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Abstract: Genetic Algorithms are search algorithms based on the mechanics of natural selection and natural genetics. They combine survival  of 
the fittest among string structures with a structured yet randomized information exchange to form such an algorithm with some of the innovative 
flair of human search. In every generation, a new set of artificial creatures (Strings) is created using bits and pieces of the fittest of the old; an 

occasional new part is tried for good measure. Linear Programming (LP) is the most commonly applied form of constrained optimization. In this 
paper we proposed an efficient genetic algorithm applied on linear programming problem for find out the Fittest Chromosomes. The 
experimental performances find out the fittest chromosomes regarding to constraint linear programming problem, so that it gives a better result. 
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INTRODUCTION 

Computer simulation of evolution by biologists became 

more common in the early 1960s, and the methods were 
described in books by Fraser and Burnell (1970) and Crosby 

(1973). Fraser simulations included all of the essential 

elements of modern genetic algorithm. In addition Hans-

Joachin Bremermann published a series of papers in the 

1960s that also adopted a population of solution to 

optimization problems, undergoing recombination, mutation 

and selection. Bremermann‟s research also included the 

elements of modern genetic algorithms. Genetic algorithms 

in particular became popular through the work of John 

Holland in the early 1970s and particularly his book 

“Adaptation in Nature and  

 
Artificial Systems” (1975). His work originated with the 

study of cellular automata. Holland introduced a formalized 

framework for predicting the quality of next generation, 

known as Holland‟s Schema Theorem. 

 

Genetic algorithm basically stands on the platform of 

evolutionary algorithm. Genetic algorithm helps to find out 

the potential solution of a specific problem through a simple 

chromosome like data structure. Genetic algorithm helps to 

generate those chromosomes which give a better solution of 

the target problem. While randomized, Genetic Algorithms 
are no simple random walk. They efficiently exploit 

historical information to speculate on new search points 

with expected improved performance [1- 4]. 

 

In Linear Programming (LP), all of the mathematical 

expressions for the objective functions and the constraints 

are linear. The programming in linear programming is an 

archaic use of the word “Programming” to mean “Planning”.  

 

We can think linear programming as “Planning with linear 

models”. The main motive of this paper is to find out the 

fittest chromosomes regarding to constraint linear 

programming problem. 

BACKGROUND TECHNIQUES 

Genetic Algorithm (GA): 

In the computer science field of artificial intelligence, a 

genetic algorithm (GA) is a search heuristic that mimics the 
process of natural evolution. This heuristic is routinely used 

to generate useful solutions to optimization and search 

problems. Genetic algorithms belong to the larger class of 

evolutionary algorithms (EA), which generate solutions to 

optimization problems using techniques inspired by natural 

evolution, such as inheritance, mutation, selection, and 

crossover.  

a. GAs are inspired by Darwin‟s Theory about Evolution 

“Survival Of Fittest”.  

b. GAs are adaptive heuristic search based on the 

evolutionary ideas of natural selection and genetics.  

c. GAs are intelligent exploitation of random search used 
in optimization problem.  

d. GAs, although randomized, exploit historical 

information to direct the search into the region of 

better performance within the search space  

e. Genetic algorithms find application in bioinformatics, 

phylogenetics, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, 

physics and other fields.  

Definitions: 

Chromosome: A chromosome (also sometimes called a 

genome) is a set of parameters which define a proposed 

solution to the problem that the genetic algorithm is trying 



Subrata Datta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 1-7 

© JGRCS 2010, All Rights Reserved                          2 

to solve. The chromosome is often represented as a simple 

string, although a wide variety of other data structures are 

also used. We have to redefine the Chromosome 

representation for each particular problem, along with its 

fitness, mutate and reproduce methods.  

  

Gene: A Gene is a part of chromosome. A gene contains a 

part of solution. For example if 162759 is a chromosome 

then 1, 6, 2, 7, 5 and 9 are its genes.  

 

Fitness: Fitness (often denoted ω in population genetics 
models) is a central idea in evolutionary theory. It can be 

defined either with respect to a genotype or to a phenotype 

in a given environment. In either case, it describes the 

ability to both survive and reproduce, and is equal to the 

average contribution to the gene pool of the next generation 

that is made by an average individual of the specified 

genotype or phenotype. If differences between alleles at a 

given gene affect fitness, then the frequencies of the alleles 

will change over generations; the alleles with higher fitness 

become more common [5-7]. 

The basic steps involved in Genetic Algorithm are as 

follows:  

Initialization:  

Initialization involves setting the parameters for the 

algorithm, creating the scores for the simulation, and 

creating the first generation of chromosomes. In this 

benchmark, seven parameters are set:  
a. The genes value is the number of variable slots on a 

chromosome;  

b. The codes value is the number of possible values for 

each gene;  

c. The population size is the number of chromosomes in 

each generation;  

d. Crossover probability is the probability that a pair of 

chromosomes will be crossed;  

e. Mutation probability is the probability that a gene on a 

chromosome will be mutated randomly;  

f. The maximum number of generations is a termination 
criterion which sets the maximum number of 

chromosome populations that will be generated before 

the top scoring chromosome will be returned as the 

search answer; and  

g. The generations with no change in highest-scoring 

(elite) chromosome is the second termination criterion 

which is the number of generations that may pass with 

no change in the elite chromosome before that elite 

chromosome will be returned as the search answer.  

h. The attempted optimization is to find the code for each 

gene in the solution chromosome that maximizes the 

average score for the chromosome. Finally, the first 
generation of chromosomes are generated randomly.  

Selection: 

Selection is the process of choosing two parents from the 

population for crossing. It is the first operator applied on 

population. From the population, the chromosomes are 
selected to be parents to crossover and produce off- spring. 

After deciding on an encoding, the next step is to decide 

how to perform selection that is how to choose individuals 

in the population that will create off-spring for the next 

generation and how many off-Spring each will create 

Reproduction selects good strings in a population and forms 

a mating pool. This is one of the reasons for the 

reproduction operation to be sometimes known as the 

selection operator. 

How to select these chromosomes: 

According to Darwin‟s evolution theory “Survival of the 

Fittest” –the best ones should survive and create new off-

spring. Selection means extract a subset of genes from an 

existing population, according to any definition of quality. 

Every gene has a meaning, so one can derive from the gene 

a kind of quality measurement called fitness function. 

Following this quality (fitness value), selection can be 

performed. The higher the fitness function, the better chance 

that an individual will be selected. The selection pressure is 

defined as the degree to which the better individuals are 

favored. The higher the selection pressured, the more the 
better individuals are favored. Fitness function quantifies the 

optimality of a solution (chromosome) so that a particular 

solution will be ranked against all the other solutions. The 

function depicts the closeness of a given „solution‟ to the 

desired result. 

Typically we can distinguish two types of selection 

schemes: 

 

Proportionate Based Selection: It picks out individuals 

based upon their fitness values relative to the fitness of the 

other individuals in the population. 

 
Ordinal Based Selection: This scheme selects individuals 

not upon their raw fitness, but upon their rank within the 

population. This requires that the selection pressure is 

independent of the fitness distribution of the population. 

The most commonly used methods of selecting 

chromosomes for parents to crossover are:  

a. Roulette Wheel Selection  

b. Boltzmann Selection  

c. Tournament Selection  

d. Rank Selection  

e. Random Selection  

Crossover: 

Crossover is the process of taking two parent solutions and 

producing from them a child. After the Selection process, 

the population is enriched with better individuals. 

Reproduction makes clones of good string but does not 

create new ones. Crossover operators applied to the mating 

pool with the hope that it creates a better offspring. 

Crossover is the Recombination operator which can be 

described as follows:  

a. In crossover operation, recombination process creates 

different individuals in the successive generations by 

combining materials from two individuals of the 
previous generation.  

b. The two strings participating in the crossover operation 

are known as Parent Strings and the resulting strings 

are known as Children String. Crossover selects gene 

from parent chromosomes and creates a new offspring.  

c. The idea behind Crossover is that the new chromosome 

may be better than both of the parents if it takes the 

best characteristics from each of the parents.  
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d. It is intuitive from this construction that good sub-

strings from parent strings can be combined to form a 

better child string, if an appropriate site is chosen.  

e. With a random site, the children strings produced may 

or may not have a combination of good sub-strings 

from parent strings, depending on whether or not the 

crossing site falls in the appropriate place.  

f. The effect of cross over may be detrimental or 

beneficial.  

g. In order to preserve some of the good strings that are 

already present in the mating pool, all strings in the 
mating pool are not used in crossover. When a 

crossover probability, defined here as pc is used, only 

100pc per cent strings in the population are used in the 

crossover operation and 100(1-pc) per cent of the 

population remains as they are in the current 

population.  

 

Crossover is a recombination operator that proceeds in three 

steps:  

a) The reproduction operator selects at random a pair of 

two individual strings for the mating.  
b) A cross site is selected at random along the string 

length.  

c) Finally, the position values are swapped between the 

two strings following the cross site.  

 

Many crossover operators exist in the GA literature. The 

operators are selected based on the way chromosomes are 

encoded. The various crossover techniques are as follows:  

i. Single-Point Crossover  

ii. Two-Point Crossover  

iii. Multi-Point Crossover/N-Point Crossover  
iv. Uniform Crossover  

v. Three-Parent Crossover  

vi. Arithmetic Crossover  

vii. Heuristic Crossover  

viii. Ordered Crossover  

ix. Partially Matched Crossover  

Mutation: 

After the Crossover, the strings are subjected to mutation. 

Mutation is a genetic operator used to maintain genetic 

diversity from one generation of a population of 

chromosomes to the next. Mutation may cause the 

chromosomes of individuals to be different from those of 

their parent individuals. Mutation adds new information in a 

random way to the genetic search process and ultimately 

helps to avoid getting trapped at local optima. The Mutation 

is the operator which can be described as follows:  

a. It is an operator that introduces diversity in the 

population whenever the population tends to become 
homogeneous due to repeated use of reproduction and 

crossover operators.  

b. Mutation alters all or one gene values in a chromosome 

from its initial state. This can result in entirely new 

gene values being added to the gene pool. With the 

new gene values, the genetic algorithm may be able to 

arrive at better solution than was previously possible.  

c. Mutation is an important part of the genetic search, 

helps to prevent the population from stagnating at any 

local optima. Mutation is intended to prevent the 

search falling into a local optimum of the state space.  

d. Mutation operates at the bit level; when the bits are 

being copied from the current string to the new string, 

there is probability that each bit may become mutated. 

This probability is usually a quite small value, called as 

mutation probability pm.  

e. The need for mutation is to create a point in the 

neighborhood of the current point, thereby achieving a 

local search around the current solution.  

f. Mutation plays the role of recovering the lost genetic 

material as well as for randomly distributing genetic 

information. It is an insurance policy against the 
irreversible loss of genetic material.  

g. Mutation helps escape from local minima‟s trapped 

and maintains diversity in the population.  

h. Mutation keeps the gene pool well-stocked, thus 

ensuring periodicity.  

 

There are many different forms of mutation for the different 

kinds of representation. For binary representation, a simple 

mutation consists in inverting value of each gene with a 

small probability. The probability is usually taken about 1/L, 

where L is the length of the chromosome. It is also possible 
to implement kind of hill climbing mutation operator that do 

mutation only if it improves the quality of the solution. Such 

an operator can accelerate the search; however, care should 

be taken, because it might also reduce the diversity in the 

population and make the algorithm converge toward some 

local optima. The mutation operators are of many types:  

a. Flipping  

b. Interchanging  

c. Reversing  

d. Boundary  

e. Uniform  
f. Non-uniform  

g. Gaussian  

Termination: 

The loop of chromosome generations is terminated when 

certain conditions are met. When the termination criteria are 

met, the elite chromosome is returned as the best solution 
found so far. The common terminating conditions are:  

A solution is found that satisfies minimum criteria: 

Fixed number of generations reached:  

It is a termination method that stops the evolution when the 

user-specified maximum numbers of evolutions have been 

run. This termination method is always active.  

Evolution Time:  

It is a termination method that stops the evolution when the 

elapsed evolution time exceeds the user-specified max 

evolution time. By default, the evolution is not stopped until 

the evolution of the current generation has completed, but 

this behaviour can be changed so that the evolution can be 
stopped within a generation.  

Fitness Threshold:  

It is a termination method that stops the evolution when the 

best fitness in the current population becomes less than the 

user-specified fitness threshold and the objective is set to 
minimize the fitness. This termination method also stops the 

evolution when the best fitness in the current population 

becomes greater than the user-specified fitness threshold 

when the objective is to maximize the fitness.  
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Fitness Convergence:  

It is a termination method that stops the evolution when the 

fitness is deemed as converged. Two filters of different 

lengths are used to smooth the best fitness across the 

generations. When the smoothed best fitness from the long 
filter is less than a user-specified percentage away from the 

smoothed best fitness from the short filter, the fitness is 

deemed as converged and the evolution terminates.  

Population Convergence:  

It is a termination method that stops the evolution when the 

population is deemed as converged. The population is 
deemed as converged when the average fitness across the 

current population is less than a user-specified percentage 

away from the best fitness of the current population [1-5] 

and [8-9]. 

 

Different techniques of linear programming Simplex 

Method:- The simplex method is an iterative procedure by 

which a new basic feasible solutions can be obtained from a 

given basic feasible solution which improves the value of 

the objective function.  

 
Dual Simplex Method:- In the simplex method or primal 

simplex method we begin with and maintain at each 

iteration a basic feasible solution and we change bases until 

the optimality criteria is satisfied. In the dual simplex 

method we maintain continues satisfaction of the optimality 

criterion and change bases until we get the  

Feasibility of the basic solution: 

 

Thus the dual simplex method is a kind of mirror image of 

primal simplex method as regards feasibility.  

 
The general nature of the primal simplex method consists in 

selecting a vector to enter to leave the bases; the entering or 

leaving vectors corresponds to adjacent extreme points of 

the convex set of feasible solution. The sequence of steps in 

selecting the entering or leaving vectors are different in 

different algorithms but they ensure both primal or dual 

feasibility and a monotone increase or decrease in the 

objective function.  

 

Areas of application of linear programming: The 

potentiality of linear programming as a tool for solving 

problems is substantial. It is used to solve problems of 
procurement of raw materials in changing situations, 

production planning, assembly line balancing and many 

other problems of operation management [10]. 

PROPOSED TECHNIQUES 

The proposed Genetic Algorithm is blind optimizers which 

do not use any auxiliary information such as derivatives or 

other specific knowledge about the special structure of the 

objective function. If there is such knowledge, however, it is 

unwise and inefficient not to make use of it. Several 

investigations have shown that a lot of synergism lies in the 

combination of genetic algorithm and conventional methods. 

The basic idea is to divide the optimization task into two 

complementary parts. The GA does the course, global 

optimization while local refinement is done by the 

conventional method. A number of variants are reasonable:  

a. The GA performs the coarse search first. After the 

GA is completed local refinement is done.  

b. The local method is integrated in the GA. For 

instance, every k generations, the population is doped 

with a locally optimal individual.  

c. Both methods run in parallel: all individuals are 

continuously used as initial values for the local 

method. The locally optimized individuals are re-

implanted into the current generation. 

 

 

Figure 1: Flowchart of Genetic Algorithm Pseudo code of Genetic 

Algorithm: 

Begin  

Input initial population  

Select n number of random population 

 Do  

Select best ranking individuals to reproduce;  

Apply crossover operator; 

Apply mutation operator; 

Determine functional value ; 

Evaluate each individual‟s fitness; 

End  

 

In Constrained Optimization we have to find the best 

solution (The optimum point) with respect to various 

constraints. 

 

In Linear Programming (LP), all of the mathematical 

expressions for the objective functions and the constraints 

are linear. The programming in linear programming is an 

archaic use of the word “Programming” to mean “Planning”. 
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We can think linear programming as “Planning with linear 

models”.  

 

Here we are applying genetic algorithm to a specific 

optimization problem step by step. Consider the problem of 

maximizing the function f(x) = x2, where x is permitted to 

vary between 0 and 31. 

 

Step 1:- To use a genetic algorithm we must first code the 

decision variables of our problem as some finite- length 

string. So we will code the variable x as a binary unsigned 
integer of length 5. As with a five-bit (binary digit) unsigned 

integer we can obtain numbers between 0(00000) and 31 

(11111). 

 

 Step 2:- Select an initial population at random. The initial 

population is obtained in the form of binary strings. These 

strings are then converted to their corresponding decimal 

values. And then calculate the corresponding fitness 

function value for each x.   

Table: 1 

String 

No 

Initial Population 

(Randomly 

Generated) 

x Value 

(Unsigned 

Integer) 

 

f(x) = 

x
2
 

1 01101 13 169 

2 11000 24 576 

3 01000 8 64 

4 10011 19 361 

 

Step 3:- A generation of the genetic algorithm begins with 

reproduction. We select the mating pool of the next 

generation by spinning the weighted roulette wheel four 

times. Actual simulation of this process using coin tosses 

has resulted in string 1 and string 4 receiving one copy in 

the mating pool, string 2 receiving two copies, and string 3 
receiving no copies, as shown in the following table. 

Comparing this with the expected number of copies 

(n.pselecti) we have obtained what we should expect: the 

best get more copies, the average stay even, and the worst 

die off. 

 

Step 4:- With an active pool of strings looking for mates, 

simple crossover proceeds in two steps:-  

i) Strings are mated randomly  

ii) Mated string couples cross over.  

Referring to the following table, random choice of mates has 

selected second string in the mating pool to be mated with 
the first. With a crossing site of 4, the two strings 01101 and 

11000 cross and yield two new strings 01100 and 11001. 

The remaining two strings in the mating pool are crossed at 

site 2; the resulting strings may be checked in the following 

table. Here the crossover probability is assumed to be unity 

pc =1.0.  

 

Step 5:- The last operator, mutation, is performed on a bit-

by-bit basis. We assume that the probability of mutation in 

this test is 0.001. With 20 transferred bit positions we should 

expect 20*0.001=0.02 bits to undergo mutation during a 
given generation. Simulation of this process indicates that 

no bits undergo mutation for this probability value. As a 

result, no bit positions are changed from 0 to 1 or vice-versa 

during this generation. 

RESULTS ANALYSIS 

We have applied Genetic algorithm and Simplex method on 

the same LPP and find out the difference in the result. Our 

tested LPP is as follows  

Max F(x1, x2) = 4x1 +3x2 

2x1+3x2 <= 6 

-3x1+2x2 <=3 
  2x1+x2 <=4;    0<=x<=2 

 

When we have applied the Simplex method then it generates 

only one set of solution where x1 = 1.5 and x2 =1 and thus 

F(x1, x2) = 9. But when we have applied the GA we get a 

series of feasible solutions and at a certain generation we 

have achieved the greater value of first chromosome i. E 

x1=1.6 in comparison with previous one. So this is a big 

achievement for us. Beside this we have a set of feasible 

solutions which can be applicable where it is needed 

according to the requirements. This is a remarkable benefit 
of using Genetic Algorithm. The best fitness, the best 

individual, best selection graphs determinate with our 

proposed genetic algorithm in the range 0-1.0 to 0-1.5.  

Best Fitness Graphs using Genetic Algorithm: 

 

 

Figure 2: Best Fitness Graph Using Genetic Algorithm (Range 0-1.5) 

 

 

Figure 3: Best Fitness Graph Using Genetic Algorithm (Range 0-1.5) 
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Best Individual Graphs using Genetic Algorithm: 

 

Figure 4: Best Individual Graphs using Genetic Algorithm with Range 0-

1.0 

Best Selection Graphs using Genetic Algorithm: 

 

Figure 5: Best Individual Graphs using Genetic Algorithm with Range 0-

1.5 

 

Figure 6: Best Individual Graph for range (0-1.0) 

Figure 7: Best Individual Graph for range (0-1.5) 

Fitness Chart of Our Experiment: 

Generation f-count (Best) f(x) (Mean) f(x) (Stall) Generations 

Range (0-1) 

1 40 2.761 5.648 0 

2 60 -0.02282 4.37 0 

3 80 -0.2393 2.883 0 

4 100 -3.239 1.95 0 

5 120 -3.239 0.4281 1 

6 140 -4.739 -1.021 0 

7 160 -6.239 -1.626 0 

8 180 -6.239 -2.667 1 

9 200 -6.239 -4.346 2 

10 220 -8.052 -5.667 0 

11 240 -8.052 -5.927 1 

12 260 -8.989 -6.643 0 

13 280 -8.989 -7.193 1 

14 300 -8.989 -8.177 2 

15 320 -8.239 -8.693 0 

16 340 -8.989 -8.952 0 

17 360 -11.24 -8.927 0 

18 380 -11.24 -8.483 1 

19 400 -12.24 -9.564 0 

20 420 -12.24 -9.596 0 

CONCLUSION AND FUTURE WORKS 

Genetic algorithm (GA) is an intelligent search technique. 

GA combines the good information hidden in a solution 

with good information from another solution to produce new 

solutions with good information inherited from both parents, 

inevitably leading towards optimality. The results can be 

very good on some problems, and rather poor on others. If 

only mutation is used, the algorithm is very slow. Crossover 

makes the algorithm significantly faster. GA is a kind of 

hill-climbing search; more specifically it is very similar to a  

 

randomized beam search. As with all hill-climbing 

algorithms, there is a problem of local maxima. Local 

maxima in a genetic problem are those individuals that get 

stuck with a pretty good, but not optimal, fitness measure. 

Any small mutation gives worse fitness. Fortunately, 
crossover can help them get out of a local maximum. Also, 

mutation is a random process, so it is possible that we may 

have a sudden large mutation to get these individuals out of 

this situation. If the conception of a computer algorithm 

being based on the evolutionary of organism is surprising, 

the extensiveness with which this algorithm is applied in so 
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many areas is no less than astonishing. These applications, 

be they commercial, educational and scientific, are 

increasingly dependent on this algorithms, the Genetic 

Algorithms. Its usefulness and gracefulness of solving 

problems has made it a more favorite choice among the 

traditional methods, namely gradient search, random search 

and others. GAs is very helpful when the developer does not 

have precise domain expertise, because GAs possesses the 

ability to explore and learn from their domain. In this thesis 

we have applied GA on linear programming problem (LPP), 

but this can also be applicable in non-linear programming 
problem. We can apply GA in those cases where a number 

of solutions may come but optimal solution is not known.  

 

The most vital situation is crossover point and mutation 

step. Selection of crossover point is basically done in 

random wise. So in future, a technique should be developed 

for choosing the crossover point, so that it helps Genetic 

algorithm to become more robust and fast optimization 

procedure. In future, we would witness some developments 

of variants of GAs to tailor for some very specific tasks. 

This might defy the very principle of GAs that it is ignorant 
of the problem domain when used to solve problem. But we 

would realize that this practice could make GAs even more 

powerful. 
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