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Abstract: Civil and structural engineers have always preferred conoidal configuration, which is a ruled and 

aesthetically pleasant shape. The introduction of laminated composite as the structural material has provided the 

impetus to explore the different behavioural aspects of composite conoids. But the variation of curvature is the major 

difficulty encountered in the analysis of these shells. Keeping above point in mind, a finite element analysis is carried 

out using an eight noded isoparametric element with five degrees of freedom per node together with Sanders’ strain 

displacement relationships. Benchmark problems are solved to validate the present approach and a wide variety of 

composite conoidal shell problems with cross ply laminates are solved by varying aspect ratio and degree of truncation 

for different the stacking sequence and clamped boundary condition under uniformly distributed pressure. Results are 

presented for truncated and full conoid and a set of conclusions are arrived at based on a parametric study. 

 
Keywords: Laminated composite, conoidal shells, aspect ratio, degree of truncation, Finite element method.  

I. INTRODUCTION 

Conoidal shell configurations are aesthetically appealing, structurally stiff, and they may be used for covering 

large column free spaces. The greatest advantage of conoids from the construction point is that they are easy to cast as 

the surfaces are ruled. These shells provide uniform lighting to the covered area, and are more suitable when greater 

rise is needed at one end. Naturally, these forms received importance from the engineers and research on conoidal 

shells dates back to seventh decade of the twentieth century. The advent of the laminated composites as an advanced 

structural material of high specific strength and stiffness has provided new impetus to the research about conoidal 

shells. But the variation of curvature is the major difficulty encountered in the analysis of these shells.  

From the research it is clear that work on laminated composite structures has been taken up by some 

researchers. But no work has been found on effect of different aspect varying degree of truncation ratio for laminated 

composite conoidal shells. As these shells are very important industrial roofing units used extensively in the industry. 

Aspect ratio and degree of truncation is the major factor leading to variation of curvature which might affect the 

bending stiffness of such shells. Hence, in this project, a study of the bending behaviour of laminated composite 

conoidal shells is carried out under uniformly distributed pressure with cross ply laminates having different anti-

symmetric and symmetric stacking sequences by varying aspect ratio and degree of truncation for clamped boundary 

conditions. 

II. MATHEMATICAL FORMULATION 

A laminated composite conoidal shell as shown in figure 1 of uniform thickness h, radius of curvature Ry, and twist 

radius of curvature Rxy is considered. Keeping the total thickness the same, the thickness may consist of any number of 

thin laminae, each of which may be arbitrarily oriented at an angle θ with reference to the x-axis of the co-ordinate 

system.  

The generalized constitutive equations for the shell are given by (refer list of notations): 

                                                                               {F} = [D] {ε} -------------------------------------------------------------------

-------- (1) 
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The force and moment resultants are expressed as: 

http://www.ijirset.com/


ISSN: 2319-8753 
 

               International Journal of Innovative Research in Science, Engineering and Technology 
Vol. 2, Issue 6, June 2013 

 

Copyright to IJIRSET                                               www.ijirset.com                                                                              2226 

 

                                                {F}= {Nx   Ny   Nxy  Mx My  Mxy  Qx    Qy }
T 

                                                    = 




h/2

2/h

{σx, σy, τxy, σxz, σyz, τxyz, τxz, τyz}
T
 dz ---------------------------------------------------

--------(3) 

The stiffness coefficients are defined as: 

                                                      

)
2

1k
z

2
k

(z
np

1k k
)

ij
(Q

2

1

 ij
B

)
1k

z
k

(z
np

1k k
)

ij
(Q

 ij
A













 

                                                      )3
1k

z
3
k

z(
np

1k k
)

ij
Q(

3

1

 ij
D





  i, j = 1, 2, 6 

                                                     )
1k

z
k

z(
np

1k k
)

ij
G(

j
F

i
F

 ij
S





  i, j = 1, 2 ------------------------------------------------

-------- (4) 

Where Qij are elements of the off-axis elastic constant matrix, which are derived by appropriate transformation of on-

axis matrix which contains the basic elasticity terms of the laminae as reported earlier [10]: 
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Fig.1 Conoidal shell 

The strain-displacement relations on the basis of improved first order approximation theory for thin shell are 

established as: 

   
 Tyzκ,xzκ,xyκ,yκ,x κz                                              
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                                                                                                                                                          ----------------------------

-------- (6) 

Where the first vector is the mid-surface strain for conoidal shell and the second vector is the change of curvature due 

to loadings. These are given, respectively, by: 
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    The radius of curvature may be evaluated by differentiating the surface equation of shell in the form z=f(x, y) and for 

shallow shells, which are taken up for the present study, the same may be expressed as:  
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B. Finite Element Formulation [10] 

 

1) Finite Element Formulation for the Shell Element: An eight noded isoparametric curved quadratic shell 

element with five degrees of freedom u, v, w, α, β at each node (displacements along x, y and z axes and rotations about 

y and x axes) is used in the present shell analysis as appears in Reference [10].  

2) Element Stiffness Matrix 

The strain-displacement relations when cast in the terms of finite element formulation assume the following form: 

                             {ε}= [B]{de}                                             (8) 

 

 
Fig. 2 Eight noded curved quadratic isoparametric element 

Where, 

 T8888811111 βαwvu...βαwvu}e{d     , 
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The element stiffness matrix is: 

                                                                 [Kshe] = ∫ ∫[B]
T
[D][B]dxdy --------------------------------------------------------------

------ (10) 

The two-dimensional integration is carried out by reduced integration using 2x2 Gauss quadrature, because the shape 

functions are derived from cubic interpolation polynomial 

3) Element Load Vector: The consistent load vector {Pe} is given by: 

                                                                       A dydx  q
T

NeP  --------------------------------------------------------------

------- (11) 

Where , {q}={ 0  0  q  0  0 } for transversely loaded shell and scalar q is the intensity of uniformly distributed 

transverse load. 

The area integral is evaluated by Gauss quadrature like the stiffness matrix. 

4) Solution Procedure: The element stiffness matrix and the element load vectors are assembled to get the global 

matrices, on which the boundary conditions are imposed by deleting the rows and columns of the above matrices 

corresponding to zero boundary values. Thus the basic problem of statics takes the form: 

                                                                  [K]{d}= {P} ------------------------------------------------------------------------------

----- (12) 

 

Where [K] is the overall stiffness matrix and {d} and {P} are generalized displacement and load vectors, respectively. 

The above equation is solved by the Gauss elimination technique, and from the global displacement vector {d} thus 

obtained, the element displacement vectors {de} are calculated. Using {de} in Equation (8) the strains are evaluated at 

the Gauss points, which when put in equation (1) the generalized force and moment resultants are obtained at those 

points. These values are extrapolated to obtain the nodal values of the forces and moments  

III. NUMERICAL EXAMPLES 

 

The correctness of the present approach is confirmed by solving two benchmark problems. The first one concerns 

deflection of isotropic conoidal shell under uniformly distributed loading, which was solved earlier by Hadid and Das 

and Chakravorty (10). The results of the first benchmark problem are presented graphically in figure, where deflections 

at different sections are plotted. The second benchmark problem, regarding bending of laminated composite conoidal 

shells was solved earlier by Das & Chakravorty (10). Table I contains values of maximum non-dimensional downward 

deflection of 0
0
/90

0
 and 0

0
/90

0
/0

0
 laminates obtained by Das & Chakravorty (10) and by the present authors. 

Various other problems which are authors’ own are solved to study the bending behaviour of laminated composite 

conoidal shells under uniformly distributed pressure with clamped boundary conditions and anti-symmetric and 

symmetric stacking sequences by varying aspect ratio and degree of truncation. 

IV. NUMERICAL RESULTS AND DISCUSSION 

The results of the comparative problems and then of the additional examples are discussed in the following sections. 

 

A. Comparative Problems 

The results of first benchmark problem are presented graphically in fig. where the deflections at different 

sections are plotted. The graph obtained by Hadid and Das and Chakravorty (10) and that obtained by the present 

method showed very close agreement. This confirms the correct incorporation of conoidal shell curvature in the present 

approach. 
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Fig.3 Deflection of isotropic conoid under uniformly distributed load along y⁻=0.5.   

a=95in, b=95in, hh=18in, hl=9in, h=0.5in, E=5620000psi, ν =0.15 and q=60psf 

a/b=1, a/h=1, hl/hh=0.25, E11=25E22, G12=G13=0.5 E22, G23=0.2 E22, ν=0.25 

 

The results of second problems are shown in the table I which showed the close agreement of present and benchmark 

results. Hence the correctness of the laminated shell formulation is established. 

Table I  

Values of maximum non-dimensional downward deflection (w̅ x10
4
)  

for different laminations and clamped edge boundary condition. 

Lamination 
Das & Chakravorty 

(2007) 

Present 

Approach 

0
0
/90

0 -0.319 -0.344 

0
0
/90

0
/0

0 -0.298 -0.309 

 

B. Additional Examples 

 

Tables II, III and IV and Figs. 4-9 present the results of the additional examples of maximum transverse non-

dimensional downward deflections of laminated having different anti-symmetric and symmetric stacking sequences by 

varying aspect ratio and degree of truncation for clamped boundary conditions, these examples are taken up for 

discussion in the following sections. 

1. Behaviour of Clamped Shells under Uniformly Distributed Pressure: Maximum non-dimensional downward 

deflection for clamped boundary conditions under uniformly distributed pressure is shown in Table II, III and IV. From 

the observation of results it is seen that the deflection decreases with increase in degree of truncation and aspect ratio. It 

shows that the bending stiffness of the clamped conoidal shell increases with increase in aspect ratio. The results also 

lead to infer that a truncated conoidal shell is stiffer than a full conoid from bending point of view and this stiffness 

increases further with the increase of hl/hh Ratio. 

2. Antisymmetric vs. Symmetric lamination: The symmetric laminates are found to be stronger than the anti-

symmetric laminates with respect to bending stiffness for different aspect ratio and degree of truncation shown in Fig 

(4-9). The superior performance of (90
0
/0

0
/0

0
/90

0
) lamination scheme having four symmetric layers is observed from 

the lowest value of w ̅ out of all the values furnished in Table II& III. But for aspect ratio =2 it shows lower deflection 

only for hl/hh=0 and hl/hh=0.05 as compared to other lamination schemes. The non-dimensional downward deflection 

of the two anti-symmetric four layered lamination scheme (0
0
/90

0
/0

0
/90

0
) and (90

0
/0

0
/90

0
/0

0
) are found to be same for 

different aspect ratio and degree of truncation. Similarly, the two anti-symmetric two layers lamination scheme (0
0
/90

0
) 

and (90
0
/0

0
) are also showing approximately same values of w for all the values of hl/hh and a/b except for shell with 

a/b=2 and hi/hh=0, 0.05. 

Effect of Increasing the Number of Layers: In order to study the effect of increase of no. of layers on maximum non-

dimensional downward deflection, comparative study is done for both anti-symmetric and symmetric laminations in 

this paper. When we compare two layered (0
0
/90

0
) and (90

0
/0

0
) and four layered (0

0
/90

0
)2 and (90

0
/0

0
)2 anti-symmetric 

cross plies, from composite conoidal shell roofs under uniformly distributed pressure with cross ply laminates  

3. Fig. (4-9) it is seen that increase in number of plies has positive effect in decreasing the deflection values for 

all a/b ratios and hl/hh ratios. Comparison among three layered symmetric (0
0
/90

0
/0

0
) and (90

0
/0

0
/90

0
) and four 

layered symmetric (0
0
/90

0
)S and (90

0
/0

0
)S cross plie shells is also done and it is noticed that deflection decrease with 
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increase in number of layers and hl/hh except for (0
0
/90

0
)S lamination for a/b ratio=0.5, 1shown in Fig 5&7 . But for 

a/b=2 deflection decrease with increase in number of layers only in case hl/hh=0 and hl/hh=0.05 (0
0
/90

0
)S being 

exception in all cases. It is also observed that a/b=2, hl/hh= (0.1-0.3) (0
0
/90

0
/0

0
) showed lower deflection and 

(90
0
/0

0
/90

0
) showed higher deflection with increase hl/hh ratio from 0.05 to 0.3 compared to other lamination 

schemes. 

This observation leads to an important conclusion that if anti-symmetric laminations are considered then 

greater number of plies should be preferred but for symmetric ones one cannot conclude confidently whether the 

number of plies shall be maintained less or more in number for better performance, case specific study has to be carried 

out. 

 

Table II 

Maximum non-dimensional downward deflections ( 4x10w


) clamped laminated conoidal shells with aspect ratio = 0.5 under 

uniformly distributed pressure with different laminations and degree of truncation. 

Lamination 

(Deg) 

Degree of Truncation (hl/hh) 

0.3 0.25 0.2 0.15 0.1 0.05 0 

0
0
/90

0
 

-2.874 -3.277 -3.74 -4.271 -4.879 -5.572 -6.357 

(0.38,0.5) (0.42,0.5) (0.36,0.5) (0.39,0.5) (0.39,0.5) (0.42,0.5) (0.42,0.5) 

90
0
/0

0
 

-2.923 -3.335 -3.809 -4.353 -4.977 -5.688 -6.493 

(0.39,0.5) (0.39,0.5) (0.39,0.5) (0.39,0.5) (0.39,0.5) (0.36,0.5) (0.42,0.5) 

0
0
/90

0
/0

0
 

-2.821 -3.218 -3.686 -4.238 -4.89 -5.658 -6.558 

(0.31,0.5) (0.33,0.5) (0.35,0.5) (0.36,0.5) (0.35,0.5) (0.34,0.5) (0.36,0.5) 

90
0
/0

0
/90

0
 

-2.622 -2.87 -3.142 -3.44 -3.764 -4.115 -4.492 

(0.44,0.5) (0.47,0.5) (0.47,0.5) (0.47,0.5) (0.47,0.5) (0.47,0.5) (0.47,0.5) 

0
0
/90

0
/0

0
/90

0
 

-2.432 -2.703 -3.008 -3.35 -3.731 -4.157 -4.628 

(0.42,0.5) (0.42,0.5) (0.39,0.5) (0.39,0.5) (0.42,0.5) (0.36,0.5) (0.42,0.5) 

90
0
/0

0
/90

0
/0

0
 

-2.448 -2.723 -3.031 -3.376 -3.762 -4.192 -4.669 

(0.42,0.5) (0.42,0.5) (0.47,0.5) (0.47,0.5) (0.42,0.5) (0.44,0.5) (0.47,0.5) 

0
0
/90

0
/90

0
/0

0
 

-3.051 -3.423 -3.85 -4.339 -4.897 -5.532 -6.248 

(0.39,0.5) (0.39,0.5) (0.36,0.5) (0.39,0.5) (0.36,0.5) (0.39,0.5) (0.36,0.5) 

90
0
/0

0
/0

0
/90

0
 

-2.03 -2.243 -2.479 -2.741 -3.031 -3.349 -3.696 

(0.42,0.5) (0.42,0.5) (0.42,0.5) (0.36,0.5) (0.44,0.5) (0.36,0.5) (0.39,0.5) 

Note: a/h =100, a/hh=5, E11=25E22, G12=G13=0.5 E22, G23=0.2 E22, ν=0.25 

Values in the parentheses indicate the location (x¯, y¯) of maximum downward deflection in each case. 
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Fig. 4 Graphical variation of w̅ with different degree of truncation 

and aspect ratio = 0.5 for clamped antisymmetric laminated shell. 

 

Fig.5 Graphical variation of w̅ with different degree of truncation 

and aspect ratio=0.5 for clamped symmetric laminated shell. 
 

Table III 

Maximum non-dimensional downward deflections 4x10w


clamped laminated conoidal shells with aspect ratio = 1 under 

uniformly distributed pressure with different laminations and degree of truncation. 

 

Lamination 

(deg) 

Degree of truncation (hl/hh) 

0.3 0.25 0.2 0.15 0.1 0.05 0 

0
0
/90

0
 

-0.304 -0.358 -0.425 -0.51 -0.619 -0.759 -0.94 

(0.26,0.5) (0.26,0.5) (0.26,0.5) (0.26,0.5) (0.26,0.5) (0.26,0.5) (0.26,0.5) 

90
0
/0

0
 

-0.309 -0.365 -0.434 -0.522 -0.622 -0.779 -0.966 

(0.26,0.5) (0.26,0.5) (0.25,0.5) (0.25,0.5) (0.25,0.5) (0.25,0.5) (0.26,0.5) 

0
0
/90

0
/0

0
 

-0.259 -0.306 -0.367 -0.447 -0.553 -0.695 -0.888 

(0.23,0.5) (0.21,0.5) (0.25,0.5) (0.24,0.5) (0.25,0.5) (0.25,0.5) (0.21,0.5) 

90
0
/0

0
/90

0
 

-0.323 -0.371 -0.427 -0.494 -0.574 -0.669 -0.782 

(0.36,0.5) (0.39,0.5) (0.36,0.5) (0.34,0.5) (0.34,0.5) (0.34,0.5) (0.34,0.5) 

0
0
/90

0
/0

0
/90

0
 

-0.271 -0.314 -0.366 -0.429 -0.508 -0.606 -0.727 

(0.29,0.5) (0.28,0.5) (0.29,0.5) (0.26,0.5) (0.29,0.5) (0.28,0.5) (0.27,0.5) 

90
0
/0

0
/90

0
/0

0
 

-0.274 -0.317 -0.37 -0.435 -0.516 -0.615 -0.739 

(0.29,0.5) (0.28,0.5) (0.26,0.5) (0.29,0.5) (0.26,0.5) (0.31,0.5) (0.27,0.5) 

0
0
/90

0
/90

0
/0

0
 

-0.311 -0.363 -0.429 -0.511 -0.617 -0.751 -0.924 

(0.26,0.5) (0.21,0.5) (0.31,0.5) (0.26,0.5) (0.21,0.5) (0.26,0.5) (0.25,0.5) 

90
0
/0

0
/0

0
/90

0
 

-0.241 -0.277 -0.32 -0.372 -0.435 -0.511 -0.603 

(0.31,0.5) (0.34,0.5) (0.36,0.5) (0.31,0.5) (0.31,0.5) (0.34,0.5) (0.32,0.5) 

Note: a/h =100, a/hh=5, E11=25E22, G12=G13=0.5 E22, G23=0.2 E22, ν=0.25 

Values in the parentheses indicate the location (x¯, y¯) of maximum downward deflection in each case. 
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Fig. 6 Graphical variation of w¯ with different degree of truncation 

and aspect ratio = 1 for clamped antisymmetric laminated shell. 

 

Fig.7 Graphical variation of  w¯ with different degree of truncation 

and aspect ratio = 1 for clamped symmetric laminated shell. 
 

Table IV 

Maximum non-dimensional downward deflections 4x10w


clamped laminated conoidal shells with aspect ratio = 2 under 

uniformly distributed pressure with different laminations and degree of truncation. 

Lamination 

(deg) 

Degree of truncation (hl/hh) 

0.3 0.25 0.2 0.15 0.1 0.05 0 

0
0
/90

0
 

-0.03 -0.036 -0.043 -0.056 -0.072 -0.097 -0.137 

(0.18,0.5) (0.18,0.5) (0.19,0.5) (0.16,0.5) (0.15,0.5) (0.14,0.5) (0.17,0.5) 

90
0
/0

0
 

-0.031 -0.037 -0.045 -0.058 -0.075 -0.102 -0.145 

(0.18,0.5) (0.21,0.5) (0.17,0.5) (0.16,0.5) (0.18,0.5) (0.18,0.5) (0.18,0.5) 

0
0
/90

0
/0

0
 

-0.022 -0.026 -0.032 -0.043 -0.057 -0.079 -0.115 

(0.15,0.5) (0.16,0.5) (0.16,0.5) (0.14,0.5) (0.15,0.5) (0.15,0.5) (0.18,0.5) 

90
0
/0

0
/90

0
 

-0.039 -0.045 -0.053 -0.062 -0.077 -0.097 -0.125 

(0.21,0.5) (0.21,0.5) (0.21,0.5) (0.21,0.5) (0.21,0.5) (0.19,0.5) (0.21,0.5) 

0
0
/90

0
/0

0
/90

0
 

-0.028 -0.033 -0.039 -0.05 -0.064 -0.084 -0.115 

(0.21,0.5) (0.21,0.5) (0.18,0.5) (0.18,0.5) (0.17,0.5) (0.18,0.5) (0.19,0.5) 

90
0
/0

0
/90

0
/0

0
 

-0.028 -0.034 -0.04 -0.052 -0.066 -0.087 -0.119 

(0.19,0.5) (0.19,0.5) (0.21,0.5) (0.15,0.5) (0.18,0.5) (0.17,0.5) (0.18,0.5) 

0
0
/90

0
/90

0
/0

0
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(0.21,0.5) (0.18,0.5) (0.17,0.5) (0.16,0.5) (0.18,0.5) (0.17,0.5) (0.18,0.5) 

90
0
/0

0
/0

0
/90

0
 

-0.028 -0.032 -0.039 -0.047 -0.059 -0.076 -0.102 

(0.21,0.5) (0.21,0.5) (0.21,0.5) (0.16,0.5) (0.17,0.5) (0.17,0.5) (0.18,0.5) 

Note: a/h =100, a/hh=5, E11=25E22, G12=G13=0.5 E22, G23=0.2 E22, ν=0.25 

Values in the parentheses indicate the location (x¯, y¯) of maximum downward deflection in each case. 
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Fig. 8 Graphical variation of w¯ with different degree of truncation and  

aspect ratio =2 for clamped anti-symmetric laminated shell. 

 

 

 

Fig.9 Graphical variation of w¯ with different degree of truncation and  

aspect ratio=2 for clamped symmetric laminated shell. 

V. CONCLUSION 

The following are the conclusions drawn from the present study.  

1. The finite element formulation presented in this project can be successfully applied to analyse bending problems 

of laminated composite conoidal shells which is clear from the results of the benchmark problems presented in the 

project. 

2. Bending stiffness of laminated composite conoidal shells is found to increase with increase in aspect ratio. 

3. The results also lead to infer that a truncated conoidal shell is stiffer than a full conoidal shell from bending point 

of view and this stiffness increases further with increase of hl/hh ratio.  

4. For a clamped laminated composite conoidal shell, symmetric laminates are found to be stronger than the anti-

symmetric laminates with respect to bending stiffness for different aspect ratio and degree of truncation. For this 

boundary condition an increase in number of laminae is good for anti-symmetric laminates, but for symmetric 

laminates such a conclusion does not hold. 

 

NOTATIONS 

a, b  
length and width of shell in plan along 

beam and arch directions respectively 
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c, d  

length and width of delamination area 

in plan along beam and arch directions 

respectively 

E11 , E22  elastic moduli 

{F}  force and moment resultant 

G12 ,G13 ,G23   shear moduli of a lamina with respect to 1, 2 and 3 axes of fiber 

h  shell thickness 

hh  greater height of conoid 

hl  smaller height of conoid 

{κ}  curvature changes due to loading 

κx ,κy ,κxy  curvatures of shell 

{M}  moment vectors 

Mx ,My  moment resultants 

Mxy  torsion resultant 

{N}  force vectors 

Nx ,Ny  Inp lane force resultants 

Nxy In plane shear resultant 

q Magnitude of distributed load 

{Q}  transverse shear force vectors 

Qx ,Qy  transverse shear resultants 

[ Qij ] elastic constant matrix 

Ry  radius of shell surface along arch (y)direction 

Rxy   radii of cross curvature of shell 

[S]  stiffness matrix in transverse shear 

u, v, w  translational degrees of freedom at each node of shell element 

α , β  rotational degrees of freedom at each node of shell element 

{ε }  inplane strain vectors 

{γ }  transverse shear strain vectors 

{ν12  }  Poisson’s ratio 

ξ ,η  local natural co-ordinates of an element 

w  non-dimensional deflection, where  w ̅ = (wh
3
 E22 / Pa

4
 )×10

4
                                              

ρ  density of material 

w  vertical deflection 

{de}  element displacement 

N1–N8  shape functions 

x, y, z  local co-ordinate axes 

X, Y, Z  global co-ordinate axes 

α,  β rotational degrees of freedom 

εx, εy  inplane strain components 
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