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Abstract: In this paper, we give the brief description about the software engineering and their methodologies. This paper also describes how we 

can use genetic algorithms with software engineering. The advantages of the GA approach are that it is simple to use, requires minimal problem 

specific information, and is able to effectively adapt in dynamically changing environments.   
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INTRODUCTION 

 

Software Engineering: The term software engineering first 
appeared in the 1968 NATO Software Engineering 

Conference, and was meant to provoke thought regarding 

the perceived "software crisis" at the time[1]. Software 

Engineering aim is the production of quality software, 

software that are delivered on time, within budget, and that 

satisfies user’s requirements. Software Engineering is the 

application of science and mathematics by which the 

capabilities of computer equipment are made useful to man 

via computer programs, procedures and associated 

documentation. The IEEE Computer Society's Software 

Engineering Body of Knowledge defines "software 
engineering" as the application of a systematic, disciplined, 

quantifiable approach to the development, operation, and 

maintenance of software, and the study of these approaches; 

that is, the application of engineering to software[2]. 

Software Development Life Cycle: Task Scheduling in 

Multiprocessor [1] [2] is a term that can be stated as finding 

a schedule for a general task graph to be executed on a 

multiprocessor system so that the schedule length can be 

minimized. Multiprocessor scheduling [3] problems can be 

classified into many different categories based on 

characteristics of the program and tasks to be scheduled, the 

multiprocessor system, and the availability of information. 
Multiprocessor scheduling [2] problems may be divided in 

two categories: Static and dynamic task scheduling. A static 

or deterministic task scheduling is one in which precedence 

constraints and the relationships among the task are known 

well in advance While non-deterministic or dynamic 

scheduling [3] is one in which these information is not 

known in advance or not known till run time. A major factor 

in the efficient utilization of multiprocessor system is the 

proper assignment and scheduling of computational tasks 

among processors. The problem can have many variations: 

(i) The scheduling algorithm can be deterministic – also 
known as static – or nondeterministic.  

A deterministic task scheduling problem is defined as one in 

which the knowledge related to tasks, their relations towards 

each other, timing and the number of processors used are all 

a prior knowledge. In a nondeterministic problem on the 

other hand, all or some of these factors can be input-
dependent and vary according to run time conditions. 

(ii) The tasks can be preemptive or non-preemptive. 

A preemptive task scheduling problem allows the tasks to be 

cut off from execution and another task to begin or continue 

its execution cycle [operating system example. A non 

preemptive problem in which task execution must be 

completely done before another task takes control of the 

processor. 

(iii) The processors can be either homogenous or 

heterogeneous.  

Heterogeneity of processors means that the processors have 
different speeds or processing capabilities. In a homogenous 

environment on the other hand, all processors are assumed 

to have equal capabilities. Efficient scheduling [8] of 

application tasks is critical to achieving high performance in 

parallel multiprocessor [9] systems. The objective of 

scheduling is to map the tasks onto the processors and order 

their execution. So that task precedence requirements are 

satisfied and minimum schedule length (or Make span). The 

most common heuristic methods are List Heuristics, such as 

Earliest Task First (ETF) algorithm, Critical Path/Most 

Immediate Successor First (CPMISF) algorithm, and 

Dynamic Critical Path (DCP) algorithm etc. Another 
heuristic method is genetic algorithm. A genetic algorithm 

[7] is a domain-independent global search technique where 

elements (called individuals) in a given set of solutions 

(called population) are randomly combined until some 

termination condition is achieved. 

Genetic algorithms and other search techniques:  Genetic 

algorithms [10] [11] as powerful and broadly applicable 

stochastic search and optimization techniques, are the most 

widely known types of evolutionary computation [16] [11] 

methods today. The father of the original Genetic Algorithm 

was John Holland [13] who invented it in the early 1970's.  
Other search techniques are: There are various techniques 

available for searching and optimization GA is one of them. 

Genetic Algorithms used for both searching and 
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optimization. The techniques are shown in figure1. These 

are: 

i) Numerical Techniques: a). Direct Methods 

b). Indirect Methods 

ii) Guided random search techniques: a). 

Simulated Annealing, b). Evolutionary 

Algorithms 

iii) Enumerative techniques: a). Dynamic 

Programming 

 
 

Figure1: Searching Techniques 

 

METHODOLOGY - GENETIC ALGORITHM (GA) 

 

Genetic algorithms (Goldberg, 1989) in particular became 

popular through the work of John Holland [3] in the early 

1970s, and particularly his book Adaptation in Natural and 
Artificial Systems (1975).  

 

Evolution flow of genetic algorithm  
 

Genetic Algorithms (GAs) are adaptive heuristic search 

algorithm [21] based on the evolutionary [16] ideas of 

natural selection and genetics [11]. As such they represent 

an intelligent exploitation of a random search used to solve 

optimization [17] problems. Although randomized, GAs are 

by no means random, instead they exploit historical 

information to direct the search into the region of better 
performance within the search space [14]. Figure represents 

the GA evolution flow.  

 
 

Figure 2: Evolution Flow of Genetic Algorithm 

 

The data structure for genetic algorithms shown in figure 

 
 

Figure 3 – Genetic Algorithms Data Structure 

 

Basic Terms used in GA: Genes, Chromosome, Parameters, 

Gene number, Population size, Search Space, Generations.  

Basic Principle: The working principle [30] of a simple GA 

is illustrated in Figure. The major steps involved are the 

generation of a population [26] of solutions, finding the 

objective function and fitness function and the application of 

genetic operators [26]. These aspects are described briefly 

below. They are described in detail in Genetic operators.  

 
 

Figure 4: The Working Principle of a Simple Genetic Algorithm 

 

An important characteristic of genetic algorithm [27] [26] is 

the coding of variables that describes the problem. The most 

common coding method is to transform the variables to a 

binary string or vector; GAs performs best when solution 

vectors are binary [11] 
 

Features of a Genetic Algorithm 

 

1. Stochastic - different results from different runs 

2. Most often used to solve hard problems 

3. Maintains a population of solutions 

4. Solutions are encoded on chromosomes 

5. Reproduction creates new population members 

6. Mutation and recombination occur during reproduction 

7. Survival of the fittest: better individuals have better 

chance of reproducing. 

What are the strengths of GAs? Following are the strengths 
of genetic algorithms: 

(i) Parallel Algorithm 

First and most important point is that genetic algorithms 

[11] are intrinsically parallel. Most other algorithms are 

serial and can only explore the solution space to a problem 

in one direction at a time, and if the solution they discover 

turns out to be suboptimal, there is nothing to do but 

abandon all work previously completed and start over. 

However, since GAs have multiple offspring [17], they can 

explore the solution space in multiple directions at once. If 

one path turns out to be a dead end, they can easily eliminate 
it and continue work on more promising avenues, giving 

them a greater chance each run of finding the optimal 

solution [14]. 

(ii) Many schemas at once 

Due to the parallelism that allows them to implicitly 

evaluate many schemas at once, genetic algorithms [28] are 

particularly well-suited to solving problems where the space 

of all potential solutions is truly huge - too vast to search 

exhaustively in any reasonable amount of time. Most 

problems that fall into this category are known as 

"nonlinear". In a linear problem, the fitness [29] of each 
component is independent, so any improvement to any one 

part will result in an improvement of the system as a whole. 

Needless to say, few real-world problems [21] are like this. 

Nonlinearity is the norm, where changing one component 
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may have ripple effects on the entire system, and where 

multiple changes that individually are detrimental may lead 

to much greater improvements in fitness when combined. 

(iii) Global optimum solution 

Another notable strength of genetic algorithms [19] is that 

they perform well in problems for which the fitness 

landscape [23] is complex - ones where the fitness function 

is discontinuous, noisy, changes over time, or has many 

local optima. Most practical problems have a vast solution 
space, impossible to search exhaustively; the challenge then 

becomes how to avoid the local optima solutions [23] that 

are better than all the others that are similar to them, but that 

are not as good as different ones elsewhere in the solution 

space. Many search algorithms [25] can become trapped by 

local optima: if they reach the top of a hill on the fitness 

landscape, they will discover that no better solutions exist 

nearby and conclude that they have reached the best one. 

Evolutionary algorithms [16], on the other hand, have 

proven to be effective at escaping local optima and 

discovering the global optimum [23] in even a very rugged 

and complex fitness landscape. (It should be noted that, in 
reality, there is usually no way to tell whether a given 

solution to a problem is the one global optimum or just a 

very high local optimum. However, even if a GA does not 

always deliver a provably perfect solution to a problem, it 

can almost always deliver at least a very good solution. 

(iv)Multiple parameters problem 

Another area in which genetic algorithms [23] excel is their 

ability to manipulate many parameters simultaneously. 

Many real-world problems cannot be stated in terms of a 

single value to be minimized or maximized, but must be 

expressed in terms of multiple objectives [17], usually with 
tradeoffs involved: one can only be improved at the expense 

of another. GAs are very good at solving such problems: in 

particular, their use of parallelism enables them to produce 

multiple equally good solutions to the same problem, 

possibly with one candidate solution optimizing one 

parameter [26] and another candidate optimizing a different 

one and a human overseer can then select one of these 

candidates to use. 

(v) Knowledge does not required 

Finally, one of the qualities of genetic algorithms [23] which 

might at first appear to be a liability turns out to be one of 

their strengths: namely, GAs know nothing about the 
problems they are deployed to solve. Instead of using 

previously known domain-specific information to guide 

each step and making changes with a specific eye towards 

improvement, as human designers do, they are "blind 

watchmakers"; they make random changes to their candidate 

solutions [11] and then use the fitness function [14] to 

determine whether those changes produce an improvement. 

What are the limitations of GAs? Following are the 

limitations of genetic algorithms: 

Although genetic algorithms have proven to be an efficient 

and powerful problem-solving strategy, they are not a 
panacea. GAs [23] does have certain limitations; however, it 

will be shown that all of these can be overcome and none of 

them bear on the validity of biological evolution. 

(i) Representation for the problem 

The first, and most important, consideration in creating a 

GA is defining a representation [11] for the problem. The 

language used to specify candidate solutions must be robust; 

i.e., it must be able to tolerate random changes such that 

fatal errors or nonsense do not consistently result. 

There are two main ways of achieving this. The first, which 

is used by most genetic algorithms, is to define individuals 

[23] as lists of numbers - binary-valued, integer-valued, or 

real-valued - where each number represents some aspect of a 

candidate solution. If the individuals [23] are binary strings, 

0 or 1 could stand for the absence or presence of a given 

feature. If they are lists of numbers, these numbers could 
represent many different things: the weights of the links in a 

neural network, the order of the cities visited in a given tour, 

the spatial placement of electronic components, the values 

fed into a controller, the torsion angles of peptide bonds in a 

protein, and so on. 

(ii) Fitness Function representation 

The problem of how to write the fitness function [11] must 

be carefully considered so that higher fitness is attainable 

and actually does equate to a better solution for the given 

problem. If the fitness function [23] is chosen poorly or 

defined imprecisely, the genetic algorithm may be unable to 

find a solution to the problem, or may end up solving the 
wrong problem. (This latter situation is sometimes described 

as the tendency of a GA to "cheat", although in reality all 

that is happening is that the GA [28] is doing what it was 

told to do, not what its creators intended it to do.) An 

example of this can be found in Graham-Rowe 2002, in 

which researchers used an evolutionary algorithm [17] in 

conjunction with a reprogrammable hardware array, setting 

up the fitness function to reward the evolving circuit for 

outputting an oscillating signal. At the end of the 

experiment, an oscillating signal was indeed being produced 

- but instead of the circuit itself acting as an oscillator, as the 
researchers had intended, they discovered that it had become 

a radio receiver that was picking up and relaying an 

oscillating signal from a nearby piece of electronic 

equipment.  

(iii) Problem of choosing the various parameters like the 

Size of the population, the rate of mutation and crossover, 

Selection scheme 

In addition to making a good choice of fitness function [23], 

the other parameters of a GA - the size of the population 

[26], the rate of mutation and crossover [25], the type and 

strength of selection - must be also chosen with care. If the 

population size is too small, the genetic algorithm may not 
explore enough of the solution space to consistently find 

good solutions. 

(iv) Deceptive fitness functions 

One type of problem that genetic algorithms [23] have 

difficulty dealing with are problems with "deceptive" fitness 

functions, those where the locations of improved points give 

misleading information about where the global optimum is 

likely to be found. 

 (v) Premature convergence 

One well-known problem that can occur with a GA [24] is 

known as premature convergence [23]. If an individual that 
is more fit than most of its competitors emerges early on in 

the course of the run, it may reproduce so abundantly that it 

drives down the population's diversity too soon, leading the 

algorithm to converge on the local optimum [17] that that 

individual represents rather than searching the fitness 

landscape thoroughly enough to find the global optimum. 
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APPLICATIONS OF GENETIC ALGORITHM  

 

Applications 

A heuristic search technique used in computing and 

Artificial Intelligence [3] to find optimized solutions to 

search problems using techniques inspired by evolutionary 

[16] biology: mutation, selection, reproduction [inheritance] 

and recombination.  

(i) Engineering Design 

 
 

Figure 6: Engineering Drawing 

 

Getting the most out of a range of materials to optimize the 

structural and operational design of buildings, factories, 

machines, etc. is a rapidly expanding application of GA 

[10]. These are being created for such uses as optimizing the 

design of heat exchangers , robot gripping arms, satellite 

booms, building trusses, flywheels, turbines, and just about 

any other computer-assisted engineering design application.  

(ii) Robotics 

 
 

Figure 7: Robotics Designing 

 

Robotics involves human designers and engineers trying out 

all sorts of things in order to create useful machines that can 

do work for humans. 

(iii) Optimized Telecommunications Routing 

Do you find yourself frustrated by slow LAN performance, 

inconsistent internet access, a FAX machine that only sends 

faxes sometimes, your land line's number of 'ghost' phone 

calls every month? Well, GAs [10] are being developed that 

will allow for dynamic and anticipatory routing of circuits 

for telecommunications networks..  

(iv) Biometric Invention 

 
 

Figure 8: Biometric Invention 

 

Biomimicry or biomimetics is the development of 

technologies inspired by designs in nature. Since GAs [11] 

is inspired by the mechanisms of biological evolution, it 

makes sense that they could be used in the process of 

invention as well.  

(v) Trip, Traffic and Shipment Routing 

New applications of a GA [21] known as the "Traveling 

Salesman Problem" or TSP can be used to plan the most 

efficient routes and scheduling for travel planners, traffic 

routers and even shipping companies.  

(vi) Computer Gaming 

Those who spend some of their time playing computer Sims 

games (creating their own civilizations and evolving them) 

will often find themselves playing against sophisticated 

artificial intelligence GAs [10] instead of against other 
human players online. 

(vii) Encryption and Code Breaking 

 
 

Figure 9: Encryption and Code Breaking 

 

On the security front, GAs [23] can be used both to create 

encryption for sensitive data as well as to break those codes. 

Encrypting data, protecting copyrights and breaking 

competitors' codes have been important in the computer 

world ever since there have been computers, so the 

competition is intense.  

(viii) Gene Expression Profiling 

 
 

Figure 10: Gene Expression Profiling 

 

The development of micro array technology for taking 

'snapshots' of the genes being expressed in a cell or group of 

cells has been a boon to medical research. GAs [11] has 

been and is being developed to make analysis of gene [23] 

expression profiles much quicker and easier. 

(ix) Finance and Investment Strategies 

In the current unprecedented world economic meltdown one 

might legitimately wonder if some of those.  

(x) Marketing and Merchandising 

We could think the word 'merchandising' just the way Mel 

Brooks said it in the "Space Balls" the movie. Space Balls 

the toilet paper. Space Balls the lunchbox. Space Balls the 

flame thrower (the kids love this one). And laugh because 

it's close enough to reality to be funny.  

(xi) Solving Multi-Objective Optimization Problems in 

Chemical Engineering 

 
 

Figure 10: A Distillation Tower 

 

Any real-world optimization [10] [13] problem involves 

several objectives. Chemical engineering [46] is no 

Exception. Chemical processes, such as distillation (as 

shown in figure), refinery operations, polymerization, etc., 
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involve a number of process parameters which are to be set 

for achieving certain properties in the final product. 

 (xii) Genetic Algorithm in Polymer Science and 

Engineering 

Multiple-objective [23] functions have been optimized 

simultaneously. An example is the minimization of the 

reaction time in a reactor (lower costs) while simultaneously 

minimizing [24] the concentration of side products (that 

affect the properties of the product adversely). 

(xiii) Genetic Algorithms in Stock Market Data Mining 

Optimization 

In stock market, a technical trading rule [59] is a popular 

tool for analysts and users to do their research and decide to 

buy or sell their shares. The key issue for the success of a 

trading rule is the selection [27] of values for all parameters 

and their combinations. 

 (xiv) Genetic algorithm for cluster analysis 

A simple encoding scheme that yields to constant-length 

chromosomes is used. The objective function [58] 

maximizes both the homogeneity within each cluster and the 

heterogeneity among clusters.  

 

CONCLUSION  

 

The problem of scheduling of tasks to be executed on a 

multiprocessor system is one of the most challenging 

problems computing. Genetic algorithms are well adapted to 

multiprocessor scheduling problems. As the resources are 

increased available to the GA, it is able to find better 

solutions. GA performs better as compared to other 

traditional methods. Overall, the GA appears to be the most 

flexible algorithm for problems using multiple processors. It 
also indicates that the GA is able to adapt automatically to 

changes in the problem to be solved.  
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