
Volume 3, No. 9, September 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 42

EFFICIENT SEARCHING FOR GEOGRAPHICAL DATA GATHERING USING

KNOWLEDGE MINING

Kuldeep Singh Jadon
*1,

 Satyam Maheshwari
2

1M.Tech (Software System) ,SATI,Vidisha(MP)-India,

kuldeep788@yahoo.co.in
2 Dept. of Computer Application , SATI,Vidisha(MP)-India

`satyam.vds@gmail.com

Abstract: We live in a mutual world. Perhaps, the most productive way of data collection is to recruit a large number of people for data entry.

Internet provides a very powerful and adaptable medium to bring together such a large number of people With this in mind, we have developed a
framework which enables novice users to build applications for social co-creation of geographic data, called Geogather. Users can create
interactive maps with multiple layers to collect geographic information. Geographic information is any data which has a (lati tude, longitude)

value attached with it. An application can have multiple layers to differentiate features of different types, such as hotels and schools. Geogather

allows user roles, thereby adding a social abstraction on top of the application, so users can control the process of data collection. We have used
the OpenLayers JavaScript library to create maps, and the web2py web framework to control the application work flow.

INTRODUCTION

Geographic Data means any data which has a latitude and a

longitude information attached with it. In recent times,

computers have changed the way people handle geo-graphic

data. There is now widespread use of Geographical

Information Systems(GIS)[4] to handle such data.

A geographic information system (GIS), or geographical

information system, is any system that captures, stores,

analyses, manages, and presents data that are linked to

location. In the simplest terms, GIS is the merging of

cartography, statistical analysis, and database technology.[2]

However, most GIS focus on data storage and analysis

rather than data collection. Data is generally collected using

GPS devices, which provide raw data that has to be parsed

and customized. Large scale collaboration for data

collection is difficult. Some web based GIS do provide the
means for collaboration in collecting data, but they do not

provide a framework to build personalised applications to

collect customized data. Comparing data from different

sources is also difficult in such application. We believe that

a framework which allows users to create applications on

top of maps to collect data from the crowd will greatly

enhance the ease of collecting geographic data.

Information for Geoinfomer:

Adding location information to data can greatly enhance its

usability. It can help in generating statistics about different

regions and finding nearest features such as ATMs and

Hotels. We are trying to build a platform which enables

novice users to create applications to collect such data.

Geographic data can be used in several interesting ways,

some of which are
a. We can collect information about ATMs of various

banks in the region. With this information, users can be

easily directed to the nearest ATM.

b. We can collect reviews of restaurants in a region. A

user can query the highest rated restaurant within a

certain radius.

c. If we collect the information about NGOs working in a

region, in the event of natural disasters, help can be

contacted efficiently. If we also mark the road

blockages, we can find the best routes to connect the

affected areas with the NGOs and the relief work will

be much more efficient.

Epigrammatic Prologue to Geogather:

Geogather is a web based framework with which people can

create applications to collect geographic information.

Geogather allows user roles, thereby adding a social

abstraction on top of the application, so users can control the

process of data collection. Geogather supports multiple
layers to an application, allowing the users to separate

Geogather supports multiple layers to an application,

allowing the users to separate different types of features,

such as Hotels and Restaurants.

ARCHITECTURE DETAILS OF GEOGATHER

There currently exist many collections of “points of

interest”. However, most of them are proprietary, and all of

them follow a pre-defined data format (the attributes for

each POI). Applications which allow users to add data to

such collections number far less.

A popular example is google maps , which allows users to

create personalized maps and add points and roads on them.

But it is not suitable for our objective because of the
following reasons.

a. Collaborators have to be invited to be able to edit the

map, making large scale collaboration extremely

difficult.

b. Another drawback is that the only attribute google

maps allows users to add is description, and hence the

attribute information cannot be controlled.

Kuldeep Singh Jadon et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 42-46

© JGRCS 2010, All Rights Reserved 43

c. If we use a single map for all types of features, it is

difficult to segregate them.

d. If we use different maps for different types of features,

overlaying them is not possible, making it difficult to

compare them.

We have tried to overcome these shortcomings and create a

framework which is easy to use, allows large scale
collaboration, allows users to customize the feature

attributes, and allows users to compare different types of

features by overlaying different layers on top of each other.

Application Architecture:

Geogather allows users to create their own geographic
applications. Each application can have several layers. Each

layer is meant to collect and display features which have

common attributes. Attribute values are stored within the

features themselves.

Figure 1. Application Structure

If a layer has proper permissions, it can be used by multiple

applications. This allows for collaboration between multiple

parties for data collection and comparison

Layers :

A layer represents a virtual layer on the map which is a

collection of features of the same type. Each layer’s

attributes and permissions can be customized individually.

For each layer, the application administrator can set the

following options

a. Publicly Viewable - Controls if unauthenticated users

can view the map.
b. Publicly Editable - Controls if unauthenticated users

can edit the map.

c. Feature Moderation - Controls if new features added to

the layer should be moderated.

d. Attribute Moderation - Controls if new attributes added

to the features in the layer should be moderated.

e. Number of Attributes - Sets the number of attributes to

be shown for each feature in the layer.

f. Marker - Sets the marker for the layer

The application administrator can assign several users as

moderators for different layers. If feature moderation is set,

new features will not be shown on the map until moderated.

If attribute moderation is set, new attributes will not be

shown until moderated by the moderators.

Figure 2. Layered Structure

Attributes:

The application administrator can customize the format of

information to be collected for each layer. This is achieved

by customizing the fields for that layer. Each field represents

a feature attribute. A layer can have any number of attribute

fields, and each field can be of the type String, Integer or
Float. The administrator can also select if the field is

required or not.

The attributes may be single entry, meaning only one

attribute value per feature, or multiple entry, meaning

multiple attribute values per feature. For example, a contact

number of an organization should be a single entry attribute,

whereas reviews of a restaurant can be multiple entry

attribute.

Moderation:

The administrator may assign users as moderators for the

layers that he created. The moderators can see the features

and attributes which are not yet moderated and have the

option to either accept, or delete them. Once a moderator

accepts a feature and or attribute, it can be viewed by

normal users.

Figure 3. Moderation

Framework Architecture:

We divide the framework architecture in two broad

categories front-end and back-end. The front-end, which

displays the map and handles the user interaction with it,

and the back-end which handles the logic, the user

Kuldeep Singh Jadon et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 42-46

© JGRCS 2010, All Rights Reserved 44

authentication and authorization, and the interaction with the

database.

JavaScript is used extensively for the front-end. Map

display, interaction, feature loading, form submission are

handled with JavaScript ,web2py framework handles the

back-end.

The components are as:

Load Layer:

Initially, all the layers in the application are loaded in the

available layers section. When a layers is selected from

them, an asynchronous call is made to the back-end

function. A vector layer is added to the map and the features

from the KML file are added to it. Finally the layer name is

removed from the available layers section and added to the

added layers section.

Remove Layer:

When the user clicks on a layer in the added layers section,

the selected layer is removed from the map and the

destroyed. The layer name is removed from the added layers

section and added to the available layers section. If the user

wants to reload the layer,he has to select the layer name
from the available layers section again, and the KML file

will be generated and the layer reloaded.

Add Feature:

To add a feature to a layer, first we have to select the desired

layer as the active layer.The layer added to the map most

recently is the active layer. There are two ways to add the
feature, either by clicking on the map at the feature’s

location, or by entering the feature address in the search

box. In both cases, a marker is added at the desired location,

and a popup is shown with a form for the feature name.

Add Attribute:

When the click control is off, we can select features to view

and add attribute infor mation. On selecting a feature, a

popup is opened which gives the feature information. It lists

the feature name, and attributes. The number of attributes

shown is controlled by the number attributes field of the

layer .The popup also contains a link to add more attributes

to the feature. Clicking this link adds a form to the page

containing a form for the attributes of selected feature.

When an attribute is added to a feature, the changes will

only be visible only after reloading the layer.

Figure 4. Add new attribute

Get Nearest Feature:

To get the features within a certain radius of a point, we first

select a layer and then activate the get nearest features

control from the toolbox. By clicking on the point we are

interested in, a popup is opened which asks us the radius to
consider, and returns all the features on the layer within the

specified radius.

Figure 5.Get Nearest Feature

PERFORMANCE FACTS

We use MVC (Model view controller) model for this

framework[10], in this for an application the steps of storing
file for better performance is as

Fig 6.Directory Pecking Order

Model:

The database design resides in the Models section. The

tables are defined in the file using DAL (Data Abstraction

Layer). Geogather allows one layer to be attached to several
applications. For this, we have a separate table for

applications and a separate table for layers, and a table

defining the relationships between the layers.

For example, a tourism company may create a public

application with layers for hotels and tourism destinations,

and another user may create a private application for all the

places he wants to visit. The second user can include the

public layer for hotels in his application, and plan his travel

bookings easily.

Kuldeep Singh Jadon et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 42-46

© JGRCS 2010, All Rights Reserved 45

Fig 7 .Example Of Layer And Application Relationship

Geogather allows users to customize the information they
want to gather for each layer, resulting in a dynamic schema

for each layer. This is achieved by creating the layer

attribute tables dynamically depending on the fields

requested by the user. Schema information for each layer is

stored in the table fields. When a new layer is created, an

entry is made in the layers table corresponding to the new

layer. When the user adds a new field to the layer,

corresponding entry is made in the fields table

View:

Views contain the display styles and rules. The application

page, displaying the map and layer controls. The controls

depend on the user role, which may be administrator,

moderator, authenticated user or anonymous user.

An unauthenticated user will only be able to view layers

which are publicly viewable. An authenticated user will be

able to view and edit all layers. Moderators can view and

edit all the layers. Moderators also have the option to see the
unmoderated features on the map, and accept or reject them.

The administrator will get a link to the administration page.

Only the administrator can access this page. It allows the

administrator to add/delete layers from the application,

modify the added layers, and add/delete moderators from the

layers on the map.

Controller:

All the application logic reside in the controller, we have

different function by using them we can controlee the flow

of the application. By using these function we can work only

on logics without interfering in the model and view part

Other helper functions are provided for tasks such as

checking authorization, generating and submitting forms,

adding and deleting entries from the database and such.

FRAMEWORK APPLICATION

NGOs:

Information about Non Government Organisations(NGOs)

in India is spread across different websites, with no website

giving an exhaustive list of NGOs. Moreover, these lists are

rarely updated, and new information is difficult to find. One

main reason for this is that since the content is not user

generated, it is a difficult job for one person to gather and

update a large amount of data. By providing a social co-
creation framework, the work is distributed among the many

users, and as a result, we can get a large amount of good,

updated data.For the NGOs application, we have created a

layer for the NGOs themselves. The layer permissions are

set for public viewing, with feature and attribute

moderation.

Figure 8. NGOs Information

Another advantage of using Geogather for collecting

information about NGOs[12] is that during times of

emergencies such as natural disasters, we can easily locate

the nearest NGOs from the disaster area and mobilise them

in a very short time. If we want to study the impact of NGOs

on social problems, we can create layers for the relevant

problems such as child abuse and corruption, and by

overlaying the two layers on top of each other, we can get

the statistics to study the impact.

Place To Visit:

Figure 9. Place to visit

This application demonstrates how we can create personal

applications, and use data from public layers with them. We
create a layer “wishlist”, which is a list of places we want to

visit, and set its permissions such that its neither publicly

viewable nor editable. We then import the “Lodging” layer

from the previous application, and add that to our

application. The attributes have only one field, “Priority”.

Now the user can stack the “wishlist” layer on top of

“Lodgin” layer and by using the get nearest features option,

get information about hotels and plan his travel.

CONCLUSION

We studied the existing applications for “web based

geographical data collection”, and found that they did not

meet our requirements. Geinformer is designed in a way so

Kuldeep Singh Jadon et al, Journal of Global Research in Computer Science, 3 (9), September 2012, 42-46

© JGRCS 2010, All Rights Reserved 46

that it is easy to use for novice users, as it provides an

abstraction for geographic data in the form of layers and

attributes, and hides the intricacies of database design and

management from the user. At the same time, it is designed

to provide flexibility and control to the user by providing

permission and moderation settings for individual layers.

The user is also provided complete control over the attribute

schema, making it easier to customize layers according to

individual needs.

Geogather provides an interface to easily collect geographic

data. But little work is done in the field of data

representation and data reckoning. A possible development

can be to add a statistics generator, which generates

statistics based on different attributes. Another possibility is

to divide the map into regions, and calculate the statistics

based on regions. This can help in applications where users

want to compare some statistics, such as crime rate or child

mortality rate, of different states or districts. Currently
Geogather supports layer wide permission settings. This can

be improved by adding attribute wide permission settings,

which will give users much more control over their

applications.

REFERENCES

[1]. Drozd A., Benford S., Tandavanitj N., Wright M.,

Chamberlain A., 2006, Hitchers: Designing for Cellular

Positioning, Ubicomp, Springer Lecture Notes in Computer

Science, Vol.4206, pp. 279-296.

[2]. Kiefer, P., Matyas, S., Schlieder, C. (2006a).

Systematically Exploring the Design Space of Location-

based Games, In: Strang, Th., Cahil, V., Quigley, A. (eds.):

Pervasive 2006 Workshop Proceedings, Poster presented at

PerGames2006, 07. May 2006, Dublin, Ireland, ISBN 3-

00-018411-2, pp. 183-190.

[3]. Egenhofer, Max. 2002. Toward the Semantic Geospatial

Web. In Proceedings of the Tenth ACM International

Symposium on Advances in Geographic Information

Systems, 1-4. McLean, Virginia: ACM Press.

[4]. http://en.wikipedia.org/wiki/Web Map Service.

[5]. Kang, J., and Naughton, J. F. 2003. On Schema Matching

with Opaque Column Names and Data Values. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD), 205-216.

San Diego, California: ACM Press.

[6]. LICGF. 2003. Community Planning Resources Web site of

the Land Information and Computer Graphics Facility,

University of Wisconsin-Madison, www.lic.wisc.edu.

[7]. Naughton, J. F.; DeWitt, D.; Maier, D.; and others.

2001.The Niagara Internet Query System, IEEE

DataEngineering Bulletin 24(2): 27-33.

[8]. http://maps.google.com.

[9]. Anders K. (2003), A hierarchical graph-clustering

approach to find groups of objects, working paper for ICA

generalization commission workshop, available at

http://www.geo.unizh.ch/ICA/docs/paris2003/papers03.ht

ml

[10]. http://mapserver.org.

[11]. Berkhin P. (2004), Survey of clustering data mining

techniques, Datanautics, Inc. Research Papers, available at

http://www.accrue.com/products/rp_cluster_review.pdf

[12]. http://mapnik.org.

[13]. Wiegand, N.; Zhou, N.; and Cruz, I. F. 2003. A Web Query

System for Heterogeneous Geospatial Data. In Proceedings

of the Fifteenth International Conference on Scientific and

Statistical Database Management (SSDBM), 262-265.

Cambridge, MA: IEEE Computer Society.

[14]. Halkidi M., Batistakis Y. and Vazirgiannis M. (2001), On

clustering validation techniques, Journal of Intelligent

Information Systems, Kluwer Academic Publishers. 17:

2/3, pp. 107 – 145.

[15]. Han J, Kamber M. and Tung A. K. H. (2001), Spatial

clustering methods in data mining, in: Miller H. J. and Han

J. (2001, eds.), Geographic data mining and knowledge

discovery, Taylor & Francis, London and New York, pp.

188 – 217.

[16]. Jiang B. and Claramunt C. (2002), A Structural Approach

to Model Generalisation of an Urban Street Network,

presented at the 4th AGILE Conference on Geographic

Information Science, 24-27 April 2002, Mallorca, Spain (a

revised version of this paper has been published in

GeoInformatica, 8 (2): 157-171, June 2004).

[17]. Jiang B. and Harrie L. (2003), Selection of Streets from a

Network Using Self-Organizing Maps, ICA Generalization

Workshop, Paris, April 28 - 30, 2003 (a revised version of

this paper has published in Transactions in GIS, Blackwell

Publishers, Vol. 8, No.3, pp. 335 - 350.)

[18]. Cruz, I. F.; Rajendran, A.; Sunna, W.; Wiegand, N. 2002.

Handling Semantic Heterogeneities Using Declarative

Agreements. In Proceedings of the Tenth ACM

International Symposium on Advances in Geographic

Information Systems, 168-174. McLean, Virginia: ACM

Press.

[19]. OpenGIS Consortium, 2001. Geography Markup Language

(GML) version 2.0. http://www.opengis.net/gml/01-029/

GML2.html.

