
Volume 4, No. 4, April 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 160

ENHANCEMENT OF INTERSECTING ALGORITHM USING PREFIX TREE FOR

TRANSACTIONS IN IDENTIFICATIONS OF CLOSED FREQUENT ITEM SETS

IN DATA MINING

Veenita Gupta1, Neeraj Kumar2, Praveen Kumar3

1Computer Science, Amity University, Noida, India

veenitagupta2009@gmail.com1

2Computer Science, Amity University, Noida, India

neerajkumar1989@gmail.com2

3Computer Science, Amity University, Noida, India

pkumar3@amity.edu3

Abstract: Mining frequent item sets is a fundamental task in data mining. Unfortunately the number of frequent item sets describing the data is

often too large to comprehend. This problem has been attacked by condensed representations of frequent item sets that are sub collections of

frequent item sets containing only the frequent item sets that cannot be deduced from other frequent item sets in the sub collection, using some

deduction rules. Most known frequent item set mining approaches enumerate candidate item sets, determine their support, and prune candidates

that fail to reach the user-specified minimum support. Apart from this scheme we can use intersection approach for identifying frequent item set.

The closed frequent item sets can be represented as the intersection of some subset of the given transactions.As the transactional database in-

creases, the size of prefix tree also grows which make it difficult to handle. Experiments have been done to find out the efficient memory utiliza-

tion of prefix tree. An improvement has been suggested to reduce the total number of branches in the prefix tree leading to reduction in its size.

INTRODUCTION

Data mining is essentially the computer-assisted process of

information analysis. It is often the case that large collec-

tions of data, however well structured, conceal implicit pat-

terns of information that cannot be readily detected by con-

ventional analysis techniques. Such information may often

be usefully analyzed using a set of techniques referred to as

Knowledge discovery or data mining. Mining frequent

itemsets is an important task in data mining.

Most of the approaches enumerate candidate item sets, de-

termine their support, and prune candidates that fail to reach

the user-specified minimum support. It can be viewed as a

depth-first search in the subset lattice of the item sets. How-

ever enumeration approaches worked on “top-down", since

they start at the one-element item sets and work their way

downward by extending identified frequent item sets by new

items. Apart from other schemes we can use intersection

approach for identifying frequent item set. But the intersec-

tion approach of transaction is the least research area and

need attention and improvement to be applied. The main

reason why the intersection approach is less researched is

that it is often not competitive with the item set enumeration

approaches, at least on standard benchmark data sets. Natu-

rally, if there are few items, there are (relatively) few candi-

date item sets to enumerate and thus the search space of the

enumeration approaches is of manageable size.

In contrast to this, the more transactions there are, the more

work an intersection approach has to do, especially, since it

is not linear in the number of transactions like the support

computation of the item set enumeration approaches. As the

transactional database increases, the size of prefix tree also

grows which make it difficult to handle. Hence more time is

invested in inserting new transactions and searching inter-

secting items. To overcome this shortcoming an attempt has

been made to make the prefix tree more compact, so as to

get the desired information in less time and space.

Basic Definition:

Association rule mining:- Association rule mining[1] is a

type of mining used to identify certain kind of association

(interconnection relation in term of probability) among the

items of database. It aims is to extract interesting correla-

tions, frequent patterns, associations or casual structures

among sets of items in the transaction or other data reposito-

ry.

Visualization of Association Rule Using Rule Graph

Support: - It specifies the fraction of transactions that con-

tains an item sets.

Confidence: - It denotes the measure of trueness of the gen-

erated association rule true in probabilistic term.

Frequent item set:- A frequent item set is the item set

whose support is greater than some user specified minimum

support.

Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165

© JGRCS 2010, All Rights Reserved 161

Closed item set:- A frequent item set is closed if there does

not exist a super set that has the same support [2].

FREQUENT ITEM SET MINING

An important observation while mining frequent item sets is

that the output is often huge and it may even exceed the size

of the transaction database to mine. As a consequence, there

are several approaches that try to reduce the output, if possi-

ble without any loss of information. The most basic of these

approaches is to restrict the output to so-called closed or

maximal frequent item sets [3]. Restricting the output of a

frequent item set mining algorithm to only the closed or

even only the maximal frequent item sets can sometimes

reduce it by orders of magnitude. However, little informa-

tion is lost: From the set of all maximal frequent item sets

the set of all frequent item sets can be reconstructed, since

any frequent item set has at least one maximal superset.

Therefore the union of all subsets of maximal item sets is

the set of all frequent item sets. Closed frequent item sets

even preserve knowledge of the support values. The reason

is that each frequent item set has a uniquely determined

closed superset with the same support. Hence the support of

a frequent item set that is not closed can be computed as the

maximum of the support values of all closed frequent item

sets that contain it (the maximum has to be used, because no

superset can have a greater support-the so-called apriori

property[4]). As a consequence, closed frequent item sets

are the most popular form of compressing the result of fre-

quent item set mining.

Basic Notions and Notation:

Formally, the task of frequent item set mining can be de-

scribed as follows:

B:-Base Item Set.

a. T: - (t1, t2….. tn) Transaction Database over an item

base B.

b. KT (I):- Cover KT (I) of an item set I which is sub-

set of B with respect to this database is set of indi-

ces of transactions that contain it.

kT tInkIK |},.....,1{)(

c. ST (I):- Support of an item set I which is subset of B

is the size of cover.

d. We can write it as)(| IKS TT That is, the num-

ber of transactions in the database T it is contained

in.

e. Given a user-specified minimum support Smin for

an item set I, an item set I is called frequent in T if

and only if ST (I) >=Smin.

Item Set Enumeration Algorithms:

A standard approach to find all frequent item sets w.r.t. a

given database T and support threshold smin, which is

adopted by basically all frequent item set mining algorithms

(except those of the Apriori family), is a depth-first search in

the subset lattice of the item base B. This approach can be

interpreted as a simple divide-and-conquer scheme. For

some chosen item i, the problem to find all frequent item

sets is split into two subproblems: (1) find all frequent item

sets containing the item i and (2) find all frequent item sets

not containing the item i. Each subproblem is then further

divided based on another item j: find all frequent item sets

containing (1.1) both items i and j, (1.2) item i, but not j,

(2.1) item j, but not i, (2.2) neither item i nor j, and so on.

All subproblems that occur in this divide-and-conquer recur-

sion can be de_ned by a conditional transaction database and

a prefix. The prefix is a set of items that has to be added to

all frequent item sets that are discovered in the conditional

database. Formally, all sub problems are tuples S = (C; P),

where C is a conditional transaction database and P is a pre-

fix. The initial problem, with which the recursion is started,

is S = (T;ⱷ), where T is the transaction database to mine and

the prefix[5] is empty.

Types of Frequent Item Sets:

One of the first observations one makes when mining fre-

quent item sets is that the output is often huge-it may even

exceed the size of the transaction database to mine. As a

consequence, there are several approaches that try to reduce

the output, if possible without any loss of information. for

example:

Closed Item Set: A frequent item set is called closed if there

does not exist a superset that has the same support, or for-

mally

)(}{(:

)(| min

ISiISIB

SISclosedisBI

TTi

T

equation 1

Maximal Item Set: A frequent item set is called maximal if

there does not exist any superset that is frequent, or for-

mally:

.min

min

}){(:

)(max

SiISIB

SISimalisBI

Ti

T

 equation 2

From the set of all maximal frequent item sets the set of all

frequent item sets can be reconstructed, since any frequent

item set has at least one maximal superset. Therefore the

union of all subsets of maximal item sets is the set of all

frequent item sets. Closed frequent item sets even preserve

knowledge of the support values. Note that closed item sets

are closely related to perfect extensions: an item set is closed

if it does not have a perfect extension. However, using per-

fect extension pruning does not mean that the output is re-

stricted to closed item sets, because in the search not all

possible extension items are considered (conditional data-

bases do not contain all items).

INTERSECTING TRANSACTIONS

We discuss two ways of implementing the intersection ap-

proach: enumerating transaction sets as it is done in the Car-

penter algorithm [6] and a cumulative scheme [7].

Enumerating Transaction Sets:

The Carpenter algorithm [6] implements the intersection

approach by enumerating sets of transactions (or, equiva-

lently, sets of transaction indices) and intersecting them.

Technically, the task to enumerate all transaction index sets

is split into two sub-tasks: (1) enumerate all transaction in-

dex sets that contain the index 1 and (2) enumerate all trans-

action index sets that do not contain the index 1. These sub-

tasks are then further divided w.r.t. the transaction index 2:

enumerate all transaction index sets containing (1.1) both

indices 1 and 2, (1.2) index 1, but not index 2, (2.1) index 2,

but not index 1, (2.2) neither index 1 nor index 2, and so on.

Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165

© JGRCS 2010, All Rights Reserved 162

Prefix Tree Implementation:

The existing system specifies an intersection approach to

find out the closed frequent item set. The core problem of

implementing the scheme is to find a data structure for stor-

ing the closed item sets that allows us to quickly compute

the intersections of these sets with a new transaction and to

merge the result with them. A prefix tree implementation is

used to serve this purpose. Prefix tree, is an ordered tree data

structure that is used to store an associative array where the

keys are usually strings. Unlike a binary search tree, no node

in the tree stores the key associated with that node, instead,

its position in the tree defines the key with which it is asso-

ciated. All the descendants of a node have a com-

mon prefix of the string associated with that node, and the

root is associated with the empty string. Values are normally

not associated with every node, only with leaves and some

inner nodes that correspond to keys of interest. In the ex-

ample shown, keys are listed in the nodes and values below

them. Each complete English word has an arbitrary integer

value associated with it. A prefix tree can be seen as

a deterministic finite automaton, although the symbol on

each edge is often implicit in the order of the branches.

Figure-3.1 Prefix Tree

It is not necessary for keys to be explicitly stored in nodes.

(In the figure, words are shown only to illustrate how the

prefix tree works.) Prefix tree need not be keyed by charac-

ter string. The same algorithms can easily be adapted to

serve similar functions of ordered lists of any construct, e.g.,

permutations on a list of digits or shapes. In particular,

a bitwise prefix tree is keyed on the individual bits making

up a short, fixed size of bits such as an integer number or

pointer to memory.

INTERSECTING ALGORITHM

In the intersection approach after adding the transaction to

the prefix tree we need to perform the intersection of cur-

rently added transaction with all the existing transaction in

the prefix tree. The proposed algorithm for performing the

intersection is defined as:-

void isect (NODE_ node, NODE **ins)

{ //intersect with transaction

int i; // buffer for current item

NODE *d; // to allocate new nodes

while (node)

{ // traverse the sibling list

i = node->item; // get the current item

if (trans[i])

{ // if item is in intersection

while ((d = *ins) && (d->item > i))

ins = &d->sibling; //find the insertion position

if (d // if an intersection node with

&& (d!item == i)) // the item already exists

{

if (d->step >= step) d->supp--;

if (d->supp < node->supp)

d->supp = node->supp;

d->supp++; // update intersection support

d->step = step;

} // and set current update step

else

{ // if there is no corresp. node

d = malloc(sizeof(NODE));

d->step = step; // create a new node and

d->item = i; // set item and support

d->supp = node->supp+1;

d->sibling = *ins;

 *ins = d;

d->children = NULL;

} // insert node into the tree

if (i <= imin) return; // if beyond last item, abort

isect(node->children, &d->children);

}

else

{ // if item is not in intersection

if (i =< imin) return; // if beyond last item, abort

isect(node->children, ins);

} // intersect with subtree

node = node->sibling; // go to the next sibling

} // end of while (node)

} // isect()

In more detail, the procedure works as follows: whenever

the item in the current sibling equals an item in the transac-

tion (that is, whenever trans[i] is true) and thus the item is in

the intersection, it is checked whether the sibling list starting

at *ins contains a node with this item, because this node has

to represent the extended intersection. If such a node exists,

its support is updated. For this update the step field and vari-

able are vital, because they allow us to determine whether

the current transaction was already counted for the support

in the node or not. If the value of the step field in the node

equals the current step, the node has already been updated

and therefore the transaction must be discounted again be-

fore taking the maximum. The maximum is taken, because

we have to determine the support from the largest set of

transactions containing the item set represented by the node.

If a node with the intersection item does not exist, a new

node is allocated and inserted into the tree at the location

indicated by ins. In both cases (with the current item in the

transaction or not, that is, with trans[i] true or false) the sub-

tree is processed recursively, unless the item of the current

node is not larger than the minimum item in the current

transaction. The only difference between the recursive calls

is that in the case where the current item is in the intersec-

tion, the insertion position is advanced to the children of the

current node.

EXPERIMENTS

As the transactional database increases, the size of prefix

tree also grows which make it difficult to handle. Hence

more time is invested in inserting new transactions and

searching intersecting items. To overcome this shortcoming

http://en.wikipedia.org/wiki/Ordered_tree_data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Prefix
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Deterministic_finite_automaton

Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165

© JGRCS 2010, All Rights Reserved 163

an attempt has been made to make the prefix tree more

compact, so as to get the desired information in less time

and space. An improvement has been suggested to reduce

the total number of branches in the prefix tree leading to

reduction in its size.

So we are suggesting the following steps for making a tree

out of transaction database.

Step1:- Enumerating The Transaction Database.

Table-1 Enumerated database

 A B C D E F G

t1 4 0 0 3 0 0 0

t2 0 0 3 2 0 1 0

t3 3 3 0 0 0 0 1

t4 2 2 2 0 2 0 0

t5 1 1 1 1 1 0 0

Step2:- Find Out The Support Value Of Individual Item.

a =4 b=3 c=3 d=3 e=2 f=1 g=1

Step3:- Arrange The Items In Decreasing Value Of Initial

Support

Table-2 Decreasing ordering of items in database

 A B C D E F G

t1 4 0 0 3 0 0 0

t2 0 0 3 2 0 1 0

t3 3 3 0 0 0 0 1

t4 2 2 2 0 2 0 0

t5 1 1 1 1 1 0 0

The database is already taken in increasing order of their

initial support value

Step4:- Arrange The Transactions In The Increasing Size

(No. Of Item Contains).

Table-3 Transaction ordering according to size

 A B C D E F G

t1 4 0 0 3 0 0 0

t2 0 0 3 2 0 1 0

t3 3 3 0 0 0 0 1

t4 2 2 2 0 2 0 0

t5 1 1 1 1 1 0 0

Step 5:- Make Prefix Tree Out of Transaction Database.

Step 6:- Report The Closed Item Set.

Two parameters have been taken for measuring the prefix

tree size and its memory utilization.

a. Total Number of Nodes in the Prefix Tree.

b. Total Number of Paths Existing In the Prefix Tree.

RESULTS

Figure -5.1. Enumerate the transaction database.

Figure- 5.2. Find out the initial support value of each item in the transaction

database

Figure-5.3. Arrange the items according to decreasing initial support value.

Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165

© JGRCS 2010, All Rights Reserved 164

Figure-5.4. Arrange the transaction according to increasing size

Figure- 5.5. Make the prefix tree out of the transaction database.

Figure- 5.6. Intermediate tree structure

Figure-5.7. Intermediate tree structure

Figure-5.8. Intermediate tree structure

Figure-5.9. Final prefix tree

Veenita Gupta et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 160-165

© JGRCS 2010, All Rights Reserved 165

CONCLUSIONS

The study and experiments conducted of intersection ap-

proach shows that this approach outperforms most of the

existing technology in different database. The core of inter-

section approach is the prefix data structure that is used to

represent the transaction database along with the intersecting

item that are also represent in the nodes of prefix tree. The

main problem that is associated with this data structure is

that the size of the prefix tree. The size of prefix tree grows

very large when we process larger number of transac-

tion.Smaller prefix tree take less time in searching for any

particular node and also makes its handling easier. The main

fact behind the reduction in size is that items with higher

initial support value have more probability of occurring in

intersection Arranging of items within the transaction has

effect on the size of prefix tree. Arranging the items in de-

creasing order of support value allow the higher support

item to exits at the first level in prefix tree. These higher

support items exist more often in intersection and while we

search for intersecting items in the tree they can be found at

first level of prefix tree thus it prevents extra branches to be

added in the tree and thus the number of branches in the

prefix tree reduces. Hence we conclude that arranging the

items according to deceasing initial support value reduces

the size of prefix tree. It considerably reduces the total num-

ber of branches and nodes in the prefix tree and the effect of

this reduction reflect in the total memory utilization of the

prefix tree.

REFERENCES

[1]. T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient

mining algorithms for frequent/closed/maximal itemsets. In

Proc. Workshop Frequent Item Set Mining Implementa-

tions (FIMI 2004, Brighton, UK), Aachen, Germany, 2004.

CEUR Workshop Proceedings 126.

[2]. G. Grahne and J. Zhu. Reducing the main memorycon-

sumptions of FPmax* and FPclose. In Proc. Workshop

Frequent Item Set Mining Implementations (FIMI 2004,

Brighton, UK), Aachen, Germany, 2004. CEUR Workshop

Proceedings 126.

[3]. Calders T, Garboni C, Goethals B (2010) Efficient pattern

mining of uncertain data with sampling. In: Proceedings of

the 14th Pacific-Asia conference on knowledge discovery

and data mining (PAKDD 2010, Hyderabad, India), vol I.

Springer, Berlin, pp 480–487

[4]. B. Goethals and M. Zaki, editors. Proc. Workshop Frequent

Item Set Mining Implementations (FIMI 2004, Brighton,

UK), Aachen, Germany, 2004. CEURWorkshop Proceed-

ings 126.

[5]. C. Borgelt and X. Wang. SaM: A split and merge algorithm

for fuzzy frequent item set mining. In Proc. 13th Int. Fuzzy

Systems Association World Congress and 6th Conf. of the

European Society for Fuzzy Logic and Technology

(IFSA/EUSFLAT'09, Lisbon, Portugal), Lisbon, Portugal,

2009. IFSA/EUSFLAT Organization Committee.

[6]. F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki. Carpen-

ter: Finding closed patterns in long biological datasets. In

Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discov-

ery and Data Mining (KDD 2003, Washington, DC), pages

637{642, New York, NY, USA, 2003. ACM Press.

[7]. F. Pan, A. Tung, G. Cong, and X. Xu. Cobbler: Combining

column and row enumeration for closed pattern discovery.

In Proc. 16th Int. Conf. on Scienti_c and Statistical Data-

base Management (SSDBM 2004, Santori Island, Greece),

page 21_, Piscataway, NJ, USA, 2004. IEEE Press.

[8]. G. Cong, K.-I. Tan, A. Tung, and F. Pan. Mining frequent

closed patterns in microarray data. In Proc. 4th IEEE Inter-

national Conference on Data Mining (ICDM 2004, Brigh-

ton, UK), pages 363{366, Piscataway, NJ, USA, 2004.

IEEE Press.

Short Bio Data for the Author

 Ms. Veenita Gupta is pursing M. Tech from Amity

University, Noida. She completed her B.Tech in 2011. Her

areas of interest are Software Project Management, Internet

Fundamentals, Web Development, Computer Networks,

Wireless Sensor Network, Data Mining, Cryptography and

she also published research papers in other journals.

 Mr. Neeraj Kumar is pursing M. Tech from Amity

University, Noida. He completed his B. Tech in 2011. His

areas of interest are Software Project Management, Internet

Fundamentals, Web Development, Computer Networks,

Wireless Sensor Network, Data Mining, Cryptography and

he also published research papers in other journals.

