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Abstract: This work presents the study of one-dimensional and unidirectional transport of non-reactive solute through 

a saturated and homogeneous porous medium in a laboratory column. Based on the discrete approach, two models were 

discussed. The first called classical model (CM) established when local thermodynamic equilibria are reached; however, 

the second was the mobile/immobile model (MIM). This model takes into account the physical non-equilibrium (PNE), 

so the pore space is divided into “mobile” and “immobile” flow regions with first-order mass transfer between these 

two regions. The objective of this work is the determination of the analytical solution of the transport equation for both 

models using Inverse Laplace transforms based on the method of residues. Validation of each equation is made through 

a calculation code that we developed in MATLAB to optimize the experimental breakthrough curves (BTCs). 

The results obtained show that for a moderate flow rate (Q= 5ml/min) the BTCs present an asymmetry, the assumption 

of physical equilibrium on which the CM model based, is sometimes inadequate. This justified the application of the 

MIM model. 
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Nomenclature 

BTC breakthrough curve. 

CDE convection dispersion equation. 

CM classical model. 

MIM mobile-immobile model. 

PNE physical non equilibrium.  

C concentration of solute in contact with an aggregate [M L-3]. 

    Laplace transforms of C. 

D0 molecular diffusion coefficient in free water [L2T-1]. 

d diameter of column [L]. 

dp diameter of a soil particle [L]. 

F (t) function of the BTC from step inputs. 

G(s) global transfer function for the column. 

G(T) transfer function in time domain. 

g_k (s) transfer function for cell k. 

J number of mixing cells. 

K_im ratio of immobile water fraction to mobile water fraction 

k_M mass transfer coefficient [T-1]. 

L length of column [L]. 

M mass of the porous medium [M]. 

N number of observation concentration data. 

Q volumetric flow rate [L3T-1]. 

R2 correlation coefficient. 

Sp area of a soil particle [L2]. 

s Laplace transform parameter. 

t_M characteristic mass transfer time [T]. 
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t the time [T]. 

tm characteristic convective time[T]. 

V volume of the medium [L3]. 

Vp volume of a soil particle [L3]. 

v_m Darcy velocity [LT-1]. 

y_i observed concentrations.  

ŷ_i simulated concentrations.  

ε external porosity. 

θ volumetric water content. 

θm, θim volume fraction of mobile and immobile water relative to the whole volume. 

ρ_l fluid density [M L-3]. 

μ_K  kth order time moment [Tk]. 

σ² variance of  BTC [T2]. 

σ'² reduced variance.  

δ thick of the thin film surrounding the particle [L]. 

η_e dynamic viscosity of water [ML-1T-1]. 

I. INTRODUCTION 

 

The study of the transport of solute in a saturated porous media has received increasing attention in different fields, 

such as hydrogeology, petroleum engineering, (soil) hydrology, and waste disposal sites construction. For instance, 

aquifer systems are often vulnerable to contaminants and need special protection when used as sources for drinking 

water [1].  

 

The hypothesis that has been used widely in solute transport to reduce its complexity is that the medium properties are 

invariant and local equilibrium assumption is valid during the transport [2-7]. In the field conditions at a given velocity, 

these assumptions sustain an ideal transport behavior. However, there are many macro and micro level processes which 

influence the applicability of ideal transport. Practically the equilibrium assumption does not exist in the real field 

conditions and the nature of the solute transport is always in non-equilibrium regime. The PNE transport of 

contaminant is reported in the literature [8-13].  

 

Generally, the behavior of the solute transport through porous medium is represented by BTCs. The shape of BTCs can 

be used to understand the transport behavior [14]. 

Sudicky et al [10] and Starr et al [11] observed the behavior of BTCs from the elution of non-reactive and reactive 

solute through stratified porous medium. The nature of BTCs showed a significant departure from classical dispersion–

diffusion theory. It was found that there are some interactions influencing the transport of contaminant which is not 

explained by classical theory. The distribution of BTCs resulting from the elution of solute through porous medium 

under the influence of non-equilibrium condition is asymmetrical.  

 

The PNE will affect transport because of nonuniformity of the flow field at the pore scale including preferential and 

unstable flow [15-17]. The mobile/immobile model has commonly been used to account for PNE during solute 

transport [18, 19]. In this case, the pore space is partitioned into two regions. Transport in the “mobile” region of the 

pore space is described with the convection–dispersion equation ( DE) while solute exchange between “mobile” and 

“immobile” regions occurs by diffusion and is typically described with a first-order rate equation. The mobile/immobile 

model predicts early initial BT  as a result of rapid transport through the “mobile” region, and extended tailing of the 

BTC as a result of slow diffusion between the “immobile” to the “mobile” region. 

 

Less research has been undertaken to examine the effect of the pore water velocity on movement of the solute. Yan Li 

Jiang et al [20] study the influences of different pore water velocities on solute transport through undisturbed lœssial 

soil columns collected from the Lœss Plateau, chloride BT s generated by pulse inputs were fitted by both the 



 
 

  
           ISSN(Online): 2319-8753 

            ISSN (Print):  2347-6710 

 

International Journal of Innovative Research in Science, 

Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 

Vol. 5, Issue 11, November 2016 

 

Copyright to IJIRSET                                               

 

convection dispersion equation (CDE) and MIM model. The effects were also reflected in the model parameters of each 

model. Both models fitted the experimental data, although the MIM model tended to fit the data better than the CDE 

especially for high pore water velocity. An analysis of the model parameters showed that, when pore water velocity 

increased, the mobile-immobile partition coefficient tended to decrease and the mass transfer coefficient tended to 

increase.  

 

A large number of specialized models now exist to simulate the various processes at various levels and for different 

applications [21]. Modeling approaches range from relatively simple analytical and semianalytical solutions, to much 

more complex numerical codes that permit consideration of a large number of simultaneous nonlinear processes.  

 

The use of numerical models is now also very much facilitated by the availability of specific software packages in both 

the public and commercial domains, including the development of sophisticated graphical user interfaces that 

dramatically simplify their use [22, 23]. Examples of widely used codes for flow and transport in variably saturated or 

multiphase systems are MACRO [24], UNSATCHEM [25], FEHM [26], HYDROBIOGEOCHEM [27], VS2DI [28], 

MODFLOW-SURFACT [29], STOMP [30], SWAP [31], and the HYDRUS [32] and TOUGH [33] family of codes. 

 

While semi-analytical and analytical solutions undoubtedly remain popular for many applications. Neville et al [34] 

and Semra et al [35] proposed a semianalytical approach. After applying a Laplace transform of the governing 

equations for the PNE model, the solute concentration was obtained by numerical inversion.   

Currently, analytical solutions can typically only be obtained for linear transport problems for simplified conditions, 

such as well-defined conditions in laboratory experiments. However analytical methods are also useful to verify 

numerical methods, elucidate the role of different model parameters, and to quantify approximately the transport such 

as for longer time or spatial scales [36].  It should also be noted that detailed numerical simulations are often not 

warranted because of a lack of reliable model parameters. Therefore analytical solution for the MIM model will still be 

valuable. 

 

This article presents the modeling of non-reactive solute transport through a saturated and homogeneous porous 

medium in a laboratory column. Our focus is especially on transport processes in Laboratory scale experiments.  First 

we give a brief overview of the classical solute transport equations, which used for modeling equilibrium solute 

transport processes in saturated media. Next we provide a brief discussion of possible PNE transport formulations often 

needed for flow processes in porous media  

 

The principal objective of this work is to derive analytical solution for the MIM model that offers the flexibility to 

quantify the impact of PNE solute transport processes in laboratory soil columns. A secondary objective of this work is 

to apply the new solution of the MIM model to describe BTCs reported by Semra et al [35]. 

 

II. DISCRETE APPROACH 

 

The discrete approach or the mixing-cell-in series model expresses the convective-dispersive solute through porous 

media as a constant flow rate through a finite number, J, of identical mixing cells or agitated reactors. A mixing cell 

size is equal to V/J (Fig.1).  It is generally expressed in term of length, L/J, where L is the whole medium length. It is 

equivalent to an aggregation of a few grains and the surrounding fluid [37]. 
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Fig.1: Discrete approach to represent solute transport into porous media 

 

Classical model (CM) 

This model considers that the local thermodynamic equilibria are established. The solute transport is obtained from 

mass balance in one cell which rank is k (Fig 2), [38].  

 

 
Fig.2: Classical model of solute transport  
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Where Ck-1 and Ck are cell k inlet and outlet fluid-in-flow concentrations respectively [N/L
3
]; Q, the constant flow 

rate [L
3
/T]; V the medium global volume [L

3
];   the external porosity. 

 

The mobile/immobile model (MIM) 

This model has commonly been used to account the PNE during solute transport. In this case, the liquid is 

distributed between the mobile zone and the immobile zone (Fig.3). The exchange of solute between these two 

regions obeys a linear law [39].  

 
Fig.3: Mobile/immobile model of solute transport  
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The two governing equations for solute transport in a porous medium with mobile and immobile regions of soil water 

are defined as: 

 

              
   

 

     

  
 

   

 
(            )                                                                                                   (3) 

   

 
(            )  

    

 

      

  
                                                                                        (4)                                                                                                                                                                                                                                                                                                      

where Q is the constant flow rate [L
3
/T], θ is the volumetric water content, the subscripts m and im refer to the 

mobile and immobile region, Ck is the concentration of the aqueous phase in the mixer k [N/L
3
], V the medium 

global volume [L
3
], and     is a PNE coefficient for mass transfer between mobile and immobile region [1/T]. 

  

III. DERIVATION OF THE ANALYTICAL SOLUTION 

 

Solution for CM Model 

 

Taking the Laplace transform of the governing equation (equation (2)), one has: 

     
̅̅ ̅̅ ̅̅      

̅̅ ̅    
 

 
   
̅̅ ̅     

̅̅ ̅ [  
  

  
 ]                                                                             (5) 

Where s denotes the Laplace transform parameter;     
̅̅ ̅̅ ̅̅ and   

̅̅ ̅  represents the Laplace transforms of Ck-1 and Ck, 

respectively.  

 

From equation (5), transfer function for cell k,      , relating respective inlet and outlet fluid concentration Laplace 

transforms is written according to equation (6). 

      
  ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅
 [  

  

 
 ]

  

                                                                                                    (6) 

Where tm is the characteristic convective time through the medium, it is calculated by: 

   
  

 
                                                                                                                                     (7)                                                                                                                                  

However, the J ordinary differential equations (2) are replaced by J algebraic equations (5). Each algebraic equation 

represents a unique cell transfer function. Finally, the global transfer function for the column, G(s), is given by: 

 

     
  ̅̅ ̅

  ̅̅̅̅
 [  

  

 
 ]

  

 (
 

   
)
 

                                                                                         (8)    

 Where          

   
 

   
                                                                                                                                     (9) 

So, the model (CM) is then a model with a single parameter, which is the number of mixers, J. 

The above solutions are derived in the Laplace domain. To obtain the time domain solutions, G(T), the Laplace 

solutions must be inverted. One can easily obtain the inverse Laplace transform of G(s). 

 

The solution in real-time domain is as follows:  

     
               

      
                                                                                                           (10)  

The response curves from step inputs is the function F (t) called the breakthrough curve. The function F(t) can be 

obtained by integrating . 

     ∫       
 

 
                                                                                                                   (11) 

In these case F(t) is given by: 

      
         

      
 ∑

      

      

 
                                                                                      (12) 
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Solution for MIM Model 

With the Laplace transform of Eq. (3) and Eq. (4), one can obtain: 
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̅̅ ̅̅ ̅̅ )                                                          (13)                                            
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̅̅ ̅̅ ̅̅ )                                                                                          (14) 

Where s denotes the Laplace transform parameter;        
̅̅ ̅̅ ̅̅ ̅̅ ,      

̅̅ ̅̅ ̅̅  and       
̅̅ ̅̅ ̅̅  represent the Laplace transforms of 

       ,     ,      , respectively and θm, θim represent the volume fraction of mobile and immobile water relative to 

the whole volume. 

 

One finds from equations (13-14): 

       
̅̅ ̅̅ ̅̅ ̅̅       

̅̅ ̅̅ ̅̅  
   

 
     
̅̅ ̅̅ ̅̅  

    

 
      
̅̅ ̅̅ ̅̅                                                                        (15) 

So, stage k transfer function is: 

      
    ̅̅ ̅̅ ̅̅ ̅

      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 [  

  

 
         ]

  

                                                                            (16) 

Where:  

   
   

 
  is the characteristic convective time. 

    
   

  
  is the ratio of immobile water fraction to mobile water fraction.                                                                                                                        

   
   

  
    is the characteristic mass transfer time.                 

     
   

     
                                                                                                                         (17) 

The global transfer function for the column, G(s), is given by: 

     
  ̅̅ ̅

  ̅̅̅̅
 [  

  

 
 (      )]
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   (  
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)

 

                                                        (18) 

 With:     
 

   
    

   

   
    

 

   
 

So, the model MIM is then a model with three parameters, which are the number of mixers, J, the mobile fraction, θm 

and mass transfer coefficient   . 

 

Analytical inversion of the solutions in the Laplace domain 

 

Given the complexity of the Eq. (18), it is not easy to obtain a simple closed-form expression for solute concentration 

through analytical inverse Laplace transform. Generally, the Laplace solutions were inverted numerically to derive 

semi-analytical solution. 

There are several numerical Laplace inversion methods such as the Stehfest [40], Crump [41] and de Hoog et al [42] 

methods, among others. These models used the Fourier series in the inversion formula, they has been widely applied in 

numerous flow and transport problems [43, 34, 35, 44, 45]. 

 

Therefore, using analytical solution here is as best as we can get from a semi-analytical perspective. The analytical 

solution offers a convenient way to explore solute transport behavior, its accuracy has been substantially proven and it 

may provide benchmarks for the testing of more general numerical models. The Cauchy's Residue Theorem [47] is 

used here to calculate the concentration in real-time domain. 
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Cauchy's Residue Theorem 

If C is a simple closed, positively oriented contour in the complex plane and f is analytic except for some points 

  ,  ,….,   inside the contour C, then 
1

  i
∫       
 

  ∑          
 
                                                                                               (19)                                          

If f has a pole of order k at      then 

          
 

      
       

  

   
{      

     }                                                                    (20) 

 

The Inverse Laplace Transform 

Given G(s), we can calculate G(t) using the Bromwich inversion formula 

      
1

  i
∫          

    

    
                                                                                                  (21) 

Here   is a real constant, and the Bromwich inversion contour   run from      to      along a straight line. 

 

  must lie to the right of all the  singularities of G(s) 

By the residue theorem, where   ,   ,….,    are the poles of G(s), we deduce that 

 

      ∑    
     

           
                                                                                                    (22) 

The solution  in real-time domain 

The decomposition in simple elements gives: 

     (
      

          
)
 

                                                                                                                (23) 

   
        √            

 
                                                                                                     (24) 

   
        √            

 
                                                                                                    (25) 

     (
        

            
)                                                                                                             (26) 

From equation (17), G (s) is a rational function of the form: 

 

     
    

    
                                                                                                                             (27) 

The roots of P (s) = 0 is the zero of the function G (s). 

The roots of Q (s) = 0 are the poles of G (s), because G (s) tends to infinity for these points. 

So, the poles of G(s) are (-A) and (-B) 

Using the equations (21) and (23): 

                                                                                                                     (28) 

 

Using the equation (22): 

         
 

      
[
    

            
        

            
   ]

    
                                                          (29) 

  
  

      
[
    

     

      

      
   ]

    
                                                                                                  (30) 

Apply the general Leibniz rule to calculate the derivative of the equation (30): 

          ∑   
  

                                                                                                    (31) 
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One finds from equations (32-33): 
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Or: 
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Then: 
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By analogy         can be written: 

        
   

      
∑     
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The function G (t) is as follows:  

      
   

      
∑     
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Or:  

     ∫       
 

 
                                                                                                                   (42) 

So : 

∫            

 
dt=  

        

     ∑
        

        

      

         
                                                                 (43)   

 

                                                                                                          

 

Then, the function F(t) is given by:  
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IV. THE BREAKTHROUGH CURVE MOMENTS 

 

Moment analysis of the BTC constitutes a more general approach to characterize solute transport in porous media.  
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Theoretical moments 

Theoretical, the breakthrough curve moments can be determined from the global transfer function G(s) according to 

Van Der Laan relation (equation (45)) without any need to inverse G(s) [48]:  

        
      

   
|
   

                                                                                                            (45) 

 

   is the k
th

 order time moment.  

One of the most important moments is the first order one,    

Calculation of the second order moment,    allows calculation of the variance σ² and, consequently, the reduced 

variance σ'².  

The variance is: 

                                                                                                                                  (46) 

Hence : 

    
  

  
                                                                                                                                  (47) 

 

Breakthrough moments for CM: 

                                                                                                                                       (48) 

    
 

 
                                                                                                                                    (49)                                                                                                                          

The reduced variance of CM model is function of hydrodynamics dispersion only. 

 

Breakthrough moments for MIM: 

                         (50)                                                                                        
 

 
 

      

          
 

 

 
 

    

       

  

  
                                                                                                                          (51)                                                                   

In this case the reduced variance is composed in two terms: the first one is related only to the hydrodynamic dispersion 

1/J, and the second term is related to mass transfer kinetics (M'(0)). It shows that hydrodynamics and exchange effects 

are separated and are only added to each other. 

Experimental moments 

As with any statistical distribution, moments for a residence time distribution (RTD) is defined by: 

   ∫         
 

 
                                                                                                               (52) 

   ∫           
 

 
     

                                                                                               (53) 

    
  

  
                                                                                                                                  (54) 

The calculation of experimental moments was making by using the trapezoidal rule programmed in MATLAB. 

Exemplar based Inpainting technique is used for inpainting of text regions, which takes structure synthesis and texture 

synthesis together. The inpainting is done in such a manner, that it fills the damaged region or holes in an image, with 

surrounding colour and texture. The algorithm is based on patch based filling procedure. First find target region using 

mask image and then find boundary of target region. For all the boundary points it defined patch and find the priority of 

these patches. It starts filling the target region from the highest priority patch by finding the best match patch. This 

procedure is repeated until entire target region is inpainted.  
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The algorithm automatically generates mask image without user interaction that contains only text regions to be 

inpainted.  

V. ANALYTICAL SOLUTION VALIDATIONS 

The calculation code used for the modeling of solute transport 

 

The calculation code that we developed, based on the Method of Least Squares, use the solution of the transport 

equations obtained for the two models to fit experimental breakthrough curves (BTCs) at different flows rate. 

 

The BTCs were simultaneously fitted with the analytical solution of CM and MIM model. With the above, we 

determined each model parameters, then we calculated theoretical reduced variances and we compared to the 

experimental ones. 

The various parameters intervening in the calculation are: the number of mixers J, residence time (for CM), more then, 

the fraction of mobile water    and the mass transfer coefficient    (for MIM). The optimization of one or more of 

these parameters can also be performed using the method of least squares.   varies from 0.5   to   , and the interval of 

kM is calculate by the relation given by [49] : 

    
  

 
 
  

  
 
   

 
                                                                                                                    (55) 

Where: 

Sp and Vp are respectively the area and volume of a soil particle with diameter dp, in the case of spherical particles, Vp / 

Sp = dp / 6, δ is the thick of the thin film surrounding the particle and D0 is the molecular diffusion coefficient in free 

water. 

To calculate  , Chen et al [50] used the relationship of Wilson and Geankopolis, 1966: 

  

 
        (

       

  
)
 

 

 
(

  

    
)
 

 

 
                                                                                        (56) 

 

Where    is the dynamic viscosity of water [ML
-1

T
-1

],     is thefluid density [M L
-3

],    is the Darcy velocity [LT
-1

] 

and θ  is the volumetric water content. 

The determination coefficient (R
2
) was used as a criteria to reflect the goodness of the fitting, which can be expressed 

as: 

 

     
∑        

  
   

∑      ̅   
   

                                                                                                             (57) 

Where     and    are the observed and simulated concentrations respectively, N is the number of observation 

concentration data at a specific flow rate. 

Experimental validation of models 

 

The BTCs used to validate the models are realized by Semra [35]. It is about a series of experiment on laboratory 

column for three flow rates 1, 2 and 5ml/min (Table 1).  

  

column d(cm) L(cm) M(g) Vp(ml)   

Chromo1 1 6.4 1.52 4.2 0.83 

Table1: Geometrical and operational parameters 
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VI. RESULTS AND DISCUSSIONS 

Application of CM model to the experimental results 

The figure 4 illustrates an example of the fitted of the BTC experimental by CM model at a flow rate of 1ml/min. 

 
Fig.4: Example of the fitted of the BTC experimental (Exp. Data) by the CM model. 

We note a good agreement between the CM model and the experimental BTC.  

We have gathered in the following table all the results obtained for various flows rates. 

 

 

Flow rate (ml/min) 1 2 5 

 Jopt 23 23 12 

R
2
 CM 0.9989 0.9988 0.9986 

   exp 0.0456 0.0511 0.1116 

   theor  0.0435 0.0435 0.0833 

Table 2: CM model validation. 

The CM model provides that the variance reduced in a medium is constant     
 

 
 (J is constant); it does not depend on 

the flow rate. 

We noted that the value of J optimized is constant and equal to 23 for the low flow rates (1 and 2 ml/min), which 

proves the validity of the choice of the CM model of transport.  However, the fitting at a flow rate of 5 ml/min is done 

for a J different from 23, and equal to 12, in this case the flow rate has an effect on the variance which does not 

correspond to the CM model. Therefore, we conclude that for a rather large flow rate, a more complex model will be 

adapted better than the CM model. 
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According to Tevissen [51], the variation of the variance with the flow rate can be explained by the presence of an 

immobile fraction of water which exchanges a solute with the mobile fraction, and in this case the flow rate affects the 

reduced variance according to the following relations.  

      
                                                                                                                                         (58) 

This relation is in the same as the relation of the reduced variance obtained by experimental method: 

                      With                                                                              (59)    

Application of MIM model to the experimental results 

The figure 5 represents the fitted of the BTC by MIM model at a flow rate of 5 ml/min.  

 
Fig.5: Fitted of the BTC (Exp. Data) for 5ml/min by MIM model. 

                                                     

We note a good agreement between the MIM model and the experimental curve.  

We have gathered in the following table all the results obtained for the three flows rates. 

 

 

Flow rate (ml/min) 1 2 5 

J 23 23 12 

R
2

 0.9979 0.9951 0.9992 

     0.829 0.829 0.816 

     0.013 0.025 0.028 

   exp 0.0456 0.0511 0.1116 

   theor 0.0435 0.0435 0.1036 

Table 3: MIM model validation. 
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For the two flow rates 1 and 2 ml / min, the fitting shows that MIM model tends to CM model. This is confirmed by the 

negligible values of           and the identical values of the variances    theor MIM=   theor CM = 1/j.  

However, for the flow rate 5 ml / min, the immobile fraction exists             and theoretical variance value is 

closed to the experimental value. This explains that the MIM model fits the experimental curve better than the CM 

model. 

Effect of the flow rate on BTC 

In order to study the effect of the flow rate on the solute transport, the fitted BTCs are represented at the tree flow rates 

on function of time based on the first order moment of each BTC. Then, the fitted parameters of the CM and of MIM 

models are examined (Tab.4). 

 
Fig6: Effect of the flow rate on BTC. 

We note that at the flow rates 1 and 2 ml / min the BTCs are perfectly superimposed, but for the flow rate 5ml/min the 

BTC present an asymmetry. 

    
 

Table 4: Fitting parameters derived by the CM model and the MIM model. 
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CM (2ml/min)

MIM (5ml/min)

Flow rate (ml/min) 1 2 5 

R
2
 MIM 0.9979 0.9951 0.9992 

R
2
 CM 0.9989 0.9988 0.9986 

   exp 0.0456 0.0511 0.1116 

   théor MIM 0.0435 0.0435 0.1036 

   théor CM 0.0435 0.0435 0.0833 
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According to this table, we note that the experimental BTCs obtained for flow rates 1 and 2 ml/min are represented 

well by the CM model, while the curve obtained for the flow rate 5ml/min is represented better by MIM model, 

therefore for the flow rate 5ml/min the immobile phase exists and that explains the shift obtained in the BTC of the 

flow rate 5ml/min (Fig 6). 

VII. CONCLUSIONS  

 

A new analytical solution was presented for MIM model which takes in the account the PNE to provide a real 

description of solute transport in porous media. The solution was obtained using the residue theorem to calculate the 

inverse Laplace transformation of the global function obtained by discrete approach. 

 

The analytical solutions for the CM and MIM models were used to fit experimental BTCs for three values of flow rates, 

this involved optimization of the parameters of each models. The comparison between the two models at different flow 

rates show that at a high flow rate (great than 5ml/mim) the MIM model tends to fit data better than CM model, so the 

effect of the flow rate is more important at high value. That can be explained by the Physical nonequilibrium (PNE) 

which affects the solute transport; this note is in according to the result found by Yan Li Jiang et al [20]. The detection 

of PNE in soils is commonly achieved by applying MIM model, the presence of the aggregates which trap water in 

their microporosity, that modifies the flow but also the distribution of the solute in soil, in this case the description of 

the results is incompatible with the use of the CM model. The use of the MIM model is justified when the breakthrough 

curve of solute has a strong asymmetry (stiff face going up and face going down trailing). The MIM model can be best 

to approach the real behavior of solute in the porous medium. 

 

This research examined the effect of the flow rates on the solute transport in porous media, the effects were also 

reflected in the parameters of the CM and MIM models. An analysis of the model parameters showed that, when the 

flow rate increased, the immobile fraction and the mass transfer coefficient tended to increase. However, experimental 

data from other studies showed that the fraction immobile increase with increasing pore water velocity when using 

curve-fitting procedures [52, 53]. This is consistent with the results of this study.  In order to determine the changes of 

various model parameters under different conditions, they should be verified from several experiments. This form of 

research should be further advanced to better control conditions. 
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