
 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Copyright @ IJIRCCE www.ijircce.com 1345

Efficient Optimization of Sparql Basic Graph
Pattern

Ms.M.Manju1, Mrs. R Gomathi2

PG Scholar, Department of CSE, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India1

Associate Professor/Senior grade, Department of CSE, Bannari Amman Institute of Technology, Sathyamangalam,

Tamilnadu, India2

ABSTRACT— In this paper, we formalize the problem of Basic Graph Pat-tern (BGP) optimization for
SPARQL queries and main memory graph implementations of RDF data. We define and analyze the
characteristics of heuristics for selectivity based static BGP optimization. The heuristics range from
simple triple pattern variable counting to more sophisticated selectivity estimation techniques.
Customized summary statistics for RDF data enable the selectivity estimation of joined triple patterns
and the development of efficient heuristics. Using the Lehigh University Benchmark (LUBM), we
evaluate the performance of the heuristics for the queries provided by the LUBM and discuss some of
them in more details.

KEY WORDS— SPARQL, query optimization, selectivity estimation

I. INTRODUCTION

SPARQL is an RDF query language, that is, a query language for databases, able to retrieve and manipulate data
stored in Resource Description Framework format. The SPARQL query processor will search for sets of triples that match
these four triple patterns, binding the variables in the query to the corresponding parts of each triple.we focus on
selectivity-based static Ba-sic Graph Pattern (BGP) optimization for SPARQL queries [and main memory
graph implementations of RDF [9] data. In SPARQL, a BGP is a set of triple patterns where a triple
pattern is a structure of three components which may be concrete (i.e. bound) or variable (i.e.
unbound). The three components which form a triple pattern are respec-tively called the subject, the
predicate and the object of a triple pattern. Sets of triple patterns, i.e. Basic Graph Pat-terns, are
fundamental to SPARQL queries as they specify the access to the RDF data.

Query optimization is a fundamental and crucial subtask of query execution in database

management systems. We focus on static query optimization, i.e. a join order optimization of triple
patterns performed before query evaluation. The optimization goal is to find the execution plan
which is expected to return the result set fastest without actually executing the query or subparts. This
is typically solved by means of heuristics and summaries for statistics about the data.

The problem we are going to tackle in this paper is best explained by a simple example.

Consider the BGP displayed in Listing 1 which represents a BGP of a SPARQL query executed over
RDF data describing the university domain. Typically, there are a number of different subjects
working, teaching, and studying at a university (e.g. staff members, professors, graduate, and
undergraduate students). They are all of type Person in our RDF dataset. We know that the dataset
contains a huge number of RDF resources of type Person among others of type Publication, Course,
Room.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Copyright @ IJIRCCE www.ijircce.com 1346

The OWL schema ontology used to describe the vocabulary for the RDF dataset states that the
property for the social security number is inverse functional. Therefore, the object of the property
uniquely determines the subject. Hence, the second triple pattern in our BGP of Listing 1 matches
only one subject with the social security number ”555-05-7880”. Our schema ontology specifies
further that the domain of the social security number property is a class of type Person. Therefore, we
can state that the subject with social security number ”555-05-7880” is of type Person (or our data is
inconsistent).

The focus in our work is on main memory graph implementations of RDF data (i.e. in-memory
models). Currently most RDF toolkits support both in-memory and on-disk models. Relational
database management systems (RDBMS) are commonly used as persistent triple stores for on-disk
models. Because of the fundamentally different architectures of in-memory and on-disk models, the
considerations regarding query optimization are very different. Whereas query engines for in-memory
models are native and, thus, require native optimization techniques, for triple stores with RDBMS back-
end, SPARQL queries are translated into SQL queries which are optimized by the RDBMS. It is not
our goal in this paper to analyze optimization techniques for on-disk models and, hence, we are not
going to compare in-memory and on-disk models. Furthermore, we focus on the evaluation of the
presented optimization techniques without comparing the figures with the performance of alternative
implementations. A comparison of implementations requires a comprehensive study that goes beyond the
scope of this pa-per. In fact, the query performance of query engines is not just affected by static query
optimization techniques but, for instance, also by the design of index structures or the accuracy of
statistical information. Finally, our focus is on static query optimization techniques. Hence, we do not
discuss optimal index structures for RDF triple stores, neither in-memory nor on-disk, as this too is a
research topic that goes beyond the scope of this paper.

Listing 1: Example BGP

?x rd f : type uv : Person .
?x uv : hasSocialSecuri tyNumber ”555−05−7880

Our focus on main memory graph implementations, i.e. in-memory models, has an important
limitation: scaling. In-deed, the few gigabytes of main memory clearly limit the size of RDF data
which may be processed in main memory. Therefore, we might question the relevance of studying
optimization techniques for RDF in-memory models. We argue, that in-memory models are
important for a number of reasons. First, optimized queries on in-memory models run much faster
than on-disk. Second, 64-bit architectures pose virtually no more limits to the theoretical amount of
main memory in computers. Third, in a cluster, distributed in-memory models could be used for
parallel query evaluation. Finally, optimization techniques and customized summary statistics of RDF
data are important for native RDF persistent stores as they do not rely on relational database
technology and, hence, require a native optimizer.

II. RELATED WORK

The execution time of queries is heavily influenced by the number of joins necessary to find the
results of the query. Therefore, the goal of query optimization is (among other things) to reduce the
number of joins required to evaluate a query. Such optimizations typically focus on histogram-based
selectivity estimation of query conditions.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Copyright @ IJIRCCE www.ijircce.com 1347

Piatetsky et al. introduce in the concept of selectivity estimation of a condition. In Selinger et al.

present the System R optimizer, a dynamic programming algorithm for the optimization of joins.
Likewise, POSTGRES implements an exhaustive search optimization algorithm. In con-trast, INGRES
introduced an optimization technique based on query decomposition. Estimation of conditions are often
supported by histogram distributions of attribute values. More recently, developments in deductive and
ob-ject oriented database technology showed the need for more cost-effective optimization techniques as
the traditional techniques work well for queries with only a few relations to join. Steinbrunn et al.
summarizes and analyzes in randomized algorithms for the problem of query optimization where the
overall goal is to search the solution space for the global minima moving randomly between connected
solutions according to certain rules. Further, the authors de-scribe deterministic, genetic and hybrid
algorithms as techniques for the problem of cost effective query optimization. PostgreSQL is and
example of an open source databases system experimenting with genetic algorithms for query
optimization.

Related to the Semantic Web, Pérez et al. analyze in the semantics and complexity of SPARQL.

Harth et al. investigate the usage of optimized index structures for RDF. The authors argue that
common RDF infrastructures do not support specialized RDF index structures. The index proposed
by the authors supports partial keys and allows selectivity computation for single triple patterns.
Hartig et al. [8] present a SPARQL query graph model (SQGM) which supports all phases of query
processing, especially query optimization. The authors refer to a discussion on the Jena mailing list
which showed that a simple rearrangement of a SPARQL query leads to an improvement of factor 220.

III. PROPOSED SYSTEM

BGP Abstraction. As discussed in Section 3.1, we abstract a BGP as an undirected graph B which is

characterized by the connected components g ∈ G, where each g is an ordered pair g = (N, E) consisting of a set N of
triple patterns (i.e. the nodes of g) and a set E of triple pattern pairs (i.e. joined triple patterns/edges of g). The connected
graph g ∈ G represents a subset of (transitively) joined triple patterns of B. In the following we describe the algorithm for
the optimization of g = (N, E).

Based on the BGP abstraction for g ∈ G, we perform a variation of the deterministic minimum selectivity
approach to identify the execution plan pg which is optimal according to the algorithm and the selectivity estimations. The
optimization algorithm constructs a solution in a deterministic manner applying a heuristic search. Eventually, the
algorithm identifies an order for the elements of the set N (i.e. triple patterns). Note that this is not a total order on N. The
triple patterns in the resulting execution plan are not necessarily ranked by estimated selectivity.

Optimization Algorithm. In Algorithm 1, we provide the pseudo-code for the core optimization algorithm. The
algorithm first selects the edge with minimum estimated selectivity from g = (N, E). The corresponding nodes are marked
as visited and added to the final execution plan pg ordered by estimated selectivity, i.e. the more selective node is added
first to the execution plan. After selecting the first edge e ∈ E, the core optimization algorithm iteratively selects the edge
which satisfies the two properties (1) minimum estimated selectivity and (2) visited node. With each iteration a new node
is added to the final execution plan. The property of minimum estimated selectivity is motivated in the deterministic
minimum selectivity optimization approach according to which good solutions are generally characterized by selective
intermediate results. The second property, i.e. visited node, ensures the iterative selection of a triple pattern, i.e. a node n ∈
N, which joins with the previous partial execution plan. This is an important characteristic of good execution plans as
result sets will never

Algorithm 1 Find optimized execution plan EP for g ∈ G
N ← Nodes(g)
E ← Edges(g)

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Copyright @ IJIRCCE www.ijircce.com 1348

EP[size(N)]
e ← SelectEdgeMinSel(E)
EP ← OrderNodesBySel(e)
while size(EP) ≤ size(N) do
e ← SelectEdgeMinSelV isitedNode(EP,E)
EP ← SelectNotV isitedNode(EP, e)
end while
return EP
Figure 1: Optimized DAG d1 ∈ D with highlighted
node with only outgoing directed edges

Therefore, at each stage of query processing the intermediate result sets are iteratively constrained. The algorithm
terminates when all nodes n ∈ N have been visited and the optimal execution plan pg, i.e. a well defined order for the
elements of N, is returned as a result. Directed acyclic graphs of execution plans which satisfy the second property, i.e.
visited node, of the edge selection process for BGP abstractions described above, feature a common characteristic: there is
only one node that has only outgoing directed edges, i.e. the node which is executed first in the execution plan. Nodes
with only outgoing directed edges do not join with the previous partial execution plan and, hence, result in a Cartesian
product of two intermediate result sets. For instance, the execution plan which executes the triple patterns of Listing 2 top-
down, abstracted as DAG creates two Cartesian products for the intermediate result sets of the first three triple patterns
(highlighted by the three nodes labeled 1, 2, and 3 which are nodes with only outgoing directed edges). In contrast, the
optimized execution plan, abstracted as DAG in does never create Cartesian products of intermediate result sets. This is
highlighted by the DAG in Figure 3 with one node with only outgoing directed edges (i.e. node 5). This node represents
the first triple pattern in the optimized execution plan for the BGP in Listing 2.

Selectivity Estimation Heuristics. In order to decide the selection of edges during the optimization process, the
core optimization algorithm requires figures about the selectivity of graph patterns. The extensible pool of selectivity
estimation heuristics is the component intended to provide the required selectivity figures to the core optimizer. Heuristics
are used to weight the nodes and edges of a BGP abstraction. Given a weighted connected graph g ∈ G the core
optimization algorithm is able to proceed with the iterative selection of nodes based on the deterministic
minimum selectivity optimization approach described above.

IV. RESULT AND DISCUSSION

 The Lehigh University Benchmark (LUBM) is developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way. The LUBM data set is a benchmark data set designed to enable researchers
to evaluate a semantic web repository’s performance . The LUBM data generator generates data in RDF/XML
serialization format. Therefore, we convert the data to N-Triples to store the data, because with that format, we have a
complete RDF triple (Subject, Predicate, and Object) in one line of a file .

V. CONCLUSION
The paper summarizes the research we have been doing on static Basic Graph Pattern (BGP)

optimization based on selectivity estimation for main memory graph implementations of RDF data.

We formalized the problem of BGP optimization and we presented the architecture for the
optimizer that has been implemented for ARQ. Further, we discussed a number of heuristics for the
selectivity estimation of joined triple patterns. The heuristics range from simple variable counting
techniques to more sophisticated selectivity estimations based on the probabilistic bound predicates
should not be considered as joins. Framework that builds on top of tailored summary statistics for
RDF data.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization) Vol.2, Special Issue 1, March 2014

Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)

Organized by

Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014

Copyright @ IJIRCCE www.ijircce.com 1349

As the evaluation clearly showed, the characteristics of the heuristics greatly influence the selected ordering of
the triple patterns of a BGP and, hence, the query execution performance. In our experience, we found the following
properties of heuristics to be important for the problem of BGP optimization. First, the optimizer should avoid Cartesian
products as intermediate result sets. Second, the selectivity should not be limited in lower bound estimation. Third, the
selectivity of joined triple patterns should be a function of the estimated selectivity of the join (i.e. the size of the result
set) and the selectivity of the more selective triple pattern involved in the join. Finally, as we noticed multiple times,
bound predicates should not be considered as joins.

REFERENCES

[1] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Stein. OWL Web Ontology Language Reference. Technical report, W3C, 2004.

[2] D. Beckett and B. McBride. RDF/XML Syntax Specification. Technical report, W3C, 2004.

[3] A. Bernstein, C. Kiefer, and M. Stocker. OptARQ: A SPARQL Optimization Approach based on Triple Pattern
Selectivity Estimation. Technical Report ifi-2007.03, University of Zurich, Department of Informatics,
Winterthurerstrasse 190, 8057 Zurich, Switzerland, March 2007.

[4]A. Bernstein, M. Stocker, and C. Kiefer. SPARQL Query Optimization Using Selectivity Estimation. In
Poster Proceedings of the 6th International Semantic Web Conference (ISWC), Lecture Notes in Computer Science.
Springer, 2007.

[5] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena: Implementing the
Semantic Web Recommendations. Technical report, HP Laboratories, 2003.

[6] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(2–3):158–182, 2005.

[7] A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the Web. In Proc. of the 3rd Latin
American Web Congress, page 71, 2005.

[8] O. Hartig and R. Heese. The SPARQL Query Graph Model for Query Optimization. In Proc. of the 4th European
Semantic Web Conf., 2007.

[9] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax. Technical
report, W3C, 2004.

[10] B. J. Oommen and L. Rueda. The Efficiency of Modern-Day Histogram-Like Techniques for Query
Optimization. The Computer Journal, 45(2):494–510, 2002.

 [11] J. P érez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In Proc. of the 5th Int.
Semantic Web Conf., pages 30–43, 2006.

[12] G. Piatetsky-Shapiro and C. Connell. Accurate Estimation of the Number of Tuples Satisfying a Condition. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 256–276, 1984.

 [13] V. Poosala and Y. E. Ioannidis. Selectivity Estimation Without the Attribute Value Independence
Assumption. In The VLDB Journal, pages 486–495, 1997.

[14] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Technical report, W3C, 2008.

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access Path Selection in a
Relational Database Management System. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
23–34, 1979.

[16] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and Randomized Optimization for the Join Ordering
Problem. VLDB Journal: Very Large Data Bases, 6(3):191–208, 1997.

