiments, our algorithm is compared with six 
different dimensionality-reduction algorithms based on 
manifold learning, i.e., Isomap [8], LLE [11], LTSA 
[18], LMDS [30], LLI [34], and FusionGL [23]. In these 
algorithms, Isomap, LLE, and LTSA are three well-
known algorithms for nonlinear dimensionality reduction 
and LMDS and LLI are two representative alignment-

based algorithms devised recently. FusionGL is an 
algorithm similar to ours. 

 
Fig. 3. (a) 2000 data points sampled from “incomplete tire” 
manifold.(b) Embedding by Isomap. (c) Embedding by LLE. (d) 
Embedding by LTSA. (e) Embedding by LMDS. (f) Embedding by 
LLI. (g) Embedding by FusionGL. (h) Embedding by LCA-GP. (For 
interpretation of the references to color in these figures, the reader is 
referred to the online version of this paper.) 
 
A. Visualization Experiments 
In order to test the effectiveness of LCA-GP in    
visualized way, two synthetic datasets, which are more 
difficult to learn than some widely used datasets such as 
Swissroll and Scurve, and one image dataset are first 
employed. The manifold of “incomplete tire” cannot 
isometrically map to a lower dimensional Euclidean 
space and the manifold of “Swissroll with a hole” 
(Swiss-hole) is nonconvex. The Frey face images dataset 
is also used in [11] and [30]. The corresponding 2-D 
embedding results are shown in Figs. 3–5, respectively. 
The first dataset contains 2000 data points evenly 
sampled from an “incomplete tire” and is plotted in Fig. 
3(a). Seven algorithms run on all data points and the 
parameters of each algorithm are selected carefully as 
follows. The neighbor parameter k in Isomap, LLE, and 
LTSA is 6, 12, and 8, respectively. The number of 
centers in LLI is 150. In LMDS and FusionGL, the 
neighbor parameter k is 8 and the overlapping factor α 
is 0.5. The other three parameters of FusionGL are 
selected using the method in [23], specifically, tl = 
0.127, tg =∞, β = 10−4. In LCA-GP, the proportion 
of initial landmarks parameter α is 0.05, the 
neighborhood size to estimate the tangent space of 
alternative landmarks is 6, and the local linearity 
parameter η is 0.985. One important future work is to 
develop an adaptive algorithm to automatically tune the 
parameter η by relying on some kind of performance 
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evaluation criterion [40]. The embedding result of 
Isomap contains many holes and distortion of shape [see 
Fig. 3(b)]. This is because Isomap cannot derive local 
structure well due to the inaccuracy of the computed 
geodesic distance matrix, and the mechanism of keeping 
the distances is only effective for globally iso 

 
Fig. 4. (a) 1000 data points sampled from the Swiss-hole manifold. (b) 
Embedding by Isomap. (c) Embedding by LLE. (d) Embedding by 
LTSA. (e) Embedding by LMDS. (f) Embedding by LLI. (g) 
Embedding by FusionGL. (h) Embedding by LCA-GP. (For 
interpretation of the references to color in these figures, the reader is 
referred to the online version of this paper.) 
 

 

neighborhood relations in the landmarks are wrong due 
to the existence of the hole and seriously distorted 
embedding of landmarks is derived by DPE based on 
these neighborhood relations. Our method [see Fig. 4(h)] 
finds of the manifold. This is due to the local isometric 
and global preserving properties of LCA-GP. 
In Section III-D, the computational complexity of 
LCAGP is analyzed by Big O. To further compare with 
the 
other algorithms, Table I reports the computation time of 
the experiments above. We see that LCA-GP is much 
faster than Isomap, LLI, and FusionGL, but slower than 
LLE, LTSA, and LMDS. Face recognition has been one 
of the most popular research topics in pattern recognition 
during this decade [41], [42]. A critical part in face 
recognition is the dimension reduction algorithm for 
feature extraction. We applied LCA-GP to the Frey face 
images dataset1 that has been used in [11] and [30]. The 
dataset consists of 1965 photographs taken of the same 
person with different poses and various facial 
expressions. Each photograph is a 20 × 28 grayscale 
image and therefore can be treated as a vector with 560 
elements corresponding to raw pixel values, giving rise 
to inputs with D = 560 dimensions. Although the input 
dimensionality is quite high, the perceptually meaningful 
structure of these images is parameterized by fewer 
independent degrees of freedom pose and expression 
variables. We choose α = 0.05, 

k = 16, and η = 0.6 empirically. Fig. 5 illustrates the 2-
D embedding and some reconstructions. Similar to 
previous work 
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Fig. 5. 2-D embedding discovered by LCA-GP for the Frey face 
manifold. 
Blue pluses indicate the global coordinate for each train example. The 
face images on the borders are reconstructed from the global 
coordinates specified by the corresponding open circles (data points 
along the straight lines in the global space). 
 
 [30], the 2-D embedding correctly discovers the two 
dominant variations in the face manifold, one for pose 
and another for expression. One may also see that some 
reconstructions, especially those near the boundary, are 
not good enough. This is mainly because the 
reconstruction algorithm is one kind of approximate 
algorithm, and, further, the model is extrapolating from 
the train images to low sample density regions. 
B. Data Clustering 
We apply the proposed and existing manifold learning 
algorithms to two handwritten digits databases, i.e., the 
USPS 
dataset2 and the MNIST dataset,3 and then perform K-
means clustering to compare the results of different 
algorithms in these tests. The USPS dataset contains 
1100 grayscale images of each of the 10 digits from “0” 
to “9.” Each image is sized as 16 × 16 and converted to 

D = 256 dimensional vector. The MNIST dataset has a 
training set of 60 000 images and a testing set of 10 000 
images. In our experiments, we take the first 1000 
images from training set and the first 1000 images from 
testing set as our dataset. Each digit contains around 200 
images. Each digit image is of size 28 × 28 and therefore 

represented by a D = 784 dimensional vector. The 

clustering algorithm generates a cluster label for each 
data point. The clustering performance is evaluated by 
comparing the generated class label and the ground truth. 
In our experiment, accuracy is used to measure the 
clustering performance. Given a point xi, let ri and si be 
the obtained cluster label and the label provided by the 
ground truth, respectively. The accuracy is defined as 
follows: 
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where N is the total number of data points and δ(x, y) 
is the delta function which is equal to 1 if x = y and 0 
otherwise, and map(ri ) is the permutation mapping 
function that maps each cluster label ri to the equivalent 
label from the dataset. The best mapping can be found by 
using the Kuhn–Munkres algorithm. The evaluations are 
conducted by using different numbers of clusters (K), 
i.e., K = 2, 3, 4. For each given cluster number K, 10 
test runs are conducted on a subset of the data made of 
samples from K randomly chosen classes, and the final 
performance scores are computed by averaging the 
scores from the 10 tests. All algorithms are evaluated on 
the same combinations of K classes. We apply different 
algorithms to 3-D embedding (USPS) or 2-D embedding 
(MNIST) and apply K-means for clustering. The K-
means is applied 10 times with different start points, and 
the best result in terms of the objective function of K-
means is recorded. Table II shows the clustering 
accuracy by using 3-D embedding for each algorithm on 
the USPS dataset, and Table III shows the clustering 
accuracy by using 2-D embedding for each algorithm on 
the MNIST dataset. As can been seen, LCA-GP 
outperform the other six algorithms. In Table II, LTSA 
achieves 90.75% clustering accuracy while our method 
achieves 90.2% when the number of clusters is 2, but the 
average accuracy of LTSA is lower than ours. This is 
because the imposed unit covariance constraint of LTSA 
results in the deficiency of global metrics and undesired 
rescaling of the manifold, which may impact the 
clustering results, and the more the number of clusters, 
the larger the impact. 
C. Pose Estimation 
In this subsection, we use the oriental face database4 for 
head pose estimation to test the performance of LCA-GP. 
 

 
The database consists of 33 669 images of 1247 people 
in  JPEG format. We extract a typical subset of the 
oriental 
face database, which contains face images of 20 different 
individuals; each individual has 19 face images with 
pose angle views varying from −90° to 90° in increments 
of 10°. The face samples are prepared in the following 
manner. First, face-only images are automatically 
extracted from the original images and further subjected 
to the following preprocessing: grayscale images are 
formed [see Fig. 6(a) for an example], which are 
subsequently transformed to edge images by using a 
derivative of Gaussian filter [see Fig. 6(b) for an 
example]. The resulting images are scaled to a constant 
size (20 × 21 pixels) and stored as 420-D vectors to be 
used as training/testing samples. Because the objective of 
the first experiment is to compare the performance of 
different manifold learning algorithms and most of the 
six algorithms listed at the beginning of Section IV do 
not address out-of sample extensions, we adopt  the 
following experimental procedure: we run each of the 
seven methods (including ours) on all the 380 samples 
which 
includes 200 training samples and 180 testing samples to 
derive the d-dimensional embedding of test samples and 
use a linear method proposed in [43] to obtain their view 
angles. Specifically, let X be all samples, Xtn be the train 
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samples, and Xt t be the test samples. For each manifold 
learning method, we first derive the d-dimensional 
embedding of Xtn, Ytn, and a linear pose parameter map F 
is calculated from tn = FYtn, where tn is a matrix of the 
view angles of the training samples. Then the embedding 
of Xt t , Yt t is derived by running the corresponding 
manifold method on X. The resulting viewangles of the 
test samples can be estimated by  t t = FYt t . 
Table IV illustrates the average angle errors obtained by 
each algorithm, as d is set to 2, 4, 6, 8, and 10, 
respectively. 
The row corresponding to LCA-GP1 is the results of our 
method by the above procedure. As can be seen from 
Table IV, the proposed LCA-GP-based procedure finds 
more significant embedding space than the other six 
methods and achieves the lowest estimation errors. This 
may be due to the TPLs which can effectively guarantee 
the linear property in each local patch and to the LA 
method which can preserve the manifold structure better. 
To verify the effectiveness of out-of-sample extension of 
LCA-GP, we modify some steps of the above procedure. 
Specifically, Yt t is derived by running out-of-sample 
extension of LCA-GP. The row corresponding to LCA-
GP2 in Table II shows the average angle errors obtained 
in this way. It can be 

 
seen that, in all cases, the difference between LCA-GP1 
and LCA-GP2 is very small. This indicates that the 
derived approximate analytic projections between the 

observation space and the embedding space are useful in 
real applications. 
V. CONCLUSION 
In this paper, we described a novel alignment-based 
manifold learning method. Compared with the classic 
Isomap and LLE, our algorithm can well preserve both 
the local geometry and global structure of the manifold. 
In comparison with the existing alignment-based 
methods such as LTSA and LMDS, LCA-GP derives 
more reasonable and efficient local models, and 
preserves the relationships between patches in original 
space during the alignment process without the unit 
covariance constraint. Compared with the related two-
step method such as FusionGL, LCA-GP finds the TPLs 
which can reflect the structure of manifold better, and 
further approximately derives a parametric function for 
out-of-sample extension. Experimental results on both 
synthetic data and image datasets in Section IV indicate 
that LCA-GP obtains better embedding. Even so, still 
there are some problems that remain. For one thing, 
instead of empirical selection, developing an adaptive 
algorithm to automatically tune the parameter η in 
LCA-GP 
is a challenging and interesting task. Moreover, because 
of TCIE’s failure for those manifolds that cannot be 
isometrically mapped to a lower dimensional Euclidean 
space, developing a more effective method to derive the 
global coordinates of landmarks may also be an 
important direction in future works. In addition, inspired 
by FusionGL, we propose to investigate a more flexible 
algorithm to optimize the global coordinates of 
landmarks in the LA step. 
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