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ABSTRACT: The detailed theoretical study of some of the interesting electric and magnetic properties in low 
dimensions have been discussed. The 2D hydrogen atom problems has been solved and the energy eigen values are 
obtained and compared with the 3D values. The polarization value is obtained in both 2D and 3D cases using 
Dalgarno and Lewis method. The present  result we obtained exactly coincides with others results. Some electronic 
properties like density of states and specific heat capacity for one, two and three dimensions have been studied and 
this clearly shows that it depends on temperature. The magnetic property like paramagnetic susceptibility for one, 
two and three dimensions have been obtained and the result shows that it is independent of temperature in all cases. 
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I.INTRODUCTION 
                   A Semiconductor is a substance which has very few free electrons at room temperature. 
Consequentlyunder the influence of potential difference a semiconductor practically conducts no current. At low 
temperature the valence band is completely full and conduction band is completely empty. Therefore a 
semiconductor behaves as an insulator at low temperature. As the temperature is increased more valence electrons 
cross over to the conduction band and the conductivity increases. This shows that the electrical conductivity of the 
semiconductor increases with the rise in temperature. 
                 Elements of group III-V, II-VI are combined together in the presence of impurity to form compound 
semiconductor. Examples of III-V group compound semiconductors are GaP, InP, InSb, InAs and GaAs. Examples 
of II-VI group compound semiconductors are ZnS, CdS.GaAs is the most familiar example used for both high speed 
electronics and for opto electronic devices. 
                  Physics of low dimensionalsystem has been a topic of interest from the theoretical point of view for a 
long time. This is mainly due to the fact that simple models are amenable for an exact solution from which more 
complicated results may be interpreted. 
                 Real electrons are 3D but can be made to behave as though they are free to move in fewer dimensions. 
This can be achieved by trapping them in a narrow potential well that restricts their motion in one dimension to 
discrete energy levels.If the separation between these energy level is large enough the electron will appear to be in 
frozen into the ground state and no motion will be possible in this dimension. The result is a 2D electron gas. The 
same effect can be achieved wih a 2D potential well which leaves the electron free to move in 1D only as a quantum 
wire. 
                 Metals have a unique property which distinguishes them from other materials. They are very good 
conductors of electricity. When an electric field is of very feeble strength is applied, it causes an electrical current in 
the metal, which is apparently a result of the drift of electrons in one direction. At absolute zero of temperature in 
the absence of an applied field all those states are fully occupied which lie within the Fermi surface. This is 
symmetrical about the origin and hence for every electron with an average velocity there is another with equal and 
opposite average velocity. So the net current is zero.   
 

II. TWO DIMENSIONAL HYDROGEN ATOM 
2.1SOLUTION TO SCHRODEINGER’S EQUATION 
      The 2D hydrogen atom consists of an electron revolving about a nucleus in a circular orbit. The hydrogen atom 
problem is a two body problem which involves the motion of two particles (nucleus and electrons) that are attracted 
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to each other by a force that depends on the distance between them. The Schrodeinger’s equation for 2D hydrogen 
atom can be written as  

ቆቈ
ђଶ

2݉∇ଶ + (ݎ)ቇ߮(ݎ)ܸ =  (ݎ)߮ܧ

Since the centre of mass of the system moves like a free particle of mass ‘m’ and the equation of relative motion of 
the two particles is the same . The equation for the motion of the particle that has reduced mass in an external 
potential field V(r) we shall consider it as aond body problem. 
        The wave function is given by 

,ߩ)߮ (ߠ = ݁(ߩ)݉ܫ
ഇ
√మഏ  

Substituting and simplifying we get, 
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Comparing the coefficients of the different powers of ρ yields the Recurrence relation, 

ఊାଵߚ = ቈ
ߛ) − ܾ)

ߛ) + ߛ)(1 + 1 + ܽ) ఊߚ  

Finally we getܧఊ = ாబ

ቀఒାభమቁ
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2.2POLARIZABILITY USING DALGARNO LEWIS METHOD 
2.2.1  Polarisation of 3D hydrogen atom 
    The second order Starck effect can be interpreted in terms of an induced dipole moment. The induced dipole 
moment is proportional to the applied electric field and the same direction and the ratio  α of dipol moment to field 
strength is called polarisability. It is easily seen that these conditions hold exactly for a charged isotropic harmonic 
oscillator and the energy change in this case is -1/2αE2. 
                           W2 = -1/2αE2. 
Also                   W2 =   -9/4E2a0

3. 
Comparing we get ,α =  9/2a0

3.   
For a 3D hydrogen atom in the ground state , the polarisability can be found out using Dalgarno Lewis method are 
as follows. 
The second order energy correction W2 is given by , 
W2  =∫

|⟨|ு|⟩|మ

ாିா

ଵ
  

 
The ground state wave function of 2D hydrogen atom is 

       Ψ00 = ට
ଵ

గబయ
݁ି బൗ  
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ܥݎ−
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The second order energy correction is  

ଶܹ = න߰∗ ଵ߰′ܪ
(ଵ)݀߬ 

 Substituting we get ,     W2  = -9/4 c2 
W2  = (-9/4) E2 a0

3 ,   a0  is the Bohr radius. 
W2 =   -1/2αE2.  = (-9/4) E2 a0

3 
Thereforepolarisability   α3D = 9/2 a0

3 

 
2.2.2  Extension to two dimension 
W2  = (-21/512) E2 a0

3   
Thereforepolarisability   α2D= (-21/256* 1.414) a0

3   
Hence    α2D / α3D=  1.3 x 10-2 ,which agrees well with other works. 
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2.3DENSITY OF STATES 
2.3.1  Density of states of an electron gas in 3D 
Density of states is an important parameter which plays a major role in calculating various properties. It is defined as 
the number of states or orbital per unit energy range. 
             If N is the total number of orbital with energy ≤ E then the Density of states is , 
                                D3 (E) = ௗ

ௗா
           where n is the number of states or orbital per unit volume. 

Energy is given by    E =  ђ2K2/ 2m 
If Kf is the Fermi wave vector then the volume is ,   V = ସ

ଷ
πKf

3 
Simplifying we get ,Density of states at Ef is ,   D3 (Ef) = 1/α* C1/2Ef

1/2 

(ܧ)ଷܦ =
݉ܧ2√

య
మ
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2.3.2 Density of states of an electron gas in 2d 
The expression for the Density of states of an electron gas can be divided in a similar way as the 3D provided the 
volume is replaced by area. 
                     D2 (Ef) =  2m/πħ2  
2.3.3 Density of states of an electron gas in 1D 
The area of the Fermi surface in 2D is replaced by the radius of the Fermi sphere, 
                   D1 (E) =  1/C E-1/2 
2.4 SPECIFIC HEAT CAPACITY IN 3D 
Specific heat capacity is defined as the amount of heat required to raise the temperature of unit mass of the 
substance through one kelvin. 
                   CV = ቂడா

డ௧
ቃv 

Substituting and simplifying we get, 

ܥ =
݉ܧ2√

య
మܭଶ

3ђଷ
ܶ 

i.e.,  Cvα T , at temperature very muchlower than than Fermi temperature. 
2.4.1  Extension to one and two dimensions 
In 2D , 

ܥ =
ଶܭ݉ߨ2

9ђଶ
ܶ 

i.e.,   Cvα T, at low temperature 
In 1D , 

ܥ =
݉ߨ3

భ
మܭଶ

ђܧ2√2
ܶ 

 
From this it is concluded that the heat capacity at very low temperature is proportional to the temperature 
irrespective of the dimension. 
 
2.5. PARAMAGNETIC SUSCEPTIBILITY OF CONDUCTION ELECTRONS 
        Classical electron theory gives an unsatisfactory account of the paramagnetic susceptibility of the conduction 
electrons. Experimental investigations shows that magneton of most normal non ferro magnetic metal is independent 
of temperature, violating curie’s law. The probability that an atom will be lined up parallel to be exceeds to 
probability of an antiparallel orientation roughing µb/KBT . For N atoms per unit volme this gives a net 
magnetization = Nµ2B/ KBT. Most conduction electrons in a metal have no possibility of turning over when a field is 
applied because most of the orbital in the Fermi sphere with parallel spin are already occupied. Thus only a fraction 
T/Tfof the total number o felectrons contribute to the susceptibility. 
M  =Nµ2B/ KBTf          which is independent of temperature and of the observed order of magnitude. The 
concentration of electrons with magnetic moments parallel to the magnetic field is  
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The concentration of electrons with magnetic moments anti parallel to the magnetic field is  
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1
2
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The Magnetisation is given by  
M = µ (N+ - N-) 
In 3D paramagnetic susceptibility 

߯ଷ = ቈ
ଶߤ 2݉√݉

ђଷߨଶ
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In 2D paramagnetic susceptibility 

߯ଶ =
ଶߤ2݉

ђଶߨ
 

In 1D paramagnetic susceptibility 
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షభ
మ

2
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From the three equations we infer that the paramagnetic susceptibility is a constant in 2D, which is proportional to 

ܧ
భ
మ in the 3D and is proportional to ܧ

షభ
మ  in 1D, but is independent of temperature in all the three dimensions. 

 
III.  RESULTSAND DISCUSSIONS 

 
               In two dimensional hydrogen atom the main quantum number starts from zero which shows that it has a 
zero point energy whereas in 3D the main quantum number starts from one which indicates that there is no zero 
point energy. Also in  3D the binding energy of excited ground state is  E0 but in 2D it is  4E0 . So the large binding 
energy in 2D can be understood by considering quantum well structure with decreasing width. 
 
Comparison of eigen values in 2D and 3D hydrogen atoms. 
      3D 2D 

En = -E0/n2 ,  n=1,2…. En = -E0/(n+1/2)2,  n=1,2….    

Egr n=1 = -E0/1  =  -E0 Egr n=0 = -E0/(1/4)  =  -4E0 

En=2 = -E0/4 En=1 = -E0/(9/4)  =   -4E0/9 

En=3 = -E0/9 En=2 = -E0/(25/4)  =  -4E0/25 

 
The polarisability of 2D hydrogen atom is compared with the 3D hydrogen atom. We get the ratio of polarisability 
to be  
α2D / α3D=  1.3 *10-2which agrees well with other works. 
Though there has not been any work reported on the measurement of polarisability of any low dimensional system, 
there have been some estimates of donarpolarisability in a quantum well of GaAs / Ga1-xAlx As system. There 
estimates well made using variational methods. Our results are compared with these works in the following table. 
Polarisability estimates of a 2D hydrogenic system 
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 Exact + @ # 

α 2D / α3D 1.3 *10-2 .09 *10-2 0.2*10-2 0.32*10-2 

 
The expression for density of states in one, two and three dimensions have been obtained. The results are D1(E) α E-

1/2 ,D2(E) = Constant and D3(E) α E1/2  respectively.  
Some electronic properties like density of states and specific heat capacity for one, two and three dimensions have 
been studied. Also in present work semiconductor systems like GaAs and CdTe and their densities corresponding to 
different energy levels have been considered and the results are shown in figure 1 and 2. 
 
Table 1.Calculated values of densities of GaAs and CdTe for one dimension and their corresponding energy levels. 

E x10-23J D1 (E) x 10-10 
 
GaAs 

D1 (E) x 10-10 

 

CdTe 
 

1.4 1.71475 2.49427 

1.6 1.604 2.33318 

1.8 1.5122 2.19974 

2.0 1.4346 2.08686 

2.2 1.3678 1.98974 

2.4 1.3096 1.90503 

2.6 1.2582 1.83029 

 
Table 2.Calculated values of densities of GaAs and CdTe for three dimension and their corresponding energy levels. 

E x10-23J D3 (E) x 1042 
 
GaAs 

D3 (E) x 1042 

 

CdTe 
 

0.2 3.0348 5.3238 

0.6 5.2565 9.2243 

1.0 6.7861 11.9044 

1.4 8.0294 14.0855 

1.8 9.1045 15.9714 

2.2 10.0654 17.6571 

2.6 10.9422 19.1953 
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For different metals their specific heat corresponding to various temperature have been considered and their results 
are shown in figure 3 and 4. 

Table 3.Calculated values ofspecific heat for different metals  fordifferent temperatures in one dimension. 
Temperature Specific heat Capacity 

Lithium Sodium Copper Potassium Silver 

30 1.75246 1.42324 2.13869 1.17141 1.89574 

40 2.33661 1.89765 2.85158 1.56188 2.52766 

50 2.9208 2.37207 3.56448 1.95235 3.15958 

60 3.50492 2.84649 4.27738 2.34282 3.79149 

70 4.08909 3.3209 4.99027 2.73328 4.4234 

80 4.67322 3.79532 5.70317 3.12376 5.05532 

90 5.25737 4.26973 6.41607 3.51422 5.68724 

100 5.84152 4.74415 7.12896 3.90469  

 
Table 4.Calculated values ofspecific heat for different metals  fordifferent temperatures in three dimension. 
Temperature 
 

Specific heat Capacity 

Lithium Sodium Copper Potassium Silver 

30 1.99222 2.44373 1.63244 2.98041 1.84164 

40 2.65629 3.25831 2.17658  3.97388 2.45552 

50 3.32036 4.07288 2.72073 4.96735 3.06940 

60 3.98443 4.88746 3.26487 5.96082 3.68327 

70 4.64850 5.70204 3.80902 6.95429 4.29715 

80 5.31258 6.51601 4.35316 7.94776 4.91103 

90 5.97665 7.33119 4.89731 8.94123 5.52491 

100 6.64072 8.14577 5.44146 9.93469 6.13879 
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The paramagnetic property for the susceptibility of conduction electrons for one, two and three dimensions have 
been studied. Also in present work, considering one of the paramagnetic substance like Al and their susceptibility 
corresponding to different energy levels have been studied and the results are shown in figure 5. 
 

Table 5.Calculated values of paramagneticsusceptibility of Al for different energy levels ofone, two and three 
dimensions. 

 
Energy 
E x 10-18 J 
 

      3 -D                                                                                                                            1-D x10-20 

1.05 9.3718 8.5487 

1.15 9.8079 8.1685 

1.25 10.2255 7.8349 

1.35 10.6267 7.5392 

1.45 11.0132 7.2746 

1.55 11.3866 7.0360 

1.65 11.7482 6.8195 

1.75 12.0989 6.6218 

1.85 
 

12.4399 6.4403 

1.95 12.7716 6.2729 

 
IV. CONCLUSIONS 

The electric and magnetic properties in low dimensions have been studied and discussed theoretically in this work. 
The 2D hydrogen atom problems has been solved and the energy eigen values are obtained and compared with the 
3D values . It is also found that the binding energy of the 2D  hydrogen atom is four times that of the 3D case.The 
polarization value is obtained in both 2D and 3D cases using Dalgarno and Lewis method.  Using this expression we 
obtained an exact result as that  of others results (Sukumaranetal and Elangovanetal). Some electronic properties like 
density of states and specific heat capacity for one, two and three dimensions have been studied and this clearly 
shows that it depends on temperature. The magnetic property like paramagnetic susceptibility for one, two and three 
dimensions have been obtained and the result shows that it is independent of temperature in all cases. 
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Fig. 3 

 

Fig. 4 

 

Fig. 5 
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