
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 1

EFFICIENT GENETIC ALGORITHM ON LINEAR PROGRAMMING PROBLEM

FOR FITTEST CHROMOSOMES

Subrata Datta
*1

, Chayanika Garai
2
 and Chandrani Das

3

*1Asst. Prof. Department of Information Technology

Neotia Institute of Technology, Management and Science

datta.nitmas@gmail.com
2Department of Information Technology

Neotia Institute of Technology, Management and Science

chayanikagarai@gmail.com
3Department of Information Technology

Neotia Institute of Technology, Management and Science

moon.queen12@gmail.com

Abstract: Genetic Algorithms are search algorithms based on the mechanics of natural selection and natural genetics. They combine survival of
the fittest among string structures with a structured yet randomized information exchange to form such an algorithm with some of the innovative
flair of human search. In every generation, a new set of artificial creatures (Strings) is created using bits and pieces of the fittest of the old; an

occasional new part is tried for good measure. Linear Programming (LP) is the most commonly applied form of constrained optimization. In this
paper we proposed an efficient genetic algorithm applied on linear programming problem for find out the Fittest Chromosomes. The
experimental performances find out the fittest chromosomes regarding to constraint linear programming problem, so that it gives a better result.

Keywords: Chromosome, Genetic algorithm, Fitness, LPP.

INTRODUCTION

Computer simulation of evolution by biologists became

more common in the early 1960s, and the methods were
described in books by Fraser and Burnell (1970) and Crosby

(1973). Fraser simulations included all of the essential

elements of modern genetic algorithm. In addition Hans-

Joachin Bremermann published a series of papers in the

1960s that also adopted a population of solution to

optimization problems, undergoing recombination, mutation

and selection. Bremermann‟s research also included the

elements of modern genetic algorithms. Genetic algorithms

in particular became popular through the work of John

Holland in the early 1970s and particularly his book

“Adaptation in Nature and

Artificial Systems” (1975). His work originated with the

study of cellular automata. Holland introduced a formalized

framework for predicting the quality of next generation,

known as Holland‟s Schema Theorem.

Genetic algorithm basically stands on the platform of

evolutionary algorithm. Genetic algorithm helps to find out

the potential solution of a specific problem through a simple

chromosome like data structure. Genetic algorithm helps to

generate those chromosomes which give a better solution of

the target problem. While randomized, Genetic Algorithms
are no simple random walk. They efficiently exploit

historical information to speculate on new search points

with expected improved performance [1- 4].

In Linear Programming (LP), all of the mathematical

expressions for the objective functions and the constraints

are linear. The programming in linear programming is an

archaic use of the word “Programming” to mean “Planning”.

We can think linear programming as “Planning with linear

models”. The main motive of this paper is to find out the

fittest chromosomes regarding to constraint linear

programming problem.

BACKGROUND TECHNIQUES

Genetic Algorithm (GA):

In the computer science field of artificial intelligence, a

genetic algorithm (GA) is a search heuristic that mimics the
process of natural evolution. This heuristic is routinely used

to generate useful solutions to optimization and search

problems. Genetic algorithms belong to the larger class of

evolutionary algorithms (EA), which generate solutions to

optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and

crossover.

a. GAs are inspired by Darwin‟s Theory about Evolution

“Survival Of Fittest”.

b. GAs are adaptive heuristic search based on the

evolutionary ideas of natural selection and genetics.

c. GAs are intelligent exploitation of random search used
in optimization problem.

d. GAs, although randomized, exploit historical

information to direct the search into the region of

better performance within the search space

e. Genetic algorithms find application in bioinformatics,

phylogenetics, computational science, engineering,

economics, chemistry, manufacturing, mathematics,

physics and other fields.

Definitions:

Chromosome: A chromosome (also sometimes called a

genome) is a set of parameters which define a proposed

solution to the problem that the genetic algorithm is trying

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 2

to solve. The chromosome is often represented as a simple

string, although a wide variety of other data structures are

also used. We have to redefine the Chromosome

representation for each particular problem, along with its

fitness, mutate and reproduce methods.

Gene: A Gene is a part of chromosome. A gene contains a

part of solution. For example if 162759 is a chromosome

then 1, 6, 2, 7, 5 and 9 are its genes.

Fitness: Fitness (often denoted ω in population genetics
models) is a central idea in evolutionary theory. It can be

defined either with respect to a genotype or to a phenotype

in a given environment. In either case, it describes the

ability to both survive and reproduce, and is equal to the

average contribution to the gene pool of the next generation

that is made by an average individual of the specified

genotype or phenotype. If differences between alleles at a

given gene affect fitness, then the frequencies of the alleles

will change over generations; the alleles with higher fitness

become more common [5-7].

The basic steps involved in Genetic Algorithm are as

follows:

Initialization:

Initialization involves setting the parameters for the

algorithm, creating the scores for the simulation, and

creating the first generation of chromosomes. In this

benchmark, seven parameters are set:
a. The genes value is the number of variable slots on a

chromosome;

b. The codes value is the number of possible values for

each gene;

c. The population size is the number of chromosomes in

each generation;

d. Crossover probability is the probability that a pair of

chromosomes will be crossed;

e. Mutation probability is the probability that a gene on a

chromosome will be mutated randomly;

f. The maximum number of generations is a termination
criterion which sets the maximum number of

chromosome populations that will be generated before

the top scoring chromosome will be returned as the

search answer; and

g. The generations with no change in highest-scoring

(elite) chromosome is the second termination criterion

which is the number of generations that may pass with

no change in the elite chromosome before that elite

chromosome will be returned as the search answer.

h. The attempted optimization is to find the code for each

gene in the solution chromosome that maximizes the

average score for the chromosome. Finally, the first
generation of chromosomes are generated randomly.

Selection:

Selection is the process of choosing two parents from the

population for crossing. It is the first operator applied on

population. From the population, the chromosomes are
selected to be parents to crossover and produce off- spring.

After deciding on an encoding, the next step is to decide

how to perform selection that is how to choose individuals

in the population that will create off-spring for the next

generation and how many off-Spring each will create

Reproduction selects good strings in a population and forms

a mating pool. This is one of the reasons for the

reproduction operation to be sometimes known as the

selection operator.

How to select these chromosomes:

According to Darwin‟s evolution theory “Survival of the

Fittest” –the best ones should survive and create new off-

spring. Selection means extract a subset of genes from an

existing population, according to any definition of quality.

Every gene has a meaning, so one can derive from the gene

a kind of quality measurement called fitness function.

Following this quality (fitness value), selection can be

performed. The higher the fitness function, the better chance

that an individual will be selected. The selection pressure is

defined as the degree to which the better individuals are

favored. The higher the selection pressured, the more the
better individuals are favored. Fitness function quantifies the

optimality of a solution (chromosome) so that a particular

solution will be ranked against all the other solutions. The

function depicts the closeness of a given „solution‟ to the

desired result.

Typically we can distinguish two types of selection

schemes:

Proportionate Based Selection: It picks out individuals

based upon their fitness values relative to the fitness of the

other individuals in the population.

Ordinal Based Selection: This scheme selects individuals

not upon their raw fitness, but upon their rank within the

population. This requires that the selection pressure is

independent of the fitness distribution of the population.

The most commonly used methods of selecting

chromosomes for parents to crossover are:

a. Roulette Wheel Selection

b. Boltzmann Selection

c. Tournament Selection

d. Rank Selection

e. Random Selection

Crossover:

Crossover is the process of taking two parent solutions and

producing from them a child. After the Selection process,

the population is enriched with better individuals.

Reproduction makes clones of good string but does not

create new ones. Crossover operators applied to the mating

pool with the hope that it creates a better offspring.

Crossover is the Recombination operator which can be

described as follows:

a. In crossover operation, recombination process creates

different individuals in the successive generations by

combining materials from two individuals of the
previous generation.

b. The two strings participating in the crossover operation

are known as Parent Strings and the resulting strings

are known as Children String. Crossover selects gene

from parent chromosomes and creates a new offspring.

c. The idea behind Crossover is that the new chromosome

may be better than both of the parents if it takes the

best characteristics from each of the parents.

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 3

d. It is intuitive from this construction that good sub-

strings from parent strings can be combined to form a

better child string, if an appropriate site is chosen.

e. With a random site, the children strings produced may

or may not have a combination of good sub-strings

from parent strings, depending on whether or not the

crossing site falls in the appropriate place.

f. The effect of cross over may be detrimental or

beneficial.

g. In order to preserve some of the good strings that are

already present in the mating pool, all strings in the
mating pool are not used in crossover. When a

crossover probability, defined here as pc is used, only

100pc per cent strings in the population are used in the

crossover operation and 100(1-pc) per cent of the

population remains as they are in the current

population.

Crossover is a recombination operator that proceeds in three

steps:

a) The reproduction operator selects at random a pair of

two individual strings for the mating.
b) A cross site is selected at random along the string

length.

c) Finally, the position values are swapped between the

two strings following the cross site.

Many crossover operators exist in the GA literature. The

operators are selected based on the way chromosomes are

encoded. The various crossover techniques are as follows:

i. Single-Point Crossover

ii. Two-Point Crossover

iii. Multi-Point Crossover/N-Point Crossover
iv. Uniform Crossover

v. Three-Parent Crossover

vi. Arithmetic Crossover

vii. Heuristic Crossover

viii. Ordered Crossover

ix. Partially Matched Crossover

Mutation:

After the Crossover, the strings are subjected to mutation.

Mutation is a genetic operator used to maintain genetic

diversity from one generation of a population of

chromosomes to the next. Mutation may cause the

chromosomes of individuals to be different from those of

their parent individuals. Mutation adds new information in a

random way to the genetic search process and ultimately

helps to avoid getting trapped at local optima. The Mutation

is the operator which can be described as follows:

a. It is an operator that introduces diversity in the

population whenever the population tends to become
homogeneous due to repeated use of reproduction and

crossover operators.

b. Mutation alters all or one gene values in a chromosome

from its initial state. This can result in entirely new

gene values being added to the gene pool. With the

new gene values, the genetic algorithm may be able to

arrive at better solution than was previously possible.

c. Mutation is an important part of the genetic search,

helps to prevent the population from stagnating at any

local optima. Mutation is intended to prevent the

search falling into a local optimum of the state space.

d. Mutation operates at the bit level; when the bits are

being copied from the current string to the new string,

there is probability that each bit may become mutated.

This probability is usually a quite small value, called as

mutation probability pm.

e. The need for mutation is to create a point in the

neighborhood of the current point, thereby achieving a

local search around the current solution.

f. Mutation plays the role of recovering the lost genetic

material as well as for randomly distributing genetic

information. It is an insurance policy against the
irreversible loss of genetic material.

g. Mutation helps escape from local minima‟s trapped

and maintains diversity in the population.

h. Mutation keeps the gene pool well-stocked, thus

ensuring periodicity.

There are many different forms of mutation for the different

kinds of representation. For binary representation, a simple

mutation consists in inverting value of each gene with a

small probability. The probability is usually taken about 1/L,

where L is the length of the chromosome. It is also possible
to implement kind of hill climbing mutation operator that do

mutation only if it improves the quality of the solution. Such

an operator can accelerate the search; however, care should

be taken, because it might also reduce the diversity in the

population and make the algorithm converge toward some

local optima. The mutation operators are of many types:

a. Flipping

b. Interchanging

c. Reversing

d. Boundary

e. Uniform
f. Non-uniform

g. Gaussian

Termination:

The loop of chromosome generations is terminated when

certain conditions are met. When the termination criteria are

met, the elite chromosome is returned as the best solution
found so far. The common terminating conditions are:

A solution is found that satisfies minimum criteria:

Fixed number of generations reached:

It is a termination method that stops the evolution when the

user-specified maximum numbers of evolutions have been

run. This termination method is always active.

Evolution Time:

It is a termination method that stops the evolution when the

elapsed evolution time exceeds the user-specified max

evolution time. By default, the evolution is not stopped until

the evolution of the current generation has completed, but

this behaviour can be changed so that the evolution can be
stopped within a generation.

Fitness Threshold:

It is a termination method that stops the evolution when the

best fitness in the current population becomes less than the

user-specified fitness threshold and the objective is set to
minimize the fitness. This termination method also stops the

evolution when the best fitness in the current population

becomes greater than the user-specified fitness threshold

when the objective is to maximize the fitness.

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 4

Fitness Convergence:

It is a termination method that stops the evolution when the

fitness is deemed as converged. Two filters of different

lengths are used to smooth the best fitness across the

generations. When the smoothed best fitness from the long
filter is less than a user-specified percentage away from the

smoothed best fitness from the short filter, the fitness is

deemed as converged and the evolution terminates.

Population Convergence:

It is a termination method that stops the evolution when the

population is deemed as converged. The population is
deemed as converged when the average fitness across the

current population is less than a user-specified percentage

away from the best fitness of the current population [1-5]

and [8-9].

Different techniques of linear programming Simplex

Method:- The simplex method is an iterative procedure by

which a new basic feasible solutions can be obtained from a

given basic feasible solution which improves the value of

the objective function.

Dual Simplex Method:- In the simplex method or primal

simplex method we begin with and maintain at each

iteration a basic feasible solution and we change bases until

the optimality criteria is satisfied. In the dual simplex

method we maintain continues satisfaction of the optimality

criterion and change bases until we get the

Feasibility of the basic solution:

Thus the dual simplex method is a kind of mirror image of

primal simplex method as regards feasibility.

The general nature of the primal simplex method consists in

selecting a vector to enter to leave the bases; the entering or

leaving vectors corresponds to adjacent extreme points of

the convex set of feasible solution. The sequence of steps in

selecting the entering or leaving vectors are different in

different algorithms but they ensure both primal or dual

feasibility and a monotone increase or decrease in the

objective function.

Areas of application of linear programming: The

potentiality of linear programming as a tool for solving

problems is substantial. It is used to solve problems of
procurement of raw materials in changing situations,

production planning, assembly line balancing and many

other problems of operation management [10].

PROPOSED TECHNIQUES

The proposed Genetic Algorithm is blind optimizers which

do not use any auxiliary information such as derivatives or

other specific knowledge about the special structure of the

objective function. If there is such knowledge, however, it is

unwise and inefficient not to make use of it. Several

investigations have shown that a lot of synergism lies in the

combination of genetic algorithm and conventional methods.

The basic idea is to divide the optimization task into two

complementary parts. The GA does the course, global

optimization while local refinement is done by the

conventional method. A number of variants are reasonable:

a. The GA performs the coarse search first. After the

GA is completed local refinement is done.

b. The local method is integrated in the GA. For

instance, every k generations, the population is doped

with a locally optimal individual.

c. Both methods run in parallel: all individuals are

continuously used as initial values for the local

method. The locally optimized individuals are re-

implanted into the current generation.

Figure 1: Flowchart of Genetic Algorithm Pseudo code of Genetic

Algorithm:

Begin

Input initial population

Select n number of random population

 Do

Select best ranking individuals to reproduce;

Apply crossover operator;

Apply mutation operator;

Determine functional value ;

Evaluate each individual‟s fitness;

End

In Constrained Optimization we have to find the best

solution (The optimum point) with respect to various

constraints.

In Linear Programming (LP), all of the mathematical

expressions for the objective functions and the constraints

are linear. The programming in linear programming is an

archaic use of the word “Programming” to mean “Planning”.

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 5

We can think linear programming as “Planning with linear

models”.

Here we are applying genetic algorithm to a specific

optimization problem step by step. Consider the problem of

maximizing the function f(x) = x2, where x is permitted to

vary between 0 and 31.

Step 1:- To use a genetic algorithm we must first code the

decision variables of our problem as some finite- length

string. So we will code the variable x as a binary unsigned
integer of length 5. As with a five-bit (binary digit) unsigned

integer we can obtain numbers between 0(00000) and 31

(11111).

 Step 2:- Select an initial population at random. The initial

population is obtained in the form of binary strings. These

strings are then converted to their corresponding decimal

values. And then calculate the corresponding fitness

function value for each x.

Table: 1

String

No

Initial Population

(Randomly

Generated)

x Value

(Unsigned

Integer)

f(x) =

x
2

1 01101 13 169

2 11000 24 576

3 01000 8 64

4 10011 19 361

Step 3:- A generation of the genetic algorithm begins with

reproduction. We select the mating pool of the next

generation by spinning the weighted roulette wheel four

times. Actual simulation of this process using coin tosses

has resulted in string 1 and string 4 receiving one copy in

the mating pool, string 2 receiving two copies, and string 3
receiving no copies, as shown in the following table.

Comparing this with the expected number of copies

(n.pselecti) we have obtained what we should expect: the

best get more copies, the average stay even, and the worst

die off.

Step 4:- With an active pool of strings looking for mates,

simple crossover proceeds in two steps:-

i) Strings are mated randomly

ii) Mated string couples cross over.

Referring to the following table, random choice of mates has

selected second string in the mating pool to be mated with
the first. With a crossing site of 4, the two strings 01101 and

11000 cross and yield two new strings 01100 and 11001.

The remaining two strings in the mating pool are crossed at

site 2; the resulting strings may be checked in the following

table. Here the crossover probability is assumed to be unity

pc =1.0.

Step 5:- The last operator, mutation, is performed on a bit-

by-bit basis. We assume that the probability of mutation in

this test is 0.001. With 20 transferred bit positions we should

expect 20*0.001=0.02 bits to undergo mutation during a
given generation. Simulation of this process indicates that

no bits undergo mutation for this probability value. As a

result, no bit positions are changed from 0 to 1 or vice-versa

during this generation.

RESULTS ANALYSIS

We have applied Genetic algorithm and Simplex method on

the same LPP and find out the difference in the result. Our

tested LPP is as follows

Max F(x1, x2) = 4x1 +3x2

2x1+3x2 <= 6

-3x1+2x2 <=3
 2x1+x2 <=4; 0<=x<=2

When we have applied the Simplex method then it generates

only one set of solution where x1 = 1.5 and x2 =1 and thus

F(x1, x2) = 9. But when we have applied the GA we get a

series of feasible solutions and at a certain generation we

have achieved the greater value of first chromosome i. E

x1=1.6 in comparison with previous one. So this is a big

achievement for us. Beside this we have a set of feasible

solutions which can be applicable where it is needed

according to the requirements. This is a remarkable benefit
of using Genetic Algorithm. The best fitness, the best

individual, best selection graphs determinate with our

proposed genetic algorithm in the range 0-1.0 to 0-1.5.

Best Fitness Graphs using Genetic Algorithm:

Figure 2: Best Fitness Graph Using Genetic Algorithm (Range 0-1.5)

Figure 3: Best Fitness Graph Using Genetic Algorithm (Range 0-1.5)

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 6

Best Individual Graphs using Genetic Algorithm:

Figure 4: Best Individual Graphs using Genetic Algorithm with Range 0-

1.0

Best Selection Graphs using Genetic Algorithm:

Figure 5: Best Individual Graphs using Genetic Algorithm with Range 0-

1.5

Figure 6: Best Individual Graph for range (0-1.0)

Figure 7: Best Individual Graph for range (0-1.5)

Fitness Chart of Our Experiment:

Generation f-count (Best) f(x) (Mean) f(x) (Stall) Generations

Range (0-1)

1 40 2.761 5.648 0

2 60 -0.02282 4.37 0

3 80 -0.2393 2.883 0

4 100 -3.239 1.95 0

5 120 -3.239 0.4281 1

6 140 -4.739 -1.021 0

7 160 -6.239 -1.626 0

8 180 -6.239 -2.667 1

9 200 -6.239 -4.346 2

10 220 -8.052 -5.667 0

11 240 -8.052 -5.927 1

12 260 -8.989 -6.643 0

13 280 -8.989 -7.193 1

14 300 -8.989 -8.177 2

15 320 -8.239 -8.693 0

16 340 -8.989 -8.952 0

17 360 -11.24 -8.927 0

18 380 -11.24 -8.483 1

19 400 -12.24 -9.564 0

20 420 -12.24 -9.596 0

CONCLUSION AND FUTURE WORKS

Genetic algorithm (GA) is an intelligent search technique.

GA combines the good information hidden in a solution

with good information from another solution to produce new

solutions with good information inherited from both parents,

inevitably leading towards optimality. The results can be

very good on some problems, and rather poor on others. If

only mutation is used, the algorithm is very slow. Crossover

makes the algorithm significantly faster. GA is a kind of

hill-climbing search; more specifically it is very similar to a

randomized beam search. As with all hill-climbing

algorithms, there is a problem of local maxima. Local

maxima in a genetic problem are those individuals that get

stuck with a pretty good, but not optimal, fitness measure.

Any small mutation gives worse fitness. Fortunately,
crossover can help them get out of a local maximum. Also,

mutation is a random process, so it is possible that we may

have a sudden large mutation to get these individuals out of

this situation. If the conception of a computer algorithm

being based on the evolutionary of organism is surprising,

the extensiveness with which this algorithm is applied in so

Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7

© JGRCS 2010, All Rights Reserved 7

many areas is no less than astonishing. These applications,

be they commercial, educational and scientific, are

increasingly dependent on this algorithms, the Genetic

Algorithms. Its usefulness and gracefulness of solving

problems has made it a more favorite choice among the

traditional methods, namely gradient search, random search

and others. GAs is very helpful when the developer does not

have precise domain expertise, because GAs possesses the

ability to explore and learn from their domain. In this thesis

we have applied GA on linear programming problem (LPP),

but this can also be applicable in non-linear programming
problem. We can apply GA in those cases where a number

of solutions may come but optimal solution is not known.

The most vital situation is crossover point and mutation

step. Selection of crossover point is basically done in

random wise. So in future, a technique should be developed

for choosing the crossover point, so that it helps Genetic

algorithm to become more robust and fast optimization

procedure. In future, we would witness some developments

of variants of GAs to tailor for some very specific tasks.

This might defy the very principle of GAs that it is ignorant
of the problem domain when used to solve problem. But we

would realize that this practice could make GAs even more

powerful.

REFERENCES

[1]. „GA in search, optimization and machine learning‟ by

David E. Goldberg

[2]. „Principles of soft computing‟ by S. N. Sivanandan, PSG

college and S. N. Deepa, Anna University

[3]. „Artificial Intelligence‟ by Amit Konar, Jadavpur

University

[4]. „Computational Intelligence‟ by Amit Konar, Jadavpur

University

[5]. R.Sivaraj and Dr.T.Ravichandran, “An Efficient Grouping

Genetic Algorithm”, International Journal of Computer

Applications (0975 – 8887) Volume 21– No.7, May 2011.

[6]. Ehsan Heidari and Ali Movaghar, “AN EFFICIENT

METHOD BASED ON GENETIC ALGORITHMS TO

SOLVE SENSOR NETWORK OPTIMIZATION

PROBLEM”, International journal on applications of graph

theory in wireless ad hoc networks and sensor networks

(GRAPH-HOC) Vol.3, No.1, March 2011.

[7]. „Genetic Algorithm‟ by Tom V. Mathew, IIT Bombay

[8]. Chambers, L. (1995), Practical handbook of genetic

algorithms: Applications, Vol.I, CRC Press, Boca Raton,

Florida.

[9]. Gen, M. and Cheng, R. (2000), Genetic algorithms and

engineering opimization, John Wiley, New York.

[10]. „Linear programming and game theory‟ by J.G.

Chakravorthy, University of Calcutta and P.R.Ghosh,

University of Calcutta.

