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Abstract: Mining frequent item sets is a fundamental task in data mining. Unfortunately the number of frequent item sets describing the data is 

often too large to comprehend. This problem has been attacked by condensed representations of frequent item sets that are sub collections of 

frequent item sets containing only the frequent item sets that cannot be deduced from other frequent item sets in the sub collection, using some 

deduction rules. Most known frequent item set mining approaches enumerate candidate item sets, determine their support, and prune candidates 

that fail to reach the user-specified minimum support. Apart from this scheme we can use intersection approach for identifying frequent item set. 

The closed frequent item sets can be represented as the intersection of some subset of the given transactions.As the transactional database in-

creases, the size of prefix tree also grows which make it difficult to handle. Experiments have been done to find out the efficient memory utiliza-

tion of prefix tree. An improvement has been suggested to reduce the total number of branches in the prefix tree leading to reduction in its size. 

INTRODUCTION 

Data mining is essentially the computer-assisted process of 

information analysis. It is often the case that large collec-

tions of data, however well structured, conceal implicit pat-

terns of information that cannot be readily detected by con-

ventional analysis techniques. Such information may often 

be usefully analyzed using a set of techniques referred to as  

Knowledge discovery or data mining.  Mining frequent 

itemsets is an important task in data mining.  

 

Most of the approaches enumerate candidate item sets, de-

termine their support, and prune candidates that fail to reach 

the user-specified minimum support. It can be viewed as a 

depth-first search in the subset lattice of the item sets. How-

ever enumeration approaches worked on “top-down", since 

they start at the one-element item sets and work their way 

downward by extending identified frequent item sets by new 

items. Apart from other schemes we can use intersection 

approach for identifying frequent item set. But the intersec-

tion approach of transaction is the least research area and 

need attention and improvement to be applied. The main 

reason why the intersection approach is less researched is 

that it is often not competitive with the item set enumeration 

approaches, at least on standard benchmark data sets. Natu-

rally, if there are few items, there are (relatively) few candi-

date item sets to enumerate and thus the search space of the 

enumeration approaches is of manageable size. 

 

In contrast to this, the more transactions there are, the more 

work an intersection approach has to do, especially, since it 

is not linear in the number of transactions like the support 

computation of the item set enumeration approaches. As the 

transactional database increases, the size of prefix tree also 

grows which make it difficult to handle. Hence more time is 

invested in inserting new transactions and searching inter-

secting items. To overcome this shortcoming an attempt has 

been made to make the prefix tree more compact, so as to 

get the desired information in less time and space. 

Basic Definition: 

Association rule mining:- Association rule mining[1] is a 

type of mining used to identify certain kind of association 

(interconnection relation in term of probability) among the 

items of database. It aims is to extract interesting correla-

tions, frequent patterns, associations or casual structures 

among sets of items in the transaction or other data reposito-

ry. 

Visualization of Association Rule Using Rule Graph

 
 

Support: - It specifies the fraction of transactions that con-

tains an item sets. 

Confidence: - It denotes the measure of trueness of the gen-

erated association rule true in probabilistic term. 

Frequent item set:- A frequent item set is the item set 

whose support is greater than some user specified minimum 

support. 
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Closed item set:- A frequent item set is closed if there does 

not exist a super set that has the same support [2]. 

FREQUENT ITEM SET MINING 

An important observation while mining frequent item sets is 

that the output is often huge and it may even exceed the size 

of the transaction database to mine. As a consequence, there 

are several approaches that try to reduce the output, if possi-

ble without any loss of information. The most basic of these 

approaches is to restrict the output to so-called closed or 

maximal frequent item sets [3]. Restricting the output of a 

frequent item set mining algorithm to only the closed or 

even only the maximal frequent item sets can sometimes 

reduce it by orders of magnitude. However, little informa-

tion is lost: From the set of all maximal frequent item sets 

the set of all frequent item sets can be reconstructed, since 

any frequent item set has at least one maximal superset. 

Therefore the union of all subsets of maximal item sets is 

the set of all frequent item sets. Closed frequent item sets 

even preserve knowledge of the support values. The reason 

is that each frequent item set has a uniquely determined 

closed superset with the same support. Hence the support of 

a frequent item set that is not closed can be computed as the 

maximum of the support values of all closed frequent item 

sets that contain it (the maximum has to be used, because no 

superset can have a greater support-the so-called apriori 

property[4]). As a consequence, closed frequent item sets 

are the most popular form of compressing the result of fre-

quent item set mining. 

Basic Notions and Notation: 

Formally, the task of frequent item set mining can be de-

scribed as follows: 

B:-Base Item Set. 

a. T: - (t1, t2….. tn) Transaction Database over an item 

base B. 

b. KT (I):- Cover KT (I) of an item set I which is sub-

set of B with respect to this database is set of indi-

ces of transactions that contain it. 

kT tInkIK |},.....,1{)(  

c. ST (I):- Support of an item set I which is subset of B 

is the size of cover. 

d. We can write it as )(| IKS TT  That is, the num-

ber of transactions in the database T it is contained 

in. 

e. Given a user-specified minimum support Smin for 

an item set I, an item set I is called frequent in T if 

and only if ST (I) >=Smin. 

Item Set Enumeration Algorithms: 

A standard approach to find all frequent item sets w.r.t. a 

given database T and support threshold smin, which is 

adopted by basically all frequent item set mining algorithms 

(except those of the Apriori family), is a depth-first search in 

the subset lattice of the item base B. This approach can be 

interpreted as a simple divide-and-conquer scheme. For 

some chosen item i, the problem to find all frequent item 

sets is split into two subproblems: (1) find all frequent item 

sets containing the item i and (2) find all frequent item sets 

not containing the item i. Each subproblem is then further 

divided based on another item j: find all frequent item sets 

containing (1.1) both items i and j, (1.2) item i, but not j, 

(2.1) item j, but not i, (2.2) neither item i nor j, and so on. 

All subproblems that occur in this divide-and-conquer recur-

sion can be de_ned by a conditional transaction database and 

a prefix. The prefix is a set of items that has to be added to 

all frequent item sets that are discovered in the conditional 

database. Formally, all sub problems are tuples S = (C; P), 

where C is a conditional transaction database and P is a pre-

fix. The initial problem, with which the recursion is started, 

is S = (T;ⱷ), where T is the transaction database to mine and 

the prefix[5] is empty. 

Types of Frequent Item Sets: 

One of the first observations one makes when mining fre-

quent item sets is that the output is often huge-it may even 

exceed the size of the transaction database to mine. As a 

consequence, there are several approaches that try to reduce 

the output, if possible without any loss of information. for 

example:  

Closed Item Set: A frequent item set is called closed if there 

does not exist a superset that has the same support, or for-

mally 

)(}{(:

)(| min

ISiISIB

SISclosedisBI

TTi

T

equation 1 

Maximal Item Set: A frequent item set is called maximal if 

there does not exist any superset that is frequent, or for-

mally: 

.min

min

}){(:

)(max
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SISimalisBI
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T

 equation 2 

 

From the set of all maximal frequent item sets the set of all 

frequent item sets can be reconstructed, since any frequent 

item set has at least one maximal superset. Therefore the 

union of all subsets of maximal item sets is the set of all 

frequent item sets. Closed frequent item sets even preserve 

knowledge of the support values. Note that closed item sets 

are closely related to perfect extensions: an item set is closed 

if it does not have a perfect extension. However, using per-

fect extension pruning does not mean that the output is re-

stricted to closed item sets, because in the search not all 

possible extension items are considered (conditional data-

bases do not contain all items). 

INTERSECTING TRANSACTIONS 

We discuss two ways of implementing the intersection ap-

proach: enumerating transaction sets as it is done in the Car-

penter algorithm [6] and a cumulative scheme [7]. 

Enumerating Transaction Sets: 

The Carpenter algorithm [6] implements the intersection 

approach by enumerating sets of transactions (or, equiva-

lently, sets of transaction indices) and intersecting them. 

Technically, the task to enumerate all transaction index sets 

is split into two sub-tasks: (1) enumerate all transaction in-

dex sets that contain the index 1 and (2) enumerate all trans-

action index sets that do not contain the index 1. These sub-

tasks are then further divided w.r.t. the transaction index 2: 

enumerate all transaction index sets containing (1.1) both 

indices 1 and 2, (1.2) index 1, but not index 2, (2.1) index 2, 

but not index 1, (2.2) neither index 1 nor index 2, and so on. 
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Prefix Tree Implementation: 

The existing system specifies an intersection approach to 

find out the closed frequent item set. The core problem of 

implementing the scheme is to find a data structure for stor-

ing the closed item sets that allows us to quickly compute 

the intersections of these sets with a new transaction and to 

merge the result with them. A prefix tree implementation is 

used to serve this purpose. Prefix tree, is an ordered tree data 

structure that is used to store an associative array where the 

keys are usually strings. Unlike a binary search tree, no node 

in the tree stores the key associated with that node, instead, 

its position in the tree defines the key with which it is asso-

ciated. All the descendants of a node have a com-

mon prefix of the string associated with that node, and the 

root is associated with the empty string. Values are normally 

not associated with every node, only with leaves and some 

inner nodes that correspond to keys of interest.  In the ex-

ample shown, keys are listed in the nodes and values below 

them. Each complete English word has an arbitrary integer 

value associated with it. A prefix tree can be seen as 

a deterministic finite automaton, although the symbol on 

each edge is often implicit in the order of the branches. 

 

Figure-3.1 Prefix Tree 

It is not necessary for keys to be explicitly stored in nodes. 

(In the figure, words are shown only to illustrate how the 

prefix tree works.) Prefix tree need not be keyed by charac-

ter string. The same algorithms can easily be adapted to 

serve similar functions of ordered lists of any construct, e.g., 

permutations on a list of digits or shapes. In particular, 

a bitwise prefix tree is keyed on the individual bits making 

up a short, fixed size of bits such as an integer number or 

pointer to memory. 

INTERSECTING ALGORITHM 

In the intersection approach after adding the transaction to 

the prefix tree we need to perform the intersection of cur-

rently added transaction with all the existing transaction in 

the prefix tree. The proposed algorithm for performing the 

intersection is defined as:- 

void isect (NODE_ node, NODE **ins) 

{ //intersect with transaction 

int i; // buffer for current item 

NODE *d; // to allocate new nodes 

while (node)  

{                // traverse the sibling list 

i = node->item;  // get the current item 

if (trans[i])  

{                  // if item is in intersection 

while ((d = *ins) && (d->item > i)) 

ins = &d->sibling; //find the insertion position 

if (d       // if an intersection node with 

&& (d!item == i)) // the item already exists 

{    

if (d->step >= step) d->supp--; 

if (d->supp < node->supp) 

d->supp = node->supp; 

d->supp++; // update intersection support 

d->step = step; 

}  // and set current update step 

else  

{  // if there is no corresp. node 

d = malloc(sizeof(NODE)); 

d->step = step;  // create a new node and 

d->item = i; // set item and support 

d->supp = node->supp+1; 

d->sibling = *ins; 

 *ins = d; 

d->children = NULL; 

} // insert node into the tree 

if (i <= imin) return; // if beyond last item, abort 

isect(node->children, &d->children);  

} 

else  

{                // if item is not in intersection 

if (i =< imin) return;     // if beyond last item, abort 

isect(node->children, ins); 

} // intersect with subtree 

node = node->sibling; // go to the next sibling  

}  // end of while (node) 

}  // isect() 

 

In more detail, the procedure works as follows: whenever 

the item in the current sibling equals an item in the transac-

tion (that is, whenever trans[i] is true) and thus the item is in 

the intersection, it is checked whether the sibling list starting 

at *ins contains a node with this item, because this node has 

to represent the extended intersection. If such a node exists, 

its support is updated. For this update the step field and vari-

able are vital, because they allow us to determine whether 

the current transaction was already counted for the support 

in the node or not. If the value of the step field in the node 

equals the current step, the node has already been updated 

and therefore the transaction must be discounted again be-

fore taking the maximum. The maximum is taken, because 

we have to determine the support from the largest set of 

transactions containing the item set represented by the node. 

If a node with the intersection item does not exist, a new 

node is allocated and inserted into the tree at the location 

indicated by ins. In both cases (with the current item in the 

transaction or not, that is, with trans[i] true or false) the sub-

tree is processed recursively, unless the item of the current 

node is not larger than the minimum item in the current 

transaction. The only difference between the recursive calls 

is that in the case where the current item is in the intersec-

tion, the insertion position is advanced to the children of the 

current node. 

EXPERIMENTS 

As the transactional database increases, the size of prefix 

tree also grows which make it difficult to handle. Hence 

more time is invested in inserting new transactions and 

searching intersecting items. To overcome this shortcoming 

http://en.wikipedia.org/wiki/Ordered_tree_data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Prefix
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
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an attempt has been made to make the prefix tree more 

compact, so as to get the desired information in less time 

and space. An improvement has been suggested to reduce 

the total number of branches in the prefix tree leading to 

reduction in its size.  

 

So we are suggesting the following steps for making a tree 

out of transaction database. 

Step1:- Enumerating The Transaction Database. 

Table-1 Enumerated database 

 A B C D E F G 

t1 4 0 0 3 0 0 0 

t2 0 0 3 2 0 1 0 

t3 3 3 0 0 0 0 1 

t4 2 2 2 0 2 0 0 

t5 1 1 1 1 1 0 0 

 

Step2:- Find Out The Support Value Of Individual Item. 

a =4    b=3   c=3   d=3   e=2  f=1 g=1 

Step3:- Arrange The Items In Decreasing Value Of Initial 

Support 

Table-2 Decreasing ordering of items in database 

 A B C D E F G 

t1 4 0 0 3 0 0 0 

t2 0 0 3 2 0 1 0 

t3 3 3 0 0 0 0 1 

t4 2 2 2 0 2 0 0 

t5 1 1 1 1 1 0 0 

 

The database is already taken in increasing order of their 

initial support value  

 

Step4:- Arrange The Transactions In The Increasing Size 

(No. Of Item Contains). 

Table-3 Transaction ordering according to size 

 A B C D E F G 

t1 4 0 0 3 0 0 0 

t2 0 0 3 2 0 1 0 

t3 3 3 0 0 0 0 1 

t4 2 2 2 0 2 0 0 

t5 1 1 1 1 1 0 0 

 

Step 5:- Make Prefix Tree Out of Transaction Database. 

Step 6:- Report The Closed Item Set.  

 

Two parameters have been taken for measuring the prefix 

tree size and its memory utilization. 

a. Total Number of Nodes in the Prefix Tree. 

b. Total Number of Paths Existing In the Prefix Tree. 

RESULTS 

 

Figure -5.1. Enumerate the transaction database. 

 

Figure- 5.2. Find out the initial support value of each item in the transaction 

database 

 
 

Figure-5.3. Arrange the items according to decreasing initial support value. 
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Figure-5.4. Arrange the transaction according to increasing size 

 

Figure- 5.5. Make the prefix tree out of the transaction database. 

 

Figure- 5.6. Intermediate tree structure 

 

Figure-5.7. Intermediate tree structure 

 

Figure-5.8. Intermediate tree structure 

 

Figure-5.9. Final prefix tree 



Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165 

© JGRCS 2010, All Rights Reserved  165 

CONCLUSIONS 

The study and experiments conducted of intersection ap-

proach shows that this approach outperforms most of the 

existing technology in different database. The core of inter-

section approach is the prefix data structure that is used to 

represent the transaction database along with the intersecting 

item that are also represent in the nodes of prefix tree. The 

main problem that is associated with this data structure is 

that the size of the prefix tree. The size of prefix tree grows 

very large when we process larger number of transac-

tion.Smaller prefix tree take less time in searching for any 

particular node and also makes its handling easier. The main 

fact behind the reduction in size is that items with higher 

initial support value have more probability of occurring in 

intersection Arranging of items within the transaction has 

effect on the size of prefix tree. Arranging the items in de-

creasing order of support value allow the higher support 

item to exits at the first level in prefix tree. These higher 

support items exist more often in intersection and while we 

search for intersecting items in the tree they can be found at 

first level of prefix tree thus it prevents extra branches to be 

added in the tree and thus the number of branches in the 

prefix tree reduces. Hence we conclude that arranging the 

items according to deceasing initial support value reduces 

the size of prefix tree. It considerably reduces the total num-

ber of branches and nodes in the prefix tree and the effect of 

this reduction reflect in the total memory utilization of the 

prefix tree.   
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