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Abstract: CPU scheduling is the basis of multiprogrammed operating systems.  Round Robin CPU scheduling algorithm was considered as the 
optimized CPU scheduling algorithm when compared with the traditional FCFS, SJF and Priority scheduling algorithm. But with the elapse of 
time, the RR scheduling algorithm was further optimized by using extended or combination of CPU scheduling algorithms to enhance the 
efficiency of the CPU. By switching the CPU processes, the operating system can make the computer more productive and therefore choosing an 
optimized and efficient time quantum is a very important factor. This paper presents a new CPU scheduling algorithm coined Enhancing CPU 
scheduling using a modified mean deviation round robin (MMDRR) scheduling algorithm for real time system. MMDRR is experimentally proven 
better than traditional RR, SMDRR and SRBRR by reducing the context switches, average waiting time and average turnaround time significantly.  
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INTRODUCTION 

Basics: 

A computer system consists of four components:  the 

hardware, the operating system, the application programs 

and the users. The hardware – the CPU, the memory, and the 

I/O devices – provides the basic computing resources for the 

system. To enhance the performance of the CPU, day by day 

different scheduling algorithms are developed. An operating 

system is a program that manages the computer hardware. 

Scheduling algorithm: 

The FCFS (First Come First Serve) algorithm being the first 
refers that any process that arrives first in the ready queue is 
processed first. The second being the SJF (Shortest Job First) 
scheduling algorithm where the process having the shortest 
burst time is processed first. Following it the priority 
scheduling algorithm was developed where each process was 
assigned a priority and accordingly the process where 
executed. In case of priority scheduling, priority is assigned 
to each process and CPU is allocated to the process with 
highest priority. Equal priority processes are scheduled in 
FCFS order.  But the development of the Round Robin 
scheduling algorithm was considered as the optimized 
algorithm where a fixed slice of time quantum was chosen 
and hence the processes were executed accordingly. 

Motivation: 

In RR scheduling a fixed time quantum is given to all 

process that are awaits in ready queue for execution. So the 

chance of frequent switches between processes increases by 

which efficiency of CPU decreases. On the other hand if the  

 

time slice considered is a large one then waiting time and 

turnaround time increases. In order to overcome these above 

situations, we have proposed an algorithm that uses a mean 

deviation dynamic time quantum concept. 

Related Work: 

Many research works has been done under this topic to 

enhance the performance of CPU. The static time quantum 

which is a limitation of RR was removed by taking dynamic 

time quantum by Matarneh [3]. SRBRR algorithm [1] uses a 

new approach that it is using dynamic time quantum in 

which time quantum repeatedly changes with each cycle of 

execution. SMDRR algorithm [2] is based on dynamic time 

quantum where we use the subcontrary mean or harmonic 

mean to find the time quantum for the processes to execute. 

Our Contribution:  

In this paper, the main objective is to reduce average waiting 
time and turnaround time as compared with the RR 
scheduling algorithm, SRBRR scheduling algorithm and the 
SMDRR scheduling algorithm. For this purpose, we have 
developed an algorithm that drastically reduces average 
waiting time and turnaround time.  

Organization of Paper: 

This paper represents a method for reducing context 
switching, average waiting time and average turnaround time 
using random sorting and dynamic quantum with burst task 
component and priority task component. Section 2 describes 
all preliminary work. Section 3 presents proposed 
approaches. Section 4 shows experimental analysis and 
comparison of result. In Section 5 conclusion is given. 



H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16 

© JGRCS 2010, All Rights Reserved   10 

BACKGROUND WORK 

Terminology:  

A program in execution is called a process. The processes, 

waiting to be assigned to a processor are put in a queue 

called ready queue.  The performance of the CPU mainly 

depends upon many factors such as CPU utilization, 

Throughput, Turnaround Time (TAT), Waiting Time (WT), 

Context Switch (CS), Response Time etc. The utilization of 

the CPU is called CPU utilization where we keep the CPU 

as busy as possible. The number of processes completed per 

unit time is called Throughput. Waiting Time is the sum of 

the periods spent waiting in the ready queue. Time from the 
submission of a request until the first response is produced 

is called Response Time. Turnaround Time is the interval 

from the time of the submission of a process to the time of 

completion is the turnaround time. Context switch is the 

number of times the process switches to get execute. 

Scheduler selects a process from queues in some manner for 

its execution. In non-preemption, CPU is assigned to a 

process; it holds the CPU till its execution is completed. But 

in preemption, running process is forced to release the CPU 

by the newly arrived process. In time sharing system, the 

CPU executes multiple processes by switching among them 

very fast. The number of times CPU switches from one 
process to another is called as the number of context 

switches.  

RR Scheduling Algorithm: 

 In RR, each ready task runs turn by in turn in a cyclic queue 
for limited time slices. It is widely used in traditional OS. RR 
is a hybrid model i.e. clock driven model (e.g. cyclic model) 
as well as event driven (e.g. Preemption). The performance 
of RR algorithm is highly dependent on time slice. For low 
time-slice context switching is more and for high time-slice 
response time is more. So the time quantum plays most 
determining factor for the performance of RR algorithm.   

SRBRR Algorithm: 

In Shortest Remaining Burst Round Robin algorithm, the 

time quantum is taken as the median of the increasingly 

sorted burst time of all the processes. The jobs are sorted in 

ascending order of their burst time. The time slice chosen is 

dynamic time quantum where the time quantum is 

repeatedly adjusted according to the remaining burst time of 

currently running processes. To get the optimal time 

quantum, median of the burst time is taken as the time 

quantum. 

SMDRR Scheduling Algorithm:  

In subcontrary mean dynamic round robin scheduling 

algorithm, the time quantum is taken as the subcontrary or 

harmonic mean of the increasingly sorted burst time of all 

the processes and this change dynamically in every cycle till 

the end of processes.   

PROPOSED APPROACH: 

In our proposed algorithm the time slice taken is the 
summation of mean and variance of the increasingly sorted 
burst time of all the processes. 

 

Uniqueness of our approach: 

In our algorithm, the jobs are sorted in ascending order of 

their burst time to give better turnaround time and waiting 

time. Performance of RR algorithm solely depends upon the 

size of time quantum. If it is very small, it causes too many 
context switches. If it is very large, the algorithm 

degenerates to FCFS. So our algorithm solves this problem 

by taking a dynamic time quantum where the time quantum 

is repeatedly adjusted according to the remaining burst time 

of currently running processes. To get the optimal time 

quantum, the summation of mean and standard deviation of 

the burst time is taken as the time quantum. 

Our proposed approach: 

In the proposed algorithm, when processes are already 

present in the ready queue, their arrival time is assigned to 

zero before they are allocated to the CPU. The burst time 

and the number of processes (n) are accepted as input with 

counter value „i‟. 

 

Let TQ be the time quantum. The TQ calculated is the 

summation of mean and standard deviation. So, the TQ is 

calculated by the following formulae (4) as follows: 

Mean = x = 1/n (x1+ x2 + …. + xn) (1) 

Variance = σ
2
 = (1/n) Σ (xi - x)2   (2) 

Deviation = σ = {(1/n) Σ (xi - x)2}1/2   (3) 

TQ = Mean + Standard Deviation  

=
 x + σ (4) 

   Where   n = Total no of processes 

x = Set of processes  

and (x1, x2, ..... , xn) ϵ  X  
Time quantum is assigned to each process. The process 
having the shortest job is allocated to the CPU. Time 
quantum is recalculated with remaining burst time after each 
execution of each cycle.  

Pseudocode of the proposed algorithm: 
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Flow chart of the proposed algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration: 

Given the burst time sequence of the processes as P1= 13, 
P2= 35, P3= 46, P4= 63, P5= 97. Initially the burst time of 
all the processes were sorted in ascending order which 
resulted in sequence P1, P2, P3, P4 and P5. Then the mean of 
the above burst time which was calculated to be 51 and 
standard deviation to be 31. The summation of mean and 
standard deviation was calculated to be  82 and thus was 
assigned as the time quantum for all the processes. In the 
next step remaining burst time of each process was 

calculated after allocating the time quantum. After first cycle 
the remaining burst time sequence for above processes 
changed to P5=15. When a process completes its burst time, 
it gets deleted from the ready queue automatically. So in this 
case, the processes P1, P2, P3 and P4 were deleted from the 
ready queue. The present remaining burst time were sorted in 
increasing order and then the summation of  mean and 
standard deviation of the remaining  burst time was assigned 
as the time quantum where we get 15 as the time quantum for 
the second cycle. The time quantum 15 was assigned to the 
process P5 for execution. This is how the processes are 
executed in the ready queue. The above process was 
continued till all the processes were deleted from the ready 
queue. 

EXPERIMENTAL ANALYSIS 

Assumptions: 

The environment where all the experiments are performed is 

a single processor environment and all the processes are 

independent. There is equal priority given to all the 

processes. All the attributes like burst time, number of 

processes and the time slice of all the processes are known 

before submitting the processes to the processor. All 

processes are CPU bound. No processes are I/O bound. 

Also, a large number of processes is assumed in the ready 

queue for better efficiency. Since, the cases are assumed to 
be close to ideal, the Context Switching Time is equal to 

zero i.e. there is no Context Switch Overhead incurred in 

switching from one process to another. The TQ is taken in 

milliseconds (ms). 

Experimental Frame Work: 

For the performance evaluation of the proposed scheduling 
algorithm, our experiment consists of several input and 

output parameters. The input parameters consist of burst 

time, arrival time, time quantum and the number of 

processes. The output parameters consist of average waiting 

time, average turnaround time and number of context 

switches. 

Data Set: 

Two cases were considered for the experiment evaluation. 
Case-1 is for processes with zero arrival time. Case-2 is for 
processes with certain arrival time. In both case-1 and case-2, 
there are 3-subcases i.e. processes are taken in ascending, 
descending and random order. In each case, we have 
compared the experimental results of our proposed algorithm 
with the SRBRR scheduling algorithm, the SMDRR 
scheduling algorithm and the traditional round robin 
scheduling algorithm with fixed time quantum Q. 

Performance Parameters: 

The significance of our performance parameters for 

experimental analysis is as follows:  

Average Waiting time (AWT): For the better performance 

of the scheduling algorithm, average waiting time of the 

processes should be less. 

 

Average Turnaround time (ATAT): For the better 

performance of the scheduling algorithm, average 

turnaround time of the processes should be less.  

Start 

Sort the process 

in ascending 

order  

 

Calculate TQ 

TQ =  

((1/n )(x1+ x2 + 

…. + xn))  

+ {((1/n) Σ (xi - 

x)
2
)}

1/2 

 

RQ!= NULL 

Pi → TQ 

 

Calculate the 

remaining BT of 
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Pi having the 

least BT is 
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Number of Context Switches (CS): For the better 

performance of the scheduling algorithm, the number of 

context switches should be less.  

Experiments Performed: 

To evaluate the efficiency of our proposed algorithm 

(MMDRR), the output parameters are compared with round 

robin (RR) scheduling algorithm, Shortest Remaining Burst 

Round Robin (SRBRR) scheduling algorithm and the 

subcontrary mean dynamic round robin (SMDRR) 

scheduling algorithm. This algorithm can work effectively 

with large number of processes. For simplicity we have 
taken five processes with ascending, descending and random 

order to illustrate our proposed algorithm. Here we have 

assumed a constant time quantum TQ equal to 25 ms in all 

the cases for RR scheduling algorithm. 

 

CASE 1: With Zero Arrival Time 
Increasing Order: 
Five process P1, P2, P3, P4, P5 arriving at time 0 with burst 
time 13, 35, 46, 63, 97 respectively of each process shown in 
table 4.6.1 have been considered. Table 4.6.2 shows the 
comparing result of RR, SRBRR, SMDRR and our proposed 
algorithm (MMDRR). 

Table 4.6.1 Data in increasing order 

Processes Arrival Time Burst Time 

P1 0 13 

P2 0 35 

P3 0 46 

P4 0 63 

P5 0 97 

Table 4.6.2 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms QT AWT ATAT CS 

RR 25 97.4 148.2 11 

SRBRR 46, 34, 17 71.6 122.4  7 

SMDRR 36, 6, 15, 15,28 108.6 159.4 14 

MMDRR 82,15 62.4 113.2 5 

 
   TQ = 25 

 

P1 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5 P5 

0         13          38           63         88         113        123         144          169        

194        207       232    254   

 

Figure. 4.6.2.1: Gantt chart for RR in Table 4.6.2 

 

 TQ=46     TQ=34           TQ=17 

 

P1 P2 P3 P4 P5 P4 P5 P5 

0     13      48         94       140     186      203      237       254 

 

Figure. 4.6.2.2: Gantt chart for SRBRR in Table 4.6.2 

 

 

 

 TQ = 33                   TQ = 6                     TQ=15 

 
P1 P2 P3 P4 P5 P2 P3 P4 P5 P3 P4 P5 

0    13     46    79    112    145   147   153   159   165   172   187   202  
 

              TQ=15     TQ=28 

             

P4 P5 P5 

            202   211   226     254 

Figure. 4.6.2.3: Gantt chart for SMDRR in Table 4.6.2 

 TQ=82         TQ=15 

 

P1 P2 P3 P4 P5 P5 

0        13          48           94         157          239       254 

Figure. 4.6.2.4: Gantt chart for MMDRR in Table 4.6.2 

Decreasing Order: 

Five process P1, P2, P3, P4, P5 arriving at time 0 with burst 
time 86, 53, 32, 21, 9 respectively of each process shown in 
table 4.6.3 have been considered. Table 4.6.4 shows the 
comparing result of RR, SRBRR, SMDRR and our proposed 
algorithm (MMDRR). 

Table 4.6.3 Data in decreasing order 

Processes Arrival Time Burst Time 

P1 0 86 

P2 0 53 

P3 0 32 

P4 0 21 

P5 0 9 

Table 4.6.4 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms QT AWT ATAT CS 

RR 25 110.5 150.8 10 

SRBRR 32, 38, 16 49.6 89.8 7 

SMDRR 23, 19, 18, 26 60.8 101 10 

MMDRR 70,16 43.2 83.4 5 

 

            TQ = 25 

 

P1 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5 

0      25        50      75        96     105    130    155    162   187  190   201  

Figure. 4.6.4.1: Gantt chart for RR in Table 4.6.4 

 
  TQ = 32   TQ = 38    TQ=16 

 

P5 P4 P3 P2 P1 P2 P1 P1 

0       9          30        62        94        126          147   185     201 

Figure. 4.6.4.2: Gantt chart for SRBRR in Table 4.6.4 
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 TQ = 23                             TQ = 19              TQ = 18    TQ=26 

 

P5 P4 P3 P2 P1 P3 P2 P1 P2 P1 P1 

0      9        30        53        76        99      108     127     146     157   175   201 

Figure. 4.6.4.3: Gantt chart for SMDRR in Table 4.6.4 

 

  TQ = 70         TQ = 16 

 

P5 P4 P3 P2 P1 P1 

0       9           30        62          115       185        201 

Figure. 4.6.4.4: Gantt chart for MMDRR in Table 4.6.4 

Random Order: 

Five process P1, P2, P3, P4, P5 arriving at time 0 with burst 
time 54, 99, 5, 27, 32 respectively of each process shown in 
table 4.6.5 have been considered. Table 4.6.6 shows the 
comparing result of RR, SRBRR, SMDRR and our proposed 
algorithm (MMDRR). 

Table 4.6.5 Data in random order 

Processes Arrival Time  Burst Time 

P1 0 54 

P2 0 99 

P3 0 5 

P4 0 27 

P5 0 32 

Table 4.6.6 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms  QT AWT ATAT CS 

RR 25 108.8 152.2 11 

SRBRR 32, 45, 22 50.2 93.6 7 

SMDRR 17, 29, 27, 35 99.2 142.6 11 

MMDRR 79, 20 43.8 87.2 5 

                          
TQ = 25 

 

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1 P2 P2 

0     25       50       55       80      105    130    155    157    164     168    193   

217 

Figure. 4.6.6.1: Gantt chart for RR in Table 4.6.6 

     TQ = 32                              TQ = 45           TQ=22 

 

P3 P4 P5 P1 P2 P1 P2 P2 

0       5         32         64         96       128      150      195      217 

Figure. 4.6.6.2: Gantt chart for SRBRR in Table 4.6.6 

 

 TQ = 17       TQ = 20            TQ = 27   

TQ=35 

 

P3 P4 P5 P1 P2 P4 P5 P1 P2 P1 P2 P2 

0      5        22       39       56      73       83      98    118    138    155 182   217 

Figure. 4.6.6.3: Gantt chart for SMDRR in Table 4.6.6 

  TQ = 79    TQ=20 

 

P3 P4 P5 P1 P2 P2 

0         5            32           64          118        197         217 

Figure. 4.6.6.4: Gantt chart for MMDRR in Table 4.6.6 

CASE 2: With Arrival Time 

Increasing Order: 

Five process P1, P2, P3, P4, P5 arriving at time 0, 2, 5, 7, 9 
respectively with burst time 10, 22, 48, 70, 74 respectively of 
each process shown in table 4.6.7 have been considered. 
Table 4.6.8 shows the comparing result of RR, SRBRR, 
SMDRR and our proposed algorithm (MMDRR). 

Table 4.6.7 Data in increasing order with arrival time 

Processes Arrival Time Burst Time 

P1 0 10 

P2 2 22 

P3 5 48 

P4 7 70 

P5 9 74 

Table 4.6.8 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms  QT AWT ATAT CS 

RR 25 69.8 114.6 9 

SRBRR 10, 59, 13,  2 61.6 106.4 7 

SMDRR 10, 43, 11, 18,  2 77.8 122.6 10 

MMDRR 10,74 49.8 94.6 4 

 
              TQ = 25 

 

P1 P2 P3 P4 P5 P3 P4 P5 P4 P5 

0   10      32     57       82    107     130    155   180     200   224 

Figure. 4.6.8.1: Gantt chart for RR in Table 4.6.8 

 

 TQ=10                TQ=59                                     TQ=13                  TQ=2 

 

P1 P2 P3 P4 P5 P4 P5 P5 

0      10       32       80        139      198        209     222      224 

Figure. 4.6.8.2: Gantt chart for SRBRR in Table 4.6.8 

 

TQ=10                 TQ=43                                    TQ = 11                     TQ =  

 

  18          TQ=2 

P1 P2 P3 P4 P5 P3 P4 P5 P4 P5 P5 

0      10     32      75     118     161   166     177    188    204     222   224 

Figure. 4.6.8.3: Gantt chart for SMDRR in Table 4.6.8 

 TQ=10  TQ = 74 

 

P1 P2 P3 P4 P5 

0          10         32           80           150        224 

Figure. 4.6.8.4: Gantt chart for MMDRR in Table 4.6.8 
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Decreasing Order: 

Five process P1, P2, P3, P4, P5 arriving at time 0, 6, 13, 21, 
75 with burst time 73, 50, 23, 19, 5 respectively of each 
process shown in table 4.6.9 have been considered. Table 
4.6.10 shows the comparing result of RR, SRBRR, SMDRR 
and our proposed algorithm (MMDRR). 

Table 4.6.9 Data in decreasing order with arrival time 

Processes  Arrival Time  Burst Time 

P1 0 73 

P2 6 50 

P3 13 23 

P4 21 19 

P5 75 5 

Table 4.6.10 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms QT AWT  ATAT CS 

RR 25 67.8 101.8 7 

SRBRR 73, 23, 23, 27 53.4 87.4 5 

SMDRR 73, 23, 10, 27 71 105 8 

MMDRR 73, 42, 8 53.4 87.4 5 

                                             

                                                 TQ = 25 

P1 P2 P3 P4 P1 P2 P5 P1 

0       25       50         73         92        117       142      147       170 

Figure. 4.6.10.1: Gantt chart for RR in Table 4.6.10 

TQ=73   TQ=23               TQ = 23                     TQ=27                 
 

P1 P4 P5 P3 P2 P2 

0         73           92           97          120        143           170 

Figure. 4.6.10.2: Gantt chart for SRBRR in Table 4.6.10 

TQ=73             TQ=13                            TQ=10                    TQ=27 

 

P1 P4 P5 P3 P2 P4 P3 P2 P2 

0    73        86    91      104     117     123   133    143     170 

Figure. 4.6.10.3: Gantt chart for SMDRR in Table 4.6.10 

TQ=73   TQ = 42                   TQ = 8 

 

P1 P4 P5 P3 P2 P2 

0         73           92           97          120           162         170 

Figure. 4.6.10.4: Gantt chart for MMDRR in Table 4.6.10 

Random Order: 

Five process P1, P2, P3, P4, P5 arriving at time 0, 6, 8, 9, 10 
with burst time 7, 15, 90, 42, 8 respectively of each process 
shown in table 4.6.11 have been considered. Table 4.6.12 
shows the comparing result of RR, SRBRR, SMDRR and 
our proposed algorithm (MMDRR). 

Table 4.6.11 Data in random order with arrival time 

Processes  Arrival Time  Burst Time 

P1 0 7 

P2 6 15 

P3 8 90 

P4 9 42 

P5 10 8 

Table 4.6.12 Comparison among RR, SRBRR, SMDRR and    MMDRR 

Algorithms QT AWT  ATAT CS 

RR 25 39.6 72 8 

SRBRR 7, 15, 42, 48  19.6 52 

 

5 

SMDRR 7, 18, 36, 36 23.3 55.6 7 

MMDRR 7, 76, 14 19.6 52 5 

  

TQ = 25 

 

P1 P2 P3 P4 P5 P3 P4 P3 P3 

0     7       22         47        72         80     105    122     147      162 

Figure. 4.6.12.1: Gantt chart for RR in Table 4.6.12 

   TQ=7     TQ=15        TQ=42  TQ=48 

 

P1 P2 P5 P4 P3 P3 

0           7                22            30              72             114        162 

Figure. 4.6.12.2: Gantt chart for SRBRR in Table 4.6.12 

 TQ=7            TQ = 18                            TQ = 36          TQ=36 

 

P1 P2 P5 P4 P3 P4 P3 P3 

0       7           22        30      48          66         90         126    162 

Figure. 4.6.12.3: Gantt chart for SMDRR in Table 4.6.12 

 TQ = 7                       TQ = 76                                      TQ = 14 

 

P1 P2 P5 P4 P3 P3 

0           7                22            30              72             148        162 

Figure. 4.6.12.4: Gantt chart for SMDRR in Table 4.6.12 

 

Figure 4.6.13 Avg. waiting time (RR vs. SRBRR vs. SMDRR vs. MMDRR) 

with arrival time= 0 

BURST TIME 
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Figure 4.6.14 Avg. turnaround time (RR vs. SRBRR vs. SMDRR vs. 

MMDRR) with arrival time= 0 
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Figure 4.6.15 Context switching (RR vs. SRBRR vs. SMDRR vs. MMDRR) 

with arrival time= 0 
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Figure 4.6.16 Avg. waiting time (RR vs. SRBRR vs. SMDRR vs. MMDRR) 

with arrival time 
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Figure: 4.6.17 Avg. turnaround time (RR vs. SRBRR vs. SMDRR vs. 

MMDRR) with arrival time 
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Figure: 4.6.18 Context switching (RR vs. SRBRR vs. SMDRR vs. 

MMDRR) with arrival time 

CONCLUSION 

From the above experiments, MMDRR algorithm shows 
better results than RR algorithm, SRBRR algorithm and 

SMDRR algorithm in enhancing the CPU performance and 

its efficiency. By using our algorithm we are getting better, 

Average Waiting Time, Average Turnaround Time and 

Context Switch. As we have taken the ideal cases in 

calculating the TAT, WT and CS .In future we can 

implement this algorithm in real time operating systems. 
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