
ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 285

Dynamic Resource Management System for
Cloud User Using Virtual Machine Live

Migration
Kamakshi R1, Jony N2, Malar Priya R3, KrishnaKumar K4

PG Scholar, Dept. of Computer Science and Engineering, Adithya Institute of Technology, Coimbatore, Tamilnadu, India1, 2, 3, 4

Abstract___ Cloud computing allows cloud user to
scale up and down their resource usage based on
needs. Many of the cloud models come from
resource multiplexing through virtualization
technology. In this paper, we present a system that
uses virtualization technology to allocate resource
dynamically based on application demands and
support green computing by optimizing the number
of servers in use. We introduce the concept of
“Temperature” to measure the unevenness in the
multidimensional resource of a server. The result of
temperature value, we can combine different types
of workloads dynamically and improve the overall
utilization of server resources. We develop a set of
heuristics that prevent overload in the system
effectively while saving energy used. Trace driven
simulation and experiment results demonstrate that
our algorithm achieves good performance.

Keyword___ Cloud computing, virtual machine live
migration, hot and cold spots, resource
management, green computing.

I. INTRODUCTION
The elasticity and the lack of upfront capital
investment offered by cloud computing is appealing to
many businesses. The cloud model comes from
multiplexing of virtual resources. Studies have found
that servers in many existing data centers are often
severely underutilized due to over provisioning for the
peak demand [1], [2]. The cloud model is expected to
make such practice unnecessary by offering automatic
scale up and down in response to load variation.
Besides reducing the hardware cost, it also saves on
electricity.
Virtual machine monitors (VMMs) like Xen provide a
mechanism for mapping virtual machines (VMs) to
physical resources [3]. This mapping is largely hidden
from the cloud users. Users with the Amazon EC2
service [4], for example, do not know where their VM
instances run. Physical machines (PMs) have sufficient

resources to meet their needs. VM live migration
technology makes it possible to change the mapping
between VMs and PMs while applications are running
[5], [6]. The mapping adaptively so that the resource
demands of VMs are met while the number of PMs
used is minimized. This is challenging when the
resource needs of VMs are heterogeneous due to the
diverse set of applications they run and vary with time
as the workloads grow and shrink.
We aim to achieve a primary goal in our algorithm:
 Overload avoidance: The capacity of a PM should

be sufficient to satisfy the resource needs of all
VMs running on it. Otherwise, the PM is
overloaded and can lead to degraded performance
of its VMs.

We aim to achieve a secondary goal in our algorithm:
 Green computing: The number of PMs used

should be minimized as long as they can still
satisfy the needs of all VMs. Idle PMs can be
turned off to save energy.

For overload avoidance, we should keep the utilization
of PMs Low to reduce the possibility of overload in
case the resource needs of VMs increase later. For
green computing, we should keep the utilization of
PMs reasonably high to make efficient use of their
energy.

Fig. 1 System architecture

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 286

We make the following contribution:
 We develop a resource management system

that can avoid overload in the system
effectively.

 We introduce the concept of “Temperature” to
measure the uneven utilization of a server.

 Using “Temperature” value we can easily
detect both hot and cold spot of server.

 We can achieve the number of PMs used
should be minimized.

 Idle PMs can be turned off to save energy.

The rest of the paper is organized as follows. Section 2
provides an overview of our system and Section 3
describes our algorithm to dynamically allocate the
resource. Section 4 simulation and experiment results,
Section 5 discusses related work and Section 6
concludes.

II. SYSTEM OVERVIEW
The architecture of the system is presented in Fig. 1.
Each PM runs the Xen hypervisor (VMM) which
supports a privileged domain 0 and one or more virtual
machine [7], [8]. Each virtual server runs an
application or an application component. Xen to
implement such architecture. Each virtual server is
assumed to be allocated a certain slice of the physical
server resources. A application component is called
the nucleus on each physical server; the nucleus runs
inside a special virtual server (domain 0 in Xen) and is
responsible for gathering resource usage statistics on
that server (see Fig 1). It employs a monitoring engine
that gathers processor, network interface and memory
swap statistics for each virtual server. The nuclei
periodically relay these statistics to the virtual machine
control plane. It comprises four components: a
profiling engine, a hotspot detector, cold spot detector
and a migration manager (see Fig 1). The profiling
engine uses the statistics from the nuclei to construct
resource usage profiles for each virtual server and
aggregate profiles for each physical server.

The hotspot detector continuously monitors these
usage profiles to detect hotspots informally, a hotspot
is said to have occurred if the aggregate usage of any
resource (processor, network or memory) exceeds a
threshold. Thus, the hotspot detection component
determines when to signal the need for migrations and
invokes the migration manager upon hotspot detection,
which attempts hotspot mitigation via dynamic
migrations. It implements algorithms that determine
what virtual servers to migrate from the overloaded
servers, where to move them, and how much of a
resource to allocate the virtual servers once the

migration is complete. The cold spot detector
continuously monitors these usage profiles to detect
cold spots informally, a cold spot is said to have
occurred if the aggregate usage of any resource
(processor, network or memory) is below a threshold.
Thus, the cold spot detector if the average utilization of
actively used PMs is below the green computing
threshold. If so, some of those PMs could potentially
be turned off to save energy. It identifies the set of
PMs whose utilization is below the cold threshold (i.e.,
cold spots) and then attempts to migrate away all their
VMs. The migration manager assumes that the virtual
machine monitor implements a migration mechanism
that is transparent to applications and uses this
mechanism to automate migration decisions.

III. VIRTUAL MECHINE LIVE MIGRATION
ALGORITHM

Virtual machine migration takes a running virtual
machine and moves it from one physical machine to
another. This migration must be transparent to the
guest operating system, applications running on the
operating system, and remote clients of the virtual
machine. It should appear to all parties involved that
the virtual machine did not change its location. The
only perceived change should be a brief slowdown
during the migration and a possible improvement in
performance after the migration because the VM was
moved to a machine with more available resources.
The migration system presented in this paper is part of
the VMware Virtual Center product that manages
VMware ESX Server [3]. VMware ESX Server
consists of two main components that implement the
virtual platform: the virtual machine monitors (VMM)
and the vmkernel. A guest operating system such as
Windows or Linux runs on top of this virtual platform
(see Fig 2). The VMM handles the execution of all
instructions on the virtual CPU and the emulation of all
virtual devices. The vmkernel schedules the VMM for
each virtual machine and allocates and manages the
resources needed by the virtual machines.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 287

Fig. 2 VM platform layers in VMware ESX Server

Virtual machines provide a natural platform for
migration by encapsulating all of the state of the
hardware and software running within the virtual
machine. There are three kinds of state that need to be
dealt with when migrating a VM:

 The virtual device state including the state of
the CPU, the motherboard, networking and
storage adapters, floppy disks, and raphics
adapters.

 External connections with devices including
networking, USB devices, SCSI storage
devices, and removable media such as CD-
ROMs.

 The VM’s physical memory.

The actual migration process involves several steps:

 Initiating the migration by selecting the VM
to migrate and its destination.

 Pre-copying the memory state of the VM to
the destination while the VM is running on
the source.

 Quieting the VM and sending the non-
memory state.

 Transferring control of the VM to the
destination and resuming it at the destination.

 Sending any remaining memory state and
removing the dependency on the source
machine.

A. Hot and Cold Spots
Our algorithm executes periodically to evaluate the
resource allocation status based on the predicted future
resource demands of VMs. We define a server as a hot
spot if the utilization of any of its resources is above a
hot threshold. This indicates that the server is
overloaded and hence some VMs running on it should
be migrated away. We define the temperature of a hot
spot p as the square sum of its resource utilization
beyond the hot threshold:

(݌)݁ݎݑݐܽݎ݁݌݉݁ݐ = ෍(ݎ − ௧)ଶݎ
௥∈ோ

where R is the set of overloaded resources in server p
and rt is the hot threshold for resource r. (Note that
only overloaded resources are considered in the
calculation.). The temperature of a hot spot reflects its
degree of overload. If a server is not a hot spot, its
temperature is zero. We define a server as a cold spot
if the utilizations of all its resources are below a cold
threshold. This indicates that the server is mostly idle
and a potential candidate to turn off to save energy.
However, we do so only when the average resource
utilization of all actively used servers in the system is
below a green computing threshold. A server is
actively used if it has at least one VM running.
Otherwise, it is inactive. Finally, we define the warm
threshold to be a level of resource utilization that is
sufficiently high to justify having the server running
but not so high as to risk becoming a hot spot in the
face of temporary fluctuation of application resource
demands. Different types of resources can have
different thresholds. For example, we can define the
hot thresholds for CPU and memory resources to be 90
and 80 percent, respectively. Thus a server is a hot spot
if either its CPU usage is above90 percent or its
memory usage is above 80 percent.

B. Hot Spot Mitigation
We sort the list of hot spots in the system in
descending temperature (i.e., we handle the hottest one
first). Our go alis to eliminate all hot spots if possible.
Otherwise, keep their temperature as low as possible.
For each server p, we first decide which of its VMs
should be migrated away. We sort its list of VMs based
on the resulting temperature of the server if that VM is
migrated away. We aim to migrate away the VM that
can reduce the server’s temperature the most. In case
of ties, we select the VM whose removal can reduce
the temperature of the server the most. For each VM in
the list, we see if we can find a destination server to
accommodate it. The server must not become a hot
spot after accepting this VM. Among all such servers,
we select one whose temperature can be reduced the
most by accepting this VM. Note that this reduction
can be negative which means we select the server
whose temperature increases the least. If a destination
server is found, we record the migration of the VM to
that server and update the predicted load of related
servers. Otherwise, we move onto the next VM in the
list and try to find a destination server for it. As long as
we can find a destination server for any of its VMs, we
consider this run of the algorithm a success and then

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 288

move onto the next hot spot. Note that each run of the
algorithm migrates away at most one VM from the
overloaded server. This does not necessarily eliminate
the hot spot, but at least reduces its temperature. If it
remains a hot spot in the next decision run, the
algorithm will repeat this process. It is possible to
design the algorithm so that it can migrate away
multiple VMs during each run. But this can add more
load on the related servers during a period when they
are already overloaded. We decide to use this more
conservative approach and leave the system sometime
to react before initiating additional migrations.

C. Green Computing
When the resource utilization of active servers is too
low, some of them can be turned off to save energy.
This is handled in our green computing algorithm. The
challenge here is to reduce the number of active
servers during low load without sacrificing
performance either now or in the future. Our green
computing algorithm is invoked when the average
utilizations of all resources on active servers are below
the green computing threshold. We sort the list of cold
spots in the system based on the ascending order of
their memory size. Since we need to migrate away all
its VMs before we can shut down an underutilized

server, we define the memory size of a cold spot as the
aggregate memory size of all VMs running on it.
Recall that our model assumes all VMs connect to
share back-end storage. Hence, the cost of a VM live
migration is determined mostly by its memory
footprint. The resource utilizations of the server after
accepting the VM must be below the warm threshold.
While we can save energy by consolidating
underutilized servers, overdoing it may create hot spots
in the future. The warm threshold is designed to
prevent that. If multiple servers satisfy the above
criterion, we prefer one that is not a current cold spot.
This is because increasing load on a cold spot reduces
the likelihood that it can be eliminated.

TABLE 1
Parameter in our simulation

Symbol Meaning value

h hot threshold 0.9

c cold threshold 0.25

W Warm threshold 0.65

G Green computing threshold 0.3

We eliminate cold spots in the system only when the
average load of all active servers (APMs) is below the
green computing threshold. Otherwise, we leave those
cold spots there as potential destination machines for
future offloading.

IV. SIMULATION AND EXPERIMENT RESULTS
We evaluate the performance of our algorithm using
trace driven simulation. The raw traces are pre-
processed into “Usher” format so that the simulator
can read them.
We collected the traces from a variety of sources:

 Web Info Mall: The largest online Web
archive in China.

 Real Course: The largest online distance
learning system in China with servers
distributed across 13 major cities.

 Amazing Store: The largest P2P storage
system in China.

We also collected traces from servers and
desktopcomputers in our university including one of
our mailservers, the central DNS server, and desktops
in ourdepartment.

A. Scalability of the Algorithm
We evaluate the scalability of our algorithm by varying
the number of VMs in the simulation between 200 and
1,400.The ratio of VM to PM is 10:1. The results are
shown in Fig. 3. Fig. 3a shows that the average
decision time of our algorithm increases with the
system size. The speed of increase is between linear
and quadratic. We break down the decision time into
two parts: hot spot mitigation (marked as “hot”) and
green computing (marked as “cold”).We find that hot
spot mitigation contributes more to the decision time.
We also find that the decision time for the synthetic
workload is higher than that for the real trace due to
the large variation in the synthetic workload. Fig. 3b
shows the average number of migrations in the whole
system during each decision. The number of
migrations is small and increases roughly linearly with
the system size. We find that hot spot contributes more
to the number of migrations. We also find that the
number of migrations in the synthetic workload is
higher than that in the real trace.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 289

Fig. 3 Migration effectiveness

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 290

With 140 PMs and 1,400 VMs, on average each run of
our algorithm incurs about three migrations in the
whole system for the synthetic workload and only
1.3migrations for the real trace. This is also verified by
Fig. 5cwhich computes the average number of
migrations per VMin each decision.

B. Algorithm Effectiveness
We evaluate the effectiveness of our algorithm in
overload mitigation and green computing. We start
with a small scale experiment consisting of three PMs
and five VMs so that wecan present the results for all
servers in Fig. 4. Different shades are used for each
VM. All VMs are configured with128 MB of RAM.
An Apache server runs on each VM. We use http erf to
invoke CPU intensive PHP scripts on the Apache
server.

Fig. 4 Algorithm effectiveness

This allows us to subject the VMs to different degrees
of CPU load by adjusting the client request rates. The
utilization of other resources are kept low. We first
increase the CPU load of the three VMs on PM1to
create an overload. Our algorithm resolves the
overload by migrating VM3 to PM3. It reaches a stable
state under high load around 420 seconds. Around 890
seconds, we decrease the CPU load of all VMs
gradually. Around 1,700 seconds, VM3 is migrated
from PM3 toPM2 so that PM3 can be put into the
standby mode. Around2,200 seconds, the two VMs on
PM1 are migrated to PM2 so that PM1 can be released
as well. As the load goes up and down, our algorithm
will repeat the above process: spread over or

consolidate the VMs as needed. Fig. 5 shows how the
algorithm spreads the VMs to other PMs over time. As
we can see from the figure, the algorithm balances the
two types of VMs appropriately. The figure also shows
that the load across the set of PMs becomes well
balanced as we increase the load.

Fig. 5 VM distribution over time

V. RELATED WORK
A. Resource Allocation at the Application Level
Automatic scaling of Web applications was previously
studied in [11] and [12] for data center environments.
In MUSE [11], each server has replicas of all web
applications running in the system. The dispatch
algorithm in a frontendL7-switch makes sure requests
are reasonably served while minimizing the number of
underutilized servers. Work [12]uses network flow
algorithms to allocate the load of an application among
its running instances. For connection oriented Internet
services like Windows Live Messenger, work [9]
presents an integrated approach for load dispatching
and server provisioning. All works above do not use
virtual machines and require the applications be
structured in a multitier architecture with load
balancing provided through an front end dispatcher. A
VM is treated like a black box. Resource management
is done only at the granularity of whole VMs. Map
Reduce [13] is another type of popular Cloud service
where data locality is the key to its performance.
Quincy[14] adopts min-cost flow model in task
scheduling to maximize data locality while keeping
fairness among different jobs. The “Delay Scheduling”
algorithm [15] trades execution time for data locality.

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 291

Work [16] assign dynamic priorities to jobs and users
to facilitate resource allocation.

B. Resource Allocation by Live VM Migration
VM live migration is a widely used technique for
dynamicresource allocation in a virtualized
environment [7], [10],[17]. Our work also belongs to
this category. Sandpipercombines multidimensional
load information into a singleVolume metric [7]. It
sorts the list of PMs based on theirvolumes and the
VMs in each PM in their volume-to-sizeratio (VSR),
their work has no support forgreen computing and
differs from ours in many otheraspects such as load
prediction.The HARMONY system applies
virtualization technologyacross multiple resource
layers [17]. It uses VM and datamigration to mitigate
hot spots not just on the servers, butalso on network
devices and the storage nodes as well. It introduces the
Extended Vector Product (EVP) as an indicator of
imbalance in resource utilization. Their load balancing
algorithm is a variant of the Toyoda method [18]
formulate dimensional knapsack problem. Unlike our
system, their system does not support green computing
and load prediction is left as future work. Dynamic
placement of virtual servers to minimize SLA
violations is studied in [10]. They model it as a bin
packing problem and use the well-known first-fit
approximation algorithm to calculate the VM to PM
layout periodically.

C. Green Computing
Green computing, also called green technology, is the
environmentally responsible use of computers and
related resources. Such practices include the
implementation of energy-efficient central processing
units (CPUs), servers and peripherals as well as
reduced resource consumption and proper disposal of
electronic waste (e-waste).Many efforts have been
made to curtail energy consumption in data centers.
Hardware-based approaches include novel thermal
design for lower cooling power, or adopting power
proportional and low-power hardware. PowerNap [19]
resorts to new hardware technologies such as solid
state disk (SSD) and Self-Refresh DRAM to
implement rapid transition(less than 1ms) between full
operation and low power state, so that it can “take a
nap” in short idle intervals. When a server goes to
sleep, Somniloquy [20] notifies an embedded system
residing on a special designed NIC to delegate the
main operating system. It gives the illusion that the
server is always active. Our work belongs to the
category of pure-software low cost solutions [9], [10],

[11], [21], [22], [23]. Similar to Somniloquy [20],
Sleep Server [22] initiates virtual machines on a
dedicated server as delegate, instead of depending on a
special NIC.

VI. CONCLUSION
We have presented the design, implementation, and
evaluation of a resource management system for cloud
user. Our system multiplexes virtual to physical
resources adaptively based on the user needs. We use
the temperature metric to combine VMs with different
resource characteristics appropriately so that the
capacities of servers are well utilized. Our algorithm
achieves main goal as overload avoidance and
secondary goal as green computing for systems with
multisource constraints.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous
reviewers for their valuable feedback. The authors also
express our sincere thanks to Asst.Prof.
Mrs.M.Sangeetha Department of Computer Science
and Engineering, Adithya Institute of Technology,
Coimbatore, has shown keen interest throughout our
process. With her potent ideas and excellent guidance
we are able to comprehend the essential aspects
involved.

REFERENCES
[1]. M. Armbrust et al, “Above the Clouds: A Berkeley View

of Cloud Computing,” technical report, Univ. of
California, Berkeley, Feb. 2009.

[2]. L. Siegele, “Let It Rise: A Special Report on Corporate
IT,” The Economist, vol. 389, pp. 3-16, Oct. 2008.

[3]. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
Art ofVirtualization,” Proc. ACM Symp. Operating
Systems Principles(SOSP ’03), Oct. 2003.

[4]. “Amazon elastic compute cloud (Amazon EC2),”
http://aws. amazon.com/ec2/, 2012.

[5]. C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfield, “Live Migration of
Virtual Machines,”Proc. Symp. Networked Systems
Design and Implementation (NSDI ’05), May 2005.

[6]. M. Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent
Migration for Virtual Machines,” Proc. USENIX Ann.
TechnicalConf., 2005.

[7]. T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-Box and Gray-Box Strategies for Virtual Machine
Migration,” Proc. Symp. Networked Systems Design and
Implementation(NSDI ’07), Apr. 2007.

[8]. C.A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” Proc. Symp. Operating Systems
Design and Implementation (OSDI ’02), Aug. 2002.

[9]. G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao, “Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services,”

ISSN (Online) : 2319 – 8753
ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014

International Conference on Engineering Technology and Science-(ICETS’14)
On 10th & 11th February Organized by

Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India

Copyright to IJIRSET www.ijirset.com 292

Proc. USENIX Symp. Networked Systems Design and
Implementation(NSDI ’08), Apr. 2008.

[10]. N. Bobroff, A. Kochut, and K. Beaty, “Dynamic
Placement of Virtual Machines for Managing SLA
Violations,” Proc. IFIP/IEEE Int’l Symp. Integrated
Network Management (IM ’07), 2007.

[11]. J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and
R.P. Doyle, “Managing Energy and Server Resources in
Hosting Centers,” Proc. ACM Symp. Operating System
Principles(SOSP ’01), Oct. 2001.

[12]. C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A
Scalable Application Placement Controller for Enterprise
Data Centers,” Proc. Int’l World Wide Web Conf.(WWW
’07), May 2007.

[13]. M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I.
Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” Proc. Symp. Operating
Systems Design and Implementation(OSDI ’08), 2008.

[14]. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, “Quincy: Fair Scheduling for Distributed
Computing Clusters,” Proc. ACM Symp. Operating
System Principles(SOSP ’09), Oct. 2009.

[15]. M. Zaharia, D. Borthakur, J. SenSarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay Scheduling: A Simple
Technique forAchieving Locality and Fairness in Cluster
Scheduling,” Proc. European Conf. Computer
Systems(EuroSys ’10), 2010.

[16]. T. Sandholm and K. Lai, “Mapreduce Optimization Using
Regulated Dynamic Prioritization,” Proc. Int’l Joint Conf.
Measurement and Modeling of Computer
Systems(SIGMETRICS ’09), 2009.

[17]. Singh, M. Korupolu, and D. Mohapatra, “Server-Storage
Virtualization: Integration and Load Balancing in Data
Centers,”Proc. ACM/IEEE Conf. Supercomputing, 2008.

[18]. Y. Toyoda, “A Simplified Algorithm for Obtaining
Approximate Solutions to Zero-One Programming
Problems,” Management Science, vol. 21, pp. 1417-1427,
Aug. 1975.

[19]. D. Meisner, B.T. Gold, and T.F. Wenisch, “Powernap:
Eliminating Server Idle Power,” Proc. Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’09), 2009.

[20]. Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta, “Somniloquy: Augmenting Network Interfaces
to Reduce Pc Energy Usage,” Proc. USENIX Symp.
Networked Systems Design and Implementation (NSDI
’09), 2009.

