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ABSTRACT 

 
Evaluation of chemotherapy treatment in cancer cells is 

important because of its damaging side effects. For controlling 

chemotherapy treatment in cancer cells an accurate and 

comprehensive mathematical model could be useful. Many 

mathematical models have been used to show the benefits of 

immune system on controlling the growth of a tumor and the 

detrimental effects of chemotherapy on both the tumor cell and the 

immune cell populations. In this article, we offer a novel 

mathematical model presented by fractional differential equations. 

This model will then be used to analyze the bifurcation and stability 

of the complex dynamics which occur in the local interaction of 

effector-immune cell and tumor cells in a solid tumor. We will also 

investigate the optimal control of combined chemo-immunotherapy. 

We argue that our fractional differential equations model will be 

superior to its ordinary differential equations counterpart in 

facilitating understanding of the natural immune interactions to 

tumor and of the detrimental side-effects which chemotherapy may 

have on a patient’s immune system.  

 
INTRODUCTION 

 

The response to treatment in a tumor is dependent on many factors; some of these factors 

included are severity of the tumor, application of the treatment and the ability of patient’s own immune 

system. Over the past decades, mathematical modeling has been developed to evaluate the growth of a 

tumor and predict the treatment processing. These models can facilitate to control a tumor by predicting its 

size. In addition, it is possible to evaluate the effect of the body’s natural immune system on tumor cells by 

these models. They can also help to determine optimal drug treatments or the timing of surgery (e.g., cf. [4-

21] and the references therein). After the implicit understanding that chemotherapy has damaging side 

effects, variety of models have been applied in cancer growth with chemotherapy, these models have been 

investigated to minimize the total amount of drugs which are used in chemotherapy (See for example [1], [2] 

and references therein).  

 

In the tumor growth model presented by Pillis [4], an explicit representation of the immune system 

is included, as well as chemotherapy treatment. This allows not only to incorporate the beneficial effects of 

the immune system on controlling the growing tumor, but also to track directly the detrimental effects of 

chemotherapy on both the tumor cell and the immune cell populations. The count of circulating 
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lymphocytes in a patient’s bloodstream is a common clinical practice which is used to reflect the strength 

of the patient’s overall immune health. 

 

 
Figure 1 Tumor cell distribution over the cellular automata grid [3] 

It is understood that this procedure does not provide a complete profile of the patient’s immune 

health but, it is accepted as one measure. Therefore, in this model two immune components are included: 

effector-immune cells and circulating lymphocytes. The effector immune cells actively target and destroy 

tumor cells, while, as stated, the circulating lymphocytes serve as a way to monitor the additional 

damaging side-effects of chemotherapy [4]. 
 

Ordinary differential equations (ODE) and partial differential equations in the form of heat diffusion 

and statistical equations are just some of the mathematical tools that have been used in deriving these 

models. In this article, we extend the ODE system presented by de Pillis et al. [4] with using a fractional 

differential equation (FDE). By using this model we will be able to investigate the optimal control on 

combination of chemo-immunotherapy. We claim that our FDE model will be better than its ODE 

counterpart, who facilitates to understand the response of natural immune interactions in a tumor and 

also it helps to identify the possible damaging side-effects of chemotherapy on a patient’s immune system. 

Indeed, some of the advantages of our FDE model over previous ones are represented as following. First of 

all, as it is explained by Andrew Einstein [22], some of the cells in various body organs, for example, breast 

cells, have a rugged surface. Using ordinary calculus cannot be properly understood because of this nature 

of the cells. Although, study these cells using fractional calculus may be amenable. In another words, there 

are some busted points in the surface of these cells where the ordinary (classical) derivative can’t explain 

them. In this kind of domains, fractional differentiation can be used because, the smoothness property of 

the domain which is necessary for classical derivatives may not be essential in fractional derivatives. 

Second, in the definition of the classical derivative of a function only two points in the neighborhood of a 

point is used. In the definition of the fractional derivative all the points in a neighborhood of a point are 

used. In this case, more accurate results are obtained in subsequent applications because of using all the 

accessible information.  Non-local property is the term used for this situation which closely reflects reality, 

and this is primary reason that explains why FDE is increasingly applied to dynamical systems. 

 

In this article, for the circulating lymphocyte population which shows the patient health, we will 

introduce a FDE model. In this model, the interaction of tumor cell and effector-immune populations in 

tumor latency is inserted into circulating lymphocyte population which shows a combined FDA model. 

Moreover, to discuss the dynamical behavior of this model the fixed point and their stability characteristics 

are determined. We will use Grunwald-Letnikov discretization method to find the solution of this FDE 

system [23 & 24], then we will find the results by using software tools such as MATLAB™. Note that 

chemotherapy is not considered in this FDE model. In the second model in the form of FDE, chemotherapy 

drug concentration is added to the tumor-immune interactions and we will consider the same three cells 

populations as in the first FDE. Now, similar to the way in which it can be done in classical ODE systems, 

we will discuss the dynamic behavior of the system and determine the stability of the various feasible fixed 

points. One of the main goals in using fractional order instead of classical integer order derivative in our 

model is to obtain more accurate results in optimally control application of chemotherapy and to minimize 

the total tumor while constraining the immune state to stay above a specified threshold. For this optimality, 

similar to linear optimal control method used by de Pillis et al. [4], we will also use it for our FDE model. 

Obviously, in the processing of this optimality we need to solve our FDE system numerically. To facilitate 
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this solution, as in above first FDE system, we will apply Grunwald-Letnikov method to discretize the model 

and then use MATLAB™ software to find the results.  

 

As we stated before, we will expect more accurate results in solving our FDE systems as compared 

to the results found by classical ODE methods.  

 

Preliminaries and Dynamics of FDE Model 

 

The first model that we have considered in this section is a three cells population model 

describing the interaction between the tumor cell (T) plus the effector-immune cell (N) with the circulation 

lymphocyte population (C), which measures the patient health. If we suppose these three cells evolve with 

independent variable time, then we can present our model in the form of FDE as follows:  

.
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This model is similar to the classical ODE models presented by de Pillis and Radunskaya [17] and de Pillis et 

al. [4]. Here, we use the same order derivatives ]1,0(  for all three equations with given positive initial 

values 0)0( TT   0)0( NN  and 0)0( CC  . Before any justification of these three equations, we 

should clarify the definition of fractional derivative, ,D which is used here. Following the Caputo’s 

definition for FDE[23], this derivative is defined by )()( txDJtxD nn   , where 10   and 
nJ  is 

the 
thn -order Riemann–Liouville integral operator defined by 
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with 0t  and   kNkn :min  which is one for .10   Therefore, as we stated above, for 

the fractional derivative order 10   the smoothness property of the domain is not essential in this 

fractional derivative. 

Here, we have summarized the explanations of three equations in model (1) as follows. In the first 

equation, the tumor cell population is assumed to grow logistically, while tumor cells are killed by the 

immune cells through a mass-action dynamic[18]. In the second equation, the immune cells have a constant 

source rate 1 , while death is proportional to the population of immune cells through the term fN . 

Immune cells are also recruited by tumor cells through a Kuznetsov term, NThTg ))/((   which serves 

to provide a saturation effect[25]. Additionally, immune cells are inactivated through contact with tumor 

cells according to a mass-action dynamic. The immune-tumour cell complex of the third equation has a 

constant source rate 2  and a proportional death term C . Here, all of the parameters are similar to 

those presented in[18] so that we can compare our results with those found by other classical ODE models. 

These values are given in Table 1. These parameters were chosen to be within ranges that are allowed for 

reasonable dynamics as well as convergence of the optimal control algorithm. 

 

 Similar to the classical ODE systems, we can analyze the dynamical behavior of system (1) and 

determine the stability of its various feasible fixed points. Hence, we first find the fixed points of this 

system. To find this, from the last equation in (1) we obtain 2C , and from the first equation we get 

0T  and 0)1( 1  NcbTa . Now, from the second equation with 0T  we find fN 1 . 

Therefore, one of the feasible fixed points will be ),,0(),,( 21  fCNT  . By calculating the 

Jacobian of the system we have 
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Evaluating the eigenvalues of this Jacobian matrix at evaluated fixed point yields
 

,111 fca    

f2  
and  3 . Obviously, with the parameter values given in Table1, 2  

and
 3  are negative 

but 
3

1 1021.4   is positive which means this fixed point, with 0T , is unstable.  

 Now, for the second fixed point with ))/(/(1 pTh+Tf-gTαN  , from the first equation in (1) 

we get 0)()))(()(1( 11 =Th cgTThpTf-bTa   . Plugging the parameter values from Table 

1 into this third degree equation and solving it by MATLAB™, yields three solutions on which just one of 

them is positive and acceptable, and the other two are negative which is physiologically unacceptable. With 

this acceptable positive value of T  we will get two other related components of the second fixed 

point )1025.6,1199.6,10×(9.8039=),,( 10 13 CNT . The above Jacobian matrix at this point has 

three negative eigenvalues 004324.01  , 809617.19602   and 0012.03  . Consequently, 

system (1) has two fixed points on which the first one with 0T  is unstable and the second one with a 

large value of T  is stable.    

 

Table 1: Parameter Values. 

 

 
 

Therefore, in the absence of medical treatment with 00 T  the tumor cell populations will grow 

up to its maximum possible value. At this point, the tumor needed to be controlled by treatment. If we do 

not control the tumor, the effector-immune cells are not able to renovate. The right hand side in the second 

equation of system (1) has negative derivative which proofs this fact that while the tumor cell is growing up 

the effect of the body immune system is converging to zero. This circumstance is also illustrated, as the 

results of numerical solutions to the system (1), in the next section.  

 

Discretization and Numerical Solutions of FDE Model 

  

As we discussed above, linear stability analysis of system (1) was similar to that of its ODE 

counterpart. However, to solve FDE system (1) first we need to discretize it. Among the several 
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discretization methods that are available for the fractional derivative
D , we have used the one that is 

granted by Grünwald-Letnikov [23 & 24]. In this method )(txD
 is approximated by 
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Here, l is the step size and  t  denotes the integer part of t . Under this discretization method )(txD
in 

system (1) can be replaced by
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, where nltn   and 
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jc  are the Grünwald-Letnikov 

coefficients which is defined by: 
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These coefficients can also be evaluated recursively as: 

  lc0   and ...,3,2,1,
1
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 Using formula (2), system (1) is discretized as follows: 
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Simple calculation on (4) yields the following recursive formulas:  
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     (5) 

We have used MATLAB™ software to solve this discretized system (5) with initial 

values
7

0 10T ,
5

0 103N , 
10

0 1025.6 C
 
and the results are illustrated in Figures 2-4. In these 

figures, we consider different values of fractional order derivative 190.0  . As we can see, the 

normalized values of tumor cells will grow up to its maximum capacity within the long range of time, while 

the population of natural effector-immune cells is converging to zero. Note that the values of circulation 

lymphocytes remain without change with respect to the time. As we discussed analytically, these behaviors 

show the instability of any fixed point of the system with 0T . 

 

 It is clear from Figures 2-4 that the decreasing and increasing rates of T  and N , respectively, 

are slighter while the value of   will be closer to 0.90. Comparing to the results for classical order, 1  

(Figure 2), we claim that these rates are more consistent with the natural reaction of the body immune 
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system. The main reason is the non-local property of FDE. The effect of this property to the results is clear 

from the discretized system (1) in recursive formulas (5) (look at the summations in the top of the 

fractions) on which, for the calculation of each unknown valuables in nth point, we have used all possible 

carrying information by the previous points from 1j  to 1 nj . Hence, the numerical results of 

system (5) are more accurate comparing to those found by classical ODE counterparts [4 & 17].   

 

In the next section we will consider three cells population model, as system (1), together with the 

effect of chemotherapy presented by a system of FDE. 
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Figure 2 Normalized results ( CNT and, ) of numerical solutions of system (1) for positive initial values 

given in the text with fractional derivative order .1
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Figure 3: Normalized results ( CNT and, ) of numerical solutions of system (1) for positive initial values 

given in the text with fractional derivative order .98.0
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Figure 4: Normalized results ( CNT and, ) of numerical solutions of system (1) for positive initial values 

given in the text with fractional derivative order .95.0  
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FDE Model with Chemotherapy Treatment 

 

In this section, we consider the same system (1) with three cells population model along with a 

chemotherapy treatment describing the growth, death, and interactions of each cells. We can present such 

a system in the form of FDE as follows: 

 

.
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    (6) 

 

In this model, from the first to the third equations, the effect of chemotherapy to the three cells 

are shown by the terms consisting of the multiplication of each cell to the drug concentration M with the 

constant rates TK , NK  and CK , respectively. These constant rates are given in Table 1. The variation of 

drug concentration is shown by the forth equation with an outside treatment source, MV , and the term 

M  that shows the drug decays out of the system. 

 

 To understand the dynamic of system (6), similar to the system (1), we will first find the fixed 

points and then analyze their stability types. Noting that the fixed points can be evaluated by replacing the 

left hand side of equations in system (6) to the zero, from the fourth equation we get γ VM M / and 

from the third equation we get ))((/ /γVKβ αC MC2  . Combining these two we get 

) )/(( 2 MCVKγβC   . From the first equation of (6) we get 0T  

and 0)1( 1  MKNcbTa T . Now, by replacing 0T  in the second equation we find  

)/(1 MKfN N  or )/(1 MNVKfN   . Hence, one of the fixed points will 

be   /),/(),(,0),,,( 21 MMCMN VVKVKfMCNT  . For analyzing the stability 

of this fixed point, we should find the eigenvalues of Jacobian matrix, but ),,,( MCNTDF
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Calculating the eigenvalues of this Jacobian matrix at this fixed point, we 

get     //(111 MTMN VKVKfca  ,
 

  /2 MNVKf  ,   /3 MCVK  

and  4 . Since all parameters exist in these eigenvalues are positive, the signs of 2 , 3 and 4  

are negative, but the sign of 1  depend upon the value of MV . We have discussed the case of no 

treatment, ,0MV  in last section. However, for the case 0MV , for example for the value 1MV , the 

fixed point will be   /1),/(),(,0),,,( 21 CN KKfMCNT   with all negative 

eigenvalues. This means that if we apply the drug to the system continually, then the fixed point with 

0T  will remain stable. Obviously, the case 0T  with the existence of positive treatment source 

)1( MV  cannot be an interesting case. On the other hand, evaluating the other fixed point with non-zero 

tumor cells population and 1MV , we will get negative values which is biologically unacceptable. So, in 

order to find the best values for MV  on which the tumor cell populations is decreasing down to zero, while 

the effector-immune and circulation lymphocyte cell populations are increasing to their possible maximum 
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values, we need to apply an optimal control. In this case, in next section we will apply the linear optimal 

control to the system (6).  

 

Linear Optimal Control on Chemotherapy Treatment 

 

In this optimal control, we are minimizing the value of MV  subject to the equations of system (6). That is, 

Minimizing:  dttVtTVJ MM  



0

)()()(
,    (8) 

      Subject to: Four FDE in system (6).           
 

 

To solve this optimization problem, first we need to clarify the existence of the solutions. To do 

this, we follow the same arguments that have been done by De Pillis and Radunskaya in[17] and the results 

from Fleming and Rishel in [26]. We should just note that here in system (6); we are dealing with fractional 

derivatives while the derivatives in the above referred articles are just the ordinary derivatives. However, in 

fractional derivative, since the properties that exist for 1  are also satisfied for any 10  , there is 

no difference between the optimal control theorems in both cases.  

 

Now, for the existence solution of (8), first we note that the solutions are bounded with respect to 

the finite time. This is clear, since the following sub system of (6) has bounded solutions. 

.12
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gNNDaTTD
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Therefore, acceptable (positive) solutions of system (6) are bounded from above. Next, we state 

the existence solution theorem for optimal problem (8) without the proof [18 & 26]. 

 

Theorem 1 Optimization problem (8) has a solution    


 MM

V
VJVJ

M ]1,0[
min  in admissible control 

set  ],0[,10/  tVcontinuespiecewiseisVU MM , with some initial value ,)0( 0TT   

,)0( 0NN  0)0( CC   and 0)0( MM  , if the following conditions are satisfied.  

First, the set U  should be nonempty, closed and bounded. Second, right hand side functions in system 

(6) are all continues, bounded above by a sum of the bounded control and the state, and can be written as 

a linear function of MV  with some coefficients depending on time and the state. And third, the integrand 

of )( MVJ  is convex on U  and is bounded below by some linear combination of
2
MV . 

 Now, we are ready to state the characterization of linear optimal control theorem, with the proof, 

using Pontryagin’s Maximum Principle [27]. 

 

Theorem 2 Suppose an optimal control 


MV  and the solutions of system (6) that minimize the function 

 dttVtTVJ MM  



0

)()()(  are given. Then there exist adjoin variables i  for 4,3,2,1i that 

satisfy to the following system  

 

                 

          (9) 

                        

Here, 0)( i  for all 4,3,2,1i . Moreover, the optimal 

MV  is given by 
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Where 

 

                 (10) 

 

            

                                                                                                (11) 

In this case, the Hamiltonian of the system is given by 

 

     

    
                                                                   (12) 

The switching function in this case is . Since there is no explicit dependence on  in 

the switching function, the possibility of singular arcs arises. The optimal control is given by 

 
In the regions where the switching function is not zero, we have bang-bang control. In order to address the 

issue of singular arcs, we suppose the switching function is zero on an interval . This implies that all 

the derivatives of  must vanish in that interval. We can use this fact to determine the optimal control in 

such regions. 

For the explanation to follow, we recall that . Since  and , we 

can conclude that  on the entire time interval. Setting the first three time derivatives of the 

switching function to zero, and using , we obtain 

              

    (13) 

              
Where 

   

                   (14) 

  

     

   

                                                       (15) 

From  and , we can solve for  and  in terms of the state. We get 
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                                      (16) 

                                        (17) 

Now, we know all four adjoin variables in terms of the state in a singular region. To determine the control, 

we need to find the fourth derivative of the switching function. We then get a linear equation in  whose 

coefficients are functions of T, N and M. We see that  or 

 

where 

   

                           (18) 

 

     

                                                                      (19) 

Here, , , 
 
and  are given by the relevant expressions for the time derivative in the state and adjoin 

equations and 

 

 

                                                                         (20) 

               (21) 

 

    

                                                       (22) 

and 

 

       (23) 

 Since, we know  and  in terms of the state variables T and N, we know Q purely in terms of T 

and N. For the singular control to be minimizing the Generalized Legendre Clebsch condition needs to be 

satisfied, that is Q (T, N) would have to be non-negative on this interval [4]. The results are shown in Figure 

5. Note that Q (T, N) is only negative in a very specific region. In this region, we can guarantee that there 

are no singular minimizing arcs, so the control is bang-bang. In other regions, the potential for singular arcs 

has not been ruled out, but in fact arises in most practical situations, since most of the T-N plane meets 

the criterion Q(T,N) ≥ 0 [4]. 
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Figure 5: Plot of Q(T,N). Here, Q is denoted by Q Min the graphic. Q is negative in the shaded region. This 

says that the singular control is minimizing in the un-shaded regions. 

 

          In writing system (9) we may consider the columns of Jacobian matrix (7). Now for solving 

optimization problem (8), we should first solve system (9) with some values of CNT ,,
 
and

 
M . Here, to 

be consistent with other results in [4 & 17], we start with 
710T ,

5103N , 
101025.6 C  and

 

0M . Then, by finding the value 

MV and plugging into the system (6), instead of MV , we are ready to 

solve this system with the same starting point CNT ,, and M as above. The similar discretization method 

that we have done for FDE system (1) can be applied here for system (6) to get 


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  (24) 

Now, by simple calculation on (24), we get the following recursive formula. 
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 (25) 

Q > 0 

Q < 0 
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By solving this system for some customary time, say ]9,0[t , we arrive at the new point with a new set of 

values T , N , C and M . Then, this new set of values will serve as a new starting point with initial 

values 0i  for all 4,3,2,1i  for solving system (9), in the next iteration, to find a new optimal value 

of

MV . These iterations will continue up to the time 100t  (days). Indeed, using MATLAB™ to solve these 

two joint systems (9 and 11), as the solution of optimal problem (8), the results are illustrated in Figures 6-

11 for different values of fractional derivative 190.0  . Figure 6 represents the results for 1 . In 

this figure, the results are in complete agreement with those found by using the classical systems of ODE 

counterparts [4 & 17]. However, in Figures 7 and 8 the results for the values 190.0  are somehow 

different from Figure 6. We claim that these results are in more agreement with the nature of the 

chemotherapy treatment. The amount of the medicine that has been used in each period of time (each 9 

days) is completely visible at the starting iterations, and shows a oscillatory pattern that is converging to 

zero in a long range of time. Almost the same pattern can be seen for the tumor cell populations. This 

oscillatory pattern is more visible in Figures 10 and 11, and also shows the amount of controlled medicine 

in each period of time (each 9 days) for 98.0  and 0.95, respectively. On the other hand, in Figure 9 

which demonstrates evaluated optimal values of 

MV  for 1 in different periods of time, no such 

oscillatory pattern can be seen. We can have similar discussion for decreasing pattern of natural effector-

immune and circulation lymphocyte cell populations in Figures 6-8. We emphasize that the reason for the 

accuracy of FDE is the non-local property of these equations. This means that the next state of a system 

not only depends upon its current state but also upon its historical states starting from the initial time. To 

see this, pay attention to the summation terms in the right hand side of system (25). 
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CONCLUSION 

 

In this article, we introduced a three cells population model describing the interaction between the 

tumor and the effector-immune cells together with the circulation lymphocyte population, without any 

treatment, in the form of FDE. As we have seen, the local stability analyses of the fixed points for this FDE 

system were the same as its counterpart ODE system. These analyses were agreed with numerical results 

of discretized FDE system using Grünwald-Letnikov method. As we have expected the tumor cell population 

were increasing up to its maximum values by any positive initial value. Hence, a more reliable FDE system 

with chemotherapy treatment was considered. In order to find the best amount of medicine on which the 

tumor cell population is decreasing, while other two variables, the effector-immune cells and circulation 

lymphocyte population are increasing, we conducted a linear optimal control. We could adapt the same 

existence and characteristic optimal control theorems as in ODE systems for our FDE system. We claim 

that due to the non-local property of FDE, the results found by this system were more accurate as we 

compare to the results found by counterpart ODE models. We also claimed that the results would be more 

accurate when we use the lower value of   in the interval ]1,9.0( . However, we should note that by 

choosing any smaller values , we will encounter a larger amount of errors in calculations. In these two 

FDE systems that we have introduced here, experimentally, we have found that the best value of  for the 

best results is 0.95.  
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